Towards AI-Assisted Mapmaking: Assessing the Capabilities of GPT-4o in Cartographic Design
Abstract
:1. Introduction
2. Literature Review
2.1. Overview of Large Language Models
2.2. GeoAI in Cartography
2.3. Cartographic Design Principles
3. Methodology
3.1. Research Design
3.2. LLM Selection and Temperature Settings
4. Results
4.1. Text-to-Text Assessment
4.1.1. Classification
4.1.2. Visual Hierarchy and Layout
4.1.3. Symbolization and the Visual Variables
4.1.4. Color Theory
4.1.5. Typography
4.1.6. Response Consistency of GPT-4o Across Temperature Settings
4.2. Image-to-Text Assessment
4.2.1. Map Scenario 1—Misleading Color Scheme
4.2.2. Map Scenario 2—Improper Monochromatic Gradient
4.2.3. Map Scenario 3—Misleading Color Palette and Data Categorization
4.2.4. Map Scenario 4—Inappropriate Shape Symbolization
4.2.5. Map Scenario 5—Misused Size Variable
4.2.6. Map Scenario 6—Improper Labeling
4.2.7. Map Scenario 7—Misleading Design for Elderly People
5. Discussion
5.1. Text-to-Text Assessment
5.2. Image-to-Text Assessment
5.3. Limitations
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dent, B.D.; Torguson, J.S.; Hodler, T.W. Cartography: Thematic Map Design, 6th ed.; McGraw-Hill: New York, NY, USA, 2009. [Google Scholar]
- Robinson, A.H.; Sale, R.D.; Morrison, J.L.; Muehrcke, P.C. Elements of Cartography, 6th ed.; John Wiley & Sons: Hoboken, NJ, USA, 1995. [Google Scholar]
- Brewer, C.A. Designing Better Maps: A Guide for GIS Users, 2nd ed.; ESRI Press: Redlands, CA, USA, 2016. [Google Scholar]
- Slocum, T.A.; McMaster, R.B.; Kessler, F.C.; Howard, H.H. Thematic Cartography and Geovisualization, 4th ed.; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar] [CrossRef]
- Krygier, J.B.; Wood, D. Making Maps: A Visual Guide to Map Design for GIS, 2nd ed.; Guilford Press: New York, NY, USA, 2011. [Google Scholar]
- Monmonier, M. How to Lie with Maps; University of Chicago Press: Chicago, IL, USA, 1991. [Google Scholar]
- MacEachren, A.M. How Maps Work: Representation, Visualization, and Design; Guilford Press: New York, NY, USA, 2004. [Google Scholar]
- Russell, S.; Norvig, P. Artificial Intelligence: A Modern Approach, 3rd ed.; Pearson: London, UK, 2016. [Google Scholar]
- Jordan, M.I.; Mitchell, T.M. Machine Learning: Trends, Perspectives, and Prospects. Science 2015, 349, 255–260. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, T.; Polosukhin, I. Attention is All You Need. In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Brown, T.B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al. Language Models Are Few-Shot Learners. Adv. Neural Inf. Process. Syst. 2020, 33, 1877–1901. [Google Scholar]
- Bommasani, R.; Hudson, D.A.; Adeli, E.; Altman, R.; Arora, S.; von Arx, S.; Bernstein, M.S.; Bohg, J.; Bosselut, A.; Brunskill, E.; et al. On the Opportunities and Risks of Foundation Models. arXiv 2021, arXiv:2108.07258. [Google Scholar]
- Bubeck, S.; Chandrasekaran, V.; Eldan, R.; Gehrke, J.; Horvitz, E.; Kamar, E.; Lee, P.; Tandon, N.; Zhang, Y. Sparks of Artificial General Intelligence: Early Experiments with GPT-4. arXiv 2023, arXiv:2303.12712. [Google Scholar]
- Kang, Y.; Gao, S.; Roth, R.E. Artificial Intelligence Studies in Cartography: A Review and Synthesis of Methods, Applications, and Ethics. Cartogr. Geogr. Inf. Sci. 2024, 51, 599–630. [Google Scholar] [CrossRef]
- Brus, J.; Dobešová, Z.; Kanok, J. Utilization of expert systems in thematic cartography. In Proceedings of the 2009 International Conference on Intelligent Networking and Collaborative Systems, Barcelona, Spain, 4–6 November 2009; pp. 285–289. [Google Scholar]
- Roussel, C. Visualization of Explainable Artificial Intelligence for GeoAI. Front. Comput. Sci. 2024, 6, 1414923. [Google Scholar] [CrossRef]
- Usery, E.L.; Arundel, S.T.; Shavers, E.; Stanislawski, L.; Thiem, P.; Varanka, D. GeoAI in the US Geological Survey for Topographic Mapping. Trans. GIS 2021, 1, 25–40. [Google Scholar] [CrossRef]
- Harrie, L.; Touya, G.; Oucheikh, R.; Ai, T.; Courtial, A.; Richter, K.F. Machine Learning in Cartography. Cartogr. Geogr. Inf. Sci. 2024, 51, 1–19. [Google Scholar] [CrossRef]
- University Consortium for Geographic Information Science. GIS&T Body of Knowledge. 2023. Available online: https://ucgis.org (accessed on 10 December 2024).
- Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the NAACL-HLT 2019, Minneapolis, MN, USA, 2–7 June 2019; pp. 4171–4186. [Google Scholar]
- Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; Sutskever, I. Language Models Are Unsupervised Multitask Learners. OpenAI Blog 2019, 1, 9. [Google Scholar]
- Achiam, J.; Adler, S.; Agarwal, S.; Ahmad, L.; Akkaya, I.; Aleman, F.L.; McGrew, B. GPT-4 Technical Report. arXiv 2023, arXiv:2303.08774. [Google Scholar]
- Touvron, H.; Lavril, T.; Izacard, G.; Martinet, X.; Lachaux, M.A.; Lacroix, T.; Lample, G. Llama: Open and Efficient Foundation Language Models. arXiv 2023, arXiv:2302.13971. [Google Scholar]
- Team, G.; Anil, R.; Borgeaud, S.; Alayrac, J.B.; Yu, J.; Soricut, R.; Blanco, L. Gemini: A Family of Highly Capable Multimodal Models. arXiv 2023, arXiv:2312.11805. [Google Scholar]
- Anthropic. Claude 3 Model Card. 2024. Available online: https://www.anthropic.com/claude-3-model-card (accessed on 10 December 2024).
- Christiano, P.F.; Leike, J.; Brown, T.; Martic, M.; Legg, S.; Amodei, D. Deep Reinforcement Learning from Human Preferences. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Volume 30. [Google Scholar]
- Cascella, M.; Montomoli, J.; Bellini, V.; Bignami, E. Evaluating the Feasibility of ChatGPT in Healthcare: An Analysis of Multiple Clinical and Research Scenarios. J. Med. Syst. 2023, 47, 33. [Google Scholar] [CrossRef]
- Esteva, A.; Robicquet, A.; Ramsundar, B.; Kuleshov, V.; DePristo, M.; Chou, K.; Dean, J. A Guide to Deep Learning in Healthcare. Nat. Med. 2019, 25, 24–29. [Google Scholar] [CrossRef]
- Sajja, R.; Sermet, Y.; Cikmaz, M.; Cwiertny, D.; Demir, I. Artificial Intelligence-Enabled Intelligent Assistant for Personalized and Adaptive Learning in Higher Education. Information 2024, 15, 596. [Google Scholar] [CrossRef]
- Moura, F.T. (Ed.) Artificial Intelligence, Co-Creation and Creativity: The New Frontier for Innovation; Taylor & Francis: Abingdon, UK, 2024. [Google Scholar]
- Guha, N.; Nyarko, J.; Ho, D.; Ré, C.; Chilton, A.; Chohlas-Wood, A.; Li, Z. Legalbench: A Collaboratively Built Benchmark for Measuring Legal Reasoning in Large Language Models. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 9–15 December 2024; Volume 36. [Google Scholar]
- Kwon, O.H.; Vu, K.; Bhargava, N.; Radaideh, M.I.; Cooper, J.; Joynt, V.; Radaideh, M.I. Sentiment Analysis of the United States Public Support of Nuclear Power on Social Media Using Large Language Models. Renew. Sustain. Energy Rev. 2024, 200, 114570. [Google Scholar] [CrossRef]
- Han, M.; Canli, I.; Shah, J.; Zhang, X.; Dino, I.G.; Kalkan, S. Perspectives of Machine Learning and Natural Language Processing on Characterizing Positive Energy Districts. Buildings 2024, 14, 371. [Google Scholar] [CrossRef]
- Alayrac, J.B.; Donahue, J.; Luc, P.; Miech, A.; Barr, I.; Hasson, Y.; Lenc, K.; Mensch, A.; Millican, K.; Reynolds, M.; et al. Flamingo: A Visual Language Model for Few-Shot Learning. In Proceedings of the Advances in Neural Information Processing Systems, New Orleans, LO, USA, 28 November–9 December 2022. [Google Scholar]
- Saharia, C.; Chan, W.; Saxena, S.; Li, L.; Whang, J.; Zhai, S.; Kan, H.; Salimans, T.; Norouzi, M.; Fleet, D.J. ImageBind: One Embedding Space to Bind Them All. arXiv 2023, arXiv:2305.05665. [Google Scholar]
- Pressman, S.M.; Borna, S.; Gomez-Cabello, C.A.; Haider, S.A.; Haider, C.; Forte, A.J. AI and Ethics: A Systematic Review of the Ethical Considerations of Large Language Model Use in Surgery Research. Healthcare 2024, 12, 825. [Google Scholar] [CrossRef]
- Dai, S.; Xu, C.; Xu, S.; Pang, L.; Dong, Z.; Xu, J. Bias and Unfairness in Information Retrieval Systems: New Challenges in the LLM Era. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Barcelona, Spain, 25–29 August 2024; pp. 6437–6447. [Google Scholar]
- Zhou, J.; Zhang, Y.; Luo, Q.; Parker, A.G.; De Choudhury, M. Synthetic Lies: Understanding AI-Generated Misinformation and Evaluating Algorithmic and Human Solutions. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, Hamburg, Germany, 23–28 April 2023; pp. 1–20. [Google Scholar]
- Bender, E.M.; Gebru, T.; McMillan-Major, A.; Shmitchell, S. On the Dangers of Stochastic Parrots: Can Language Models Be Too Big? In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, Virtual, 3–10 March 2021; pp. 610–623. [Google Scholar]
- Weidinger, L.; Mellor, J.; Rauh, M.; Griffin, C.; Uesato, J.; Huang, P.S.; Gabriel, I. Ethical and Social Risks of Harm from Language Models. arXiv 2021, arXiv:2112.04359. [Google Scholar]
- Rillig, M.C.; Ågerstrand, M.; Bi, M.; Gould, K.A.; Sauerland, U. Risks and Benefits of Large Language Models for the Environment. Environ. Sci. Technol. 2023, 57, 3464–3466. [Google Scholar] [CrossRef]
- Chen, M.; Claramunt, C.; Çöltekin, A.; Liu, X.; Peng, P.; Robinson, A.C.; Wang, D.; Strobl, J.; Wilson, J.P.; Batty, M.; et al. Artificial Intelligence and Visual Analytics in Geographical Space and Cyberspace: Research Opportunities and Challenges. Earth Sci. Rev. 2023, 241, 104438. [Google Scholar] [CrossRef]
- Gao, S.; Hu, Y.; Li, W. (Eds.) Handbook of Geospatial Artificial Intelligence, 1st ed.; CRC Press: Boca Raton, FL, USA, 2023. [Google Scholar] [CrossRef]
- Janowicz, K.; Gao, S.; McKenzie, G.; Hu, Y.; Bhaduri, B. GeoAI: Spatially Explicit Artificial Intelligence Techniques for Geographic Knowledge Discovery and Beyond. Int. J. Geogr. Inf. Sci. 2020, 34, 625–647. [Google Scholar] [CrossRef]
- Fu, C.; Zhou, Z.; Xin, Y.; Weibel, R. Reasoning Cartographic Knowledge in Deep Learning-Based Map Generalization with Explainable AI. Int. J. Geogr. Inf. Sci. 2024, 38, 2061–2082. [Google Scholar] [CrossRef]
- Feng, Y.; Thiemann, F.; Sester, M. Learning Cartographic Building Generalization with Deep Convolutional Neural Networks. ISPRS Int. J. Geo-Inf. 2019, 8, 258. [Google Scholar] [CrossRef]
- Li, W.; Hsu, C.Y. GeoAI for Large-Scale Image Analysis and Machine Vision: Recent Progress of Artificial Intelligence in Geography. ISPRS Int. J. Geo-Inf. 2022, 11, 385. [Google Scholar] [CrossRef]
- Armstrong, M.P. Active Symbolism: Toward a New Theoretical Paradigm for Statistical Cartography. Cartogr. Geogr. Inf. Sci. 2019, 46, 72–81. [Google Scholar] [CrossRef]
- Li, Z.; Ning, H. Autonomous GIS: The Next-Generation AI-Powered GIS. Int. J. Digit. Earth 2023, 16, 4668–4686. [Google Scholar] [CrossRef]
- Tucker, S. A Systematic Review of Geospatial Location Embedding Approaches in Large Language Models: A Path to Spatial AI Systems. arXiv 2024, arXiv:2401.10279. [Google Scholar]
- Zhang, Y.; Wang, Z.; He, Z.; Li, J.; Mai, G.; Lin, J.; Yu, W. BB-GeoGPT: A Framework for Learning a Large Language Model for Geographic Information Science. Inf. Process. Manag. 2024, 61, 103808. [Google Scholar] [CrossRef]
- Mansourian, A.; Oucheikh, R. ChatGeoAI: Enabling Geospatial Analysis for Public through Natural Language, with Large Language Models. ISPRS Int. J. Geo-Inf. 2024, 13, 348. [Google Scholar] [CrossRef]
- Zhang, Y.; He, Z.; Li, J.; Lin, J.; Guan, Q.; Yu, W. MapGPT: An Autonomous Framework for Mapping by Integrating Large Language Model and Cartographic Tools. Cartogr. Geogr. Inf. Sci. 2024, 51, 717–743. [Google Scholar] [CrossRef]
- Kang, Y.; Gao, S.; Roth, R.E. Transferring Multiscale Map Styles Using Generative Adversarial Networks. Int. J. Cartogr. 2019, 5, 115–141. [Google Scholar] [CrossRef]
- Kent, A.J. Aesthetics: A Lost Cause in Cartographic Theory? Cartogr. J. 2005, 42, 182–188. [Google Scholar] [CrossRef]
- Mai, G.; Huang, W.; Sun, J.; Song, S.; Mishra, D.; Liu, N.; Lao, N. On the Opportunities and Challenges of Foundation Models for Geospatial Artificial Intelligence. arXiv 2023, arXiv:2304.06798. [Google Scholar]
- Penn State. Introduction to the GIS&T Body of Knowledge. 2023. Available online: https://e-education.psu.edu (accessed on 10 December 2024).
- Kemp, K.; Goodchild, M.F.; Dodson, R. The GIS&T Body of Knowledge 2.0: A New Content Model. In Advances in Spatial Science; Springer: Berlin/Heidelberg, Germany, 2013; pp. 3–22. [Google Scholar]
- Brewer, C.A. Color Use Guidelines for Mapping and Visualization. In Visualization in Modern Cartography; MacEachren, A.M., Taylor, D.R.F., Eds.; Elsevier Science: Tarrytown, NY, USA, 1994; pp. 123–147. [Google Scholar]
- Brumberger, E.R. The Rhetoric of Typography: The Persona of Typeface and Text. Tech. Commun. 2003, 50, 206–223. [Google Scholar]
- Lewis, C.; Walker, P. Typographic Influences on Reading. Br. J. Psychol. 1989, 80, 241–257. [Google Scholar] [CrossRef]
- Childers, T.L.; Jass, J. All Dressed Up with Something to Say: Effects of Typeface Semantic Associations on Brand Perceptions and Consumer Memory. J. Consum. Psychol. 2002, 12, 93–106. [Google Scholar] [CrossRef]
- Fulman, N.; Memduhoglu, A.; Zipf, A. Evidence for Systematic Bias in the Spatial Memory of Large Language Models. In Proceedings of the GeoExT@ECIR, Glasgow, Scotland, 24–28 March 2024; pp. 57–62. [Google Scholar]
- Fulman, N.; Memduhoğlu, A.; Zipf, A. Distortions in Judged Spatial Relations in Large Language Models. Prof. Geogr. 2024, 76, 703–711. [Google Scholar] [CrossRef]
Query No. | Category | Query |
---|---|---|
1 | Classification | Map with uniform data distribution, which classification? |
2 | Classification | Map with normal data distribution, which classification? |
3 | Classification | Map with evenly distributed ordinal data, which classification? |
4 | Visual Hierarchy and Layout | Strong contrast, which color? |
5 | Visual Hierarchy and Layout | Weak contrast, which color? |
6 | Visual Hierarchy and Layout | A background layer that visually recedes, which color? |
7 | Symbolization and the Visual Variables | Nominal data, which visual variable? |
8 | Symbolization and the Visual Variables | Ordinal data, which visual variable? |
9 | Symbolization and the Visual Variables | Numerical data, which visual variable? |
10 | Color Theory | Ratio data, which color scheme? |
11 | Color Theory | Land Use/Land Cover data, which color scheme? |
12 | Color Theory | Visualize the cheapest and most expensive places to live in a city, which color scheme? |
13 | Typography | A map depicts legal designations of property, which typeface? |
14 | Typography | A map depicts entertainment venues someone has visited, which typeface? |
15 | Typography | A map depicts Star Wars planets and colonies, which typeface? |
No. | Query | Temperature 0.4 (%) | Temperature 0.7 (%) | Temperature 1.0 (%) |
---|---|---|---|---|
1 | Uniform distribution | Equal Intervals: 99 Natural Breaks: 1 | Equal Intervals: 92 Quantiles: 7 Natural Breaks: 1 | Equal Intervals: 85 Quantiles: 12 Natural Breaks: 3 |
2 | Normal distribution | Natural Breaks: 47 Equal Intervals: 40 Quantiles: 13 | Natural Breaks: 63 Equal Intervals: 22 Quantiles: 14 Std. Deviation: 1 | Natural Breaks: 63 Equal Intervals: 17 Quantiles: 18 Std. Deviation: 2 |
3 | Evenly distributed ordinal data | Equal Intervals: 100 | Equal Intervals: 96 Natural Breaks: 3 Quantiles: 1 | Equal Intervals: 93 Natural Breaks: 7 |
No. | Query | Temperature 0.4 (%) | Temperature 0.7 (%) | Temperature 1.0 (%) |
---|---|---|---|---|
1 | Strong contrast | Complementary: 100 | Complementary: 100 | Complementary: 99 Vibrant, Saturated: 1 |
2 | Weak contrast | Light Gray: 100 | Light Gray: 95 Muted or Pastel: 5 | Light Gray: 84 Muted or Pastel: 16 |
3 | Receding background | Soft or Muted: 100 | Soft or Muted: 100 | Soft or Muted: 100 |
No. | Query | Temperature 0.4 (%) | Temperature 0.7 (%) | Temperature 1.0 (%) |
---|---|---|---|---|
1 | Nominal data | Color Hue: 93 Color: 7 | Color Hue: 88 Color: 12 | Color Hue: 76 Color: 24 |
2 | Ordinal data | Color Hue: 99 Color Value: 1 | Color Hue: 96 Color Value: 4 | Color Hue: 92 Color Value: 8 |
3 | Numerical data | Color Value: 40 Color Hue: 34 Color Saturation: 14 Color Gradients: 11 Color: 1 | Color Value: 44 Color Hue: 21 Color Gradients: 17 Color Saturation: 12 Color: 6 | Color Value: 42 Color Gradients: 16 Color Saturation: 14 Color Hue: 9 Color: 9 Size: 8 Graduated Symbols: 2 |
No. | Query | Temperature 0.4 (%) | Temperature 0.7 (%) | Temperature 1.0 (%) |
---|---|---|---|---|
1 | Ratio data | Sequential: 100 | Sequential: 100 | Sequential: 100 |
2 | Land Use/Land Cover | Earth Tones: 100 | Earth Tones: 100 | Earth Tones: 100 |
3 | Cheapest & Costliest Places | Diverging: 100 | Diverging: 100 | Diverging: 100 |
No. | Query | Temperature 0.4 (%) | Temperature 0.7 (%) | Temperature 1.0 (%) |
---|---|---|---|---|
1 | Property Legal Designations | Helvetica: 59 Sans-Serif: 17 Serif: 14 Garamond: 9 Arial: 1 | Helvetica: 68 Garamond: 12 Sans-Serif: 8 Serif: 5 Gotham: 5 Arial: 2 | Helvetica: 56 Garamond: 13 Serif: 12 Gotham: 7 Sans-Serif: 5 Arial: 2 Other: 5 |
2 | Visited Entertainment Venues | Helvetica: 89 Sans-Serif: 11 | Helvetica: 78 Sans-Serif: 13 Montserrat: 4 Avenir: 4 Futura: 1 | Helvetica: 56 Sans-Serif: 12 Avenir: 10 Futura: 8 Montserrat: 7 Open Sans: 3 Other: 4 |
3 | Star Wars Planets & Colonies | Eurostile: 64 Trajan: 15 Star Jedi: 8 Star Wars: 5 News Gothic: 3 Sans-Serif: 2 Other: 3 | Eurostile: 57 Trajan: 15 Star Jedi: 6 Aurebesh: 5 Bank Gothic: 4 Futura: 3 Other: 10 | Eurostile: 40 Trajan: 17 Bank Gothic: 8 Aurebesh: 6 Futura: 4 Gotham: 4 Other: 21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Memduhoğlu, A. Towards AI-Assisted Mapmaking: Assessing the Capabilities of GPT-4o in Cartographic Design. ISPRS Int. J. Geo-Inf. 2025, 14, 35. https://doi.org/10.3390/ijgi14010035
Memduhoğlu A. Towards AI-Assisted Mapmaking: Assessing the Capabilities of GPT-4o in Cartographic Design. ISPRS International Journal of Geo-Information. 2025; 14(1):35. https://doi.org/10.3390/ijgi14010035
Chicago/Turabian StyleMemduhoğlu, Abdulkadir. 2025. "Towards AI-Assisted Mapmaking: Assessing the Capabilities of GPT-4o in Cartographic Design" ISPRS International Journal of Geo-Information 14, no. 1: 35. https://doi.org/10.3390/ijgi14010035
APA StyleMemduhoğlu, A. (2025). Towards AI-Assisted Mapmaking: Assessing the Capabilities of GPT-4o in Cartographic Design. ISPRS International Journal of Geo-Information, 14(1), 35. https://doi.org/10.3390/ijgi14010035