Mapping the Dream: Designing Optimal E-Bike Routes in Valparaíso, Chile, Using a Multicriteria Analysis and an Experimental Study
Abstract
:1. Introduction
2. The Literature Review
2.1. Why Are Bicycles and E-Bikes Important?
2.2. A Review of the Methods and Variables in Bicycle Route Planning
3. Materials and Methods
3.1. Description of the Case Study
3.2. Research Planning and Design
3.3. Description of the Variables for the Multicreteria Analysis
- Topography [24,32,33,38,40,46]: A Digital Elevation Model of the Valparaíso region was used, obtained from the Spatial Data Infrastructure of Chile (IDE) [65]. This model was clipped to fit the area of Valparaíso. Next, the slope of each route was calculated using the “Zonal Statistics” tool in QGIS, obtaining the average of the slope from the beginning of the elevation to Avenida Alemania. The mask used was for routes from the foot of the hill with a buffer of a 5 m radius, similar to that stipulated in Decree 47 for the width of a local road corresponding to 11 m [66].
- Road safety [38,49,50]: The total number of traffic accidents along each proposed route was analyzed using the information available in the CONASET Geospatial Information Portal [67], which contains georeferenced accident data for the Valparaíso commune for the year 2022. To determine the number of accidents on each route, a polygon representing the width of the street was created based on the Google Maps satellite view and the QGIS base map. This polygon allowed the points where accidents occurred within each route to be cut out. Finally, the QGIS “Count Points in Polygon” vector tool was used to calculate the total number of accidents recorded along the routes. The mask used was for routes from the foot of the hill with a 5 m buffer [66].
- Cycling infrastructure [32,37,38,51,52]: Using the route lines and the base map in QGIS, all of the streets that intersected with the main route were digitized as points. The intersections were identified based on the number of streets that crossed an intersection, classifying them as intersections with one, two, or three streets. The mask used was for routes from the foot of the hill with a buffer of 5 m [66].
3.4. The Analysis Method for the Multicriteria Analysis
3.5. Description of the Variables for the Experimental Study
3.6. Analysis Methods for the Experimental Study
4. Results
4.1. Multicriteria Analysis
4.2. The Experimental Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Criteria | Indicador | Description | Condition | Score | Formula |
Avarege slope | Slope by proportion of the route section | For each section of the route, its gradient is calculated, a value that is weighted according to the specific conditions. This value is adjusted based on the proportion of the distance of the section within the total route. | <=8 | 3 | |
>8 and <=10 | 2 | ||||
>10 and <=12 | 1 | ||||
>12 | 0 | ||||
Distance | Total distance from metro station | Total distance of the route from the metro station, weighted by the quartiles of each route. | <=Q1 | 3 | D: Set of route distances from the plan k: Total number of route s(distances) in D. n: Total route distances from the plan, n = k. |
>Q1 and <=Q2 | 2 | ||||
>Q2 and <=Q3 | 1 | ||||
>Q3 | 0 | ||||
Total distance from the initial elevation of the hill | Total distance of the route from the start of the hill elevation, weighted by the quartiles of each route. | <=Q1 | 3 | D: Set of route distances from the base of the hill. k: Total number of routes (distances) in D. n: Total distances of the route from the base of the hill, n = k. | |
>Q1 and <=Q2 | 2 | ||||
>Q2 and <=Q3 | 1 | ||||
>Q3 | 0 | ||||
Average distance of the route sections | For each section of the route, its distance is calculated, and an average is obtained for each route, weighted by the quartiles of all the routes. | <= Q1 | 3 | D: Set of distances of the route sections from the base of the hill. k: Total number of sections (distances) in D. n: Total average distance of the route sections from the base of the hill, n = k | |
>Q1 and <=Q2 | 2 | ||||
>Q2 and <=Q3 | 1 | ||||
>Q3 | 0 | ||||
Traffic accidents | Total number of accidents by area of influence of the route | For each route, an area of influence of 5 m was defined, within which the number of traffic accidents was calculated, weighted by the quartiles of all the routes. | <=Q1 | 3 | A: Set of total number of accidents per area of influence. m: Total number of areas (total number of accidents) in A. p: Total accidents per area of influence, where p = m. |
>Q1 and <=Q2 | 2 | ||||
>Q2 and <=Q3 | 1 | ||||
>Q3 | 0 | ||||
Intersections | Total intersections | For each route, a count of intersections with other streets was made, weighting them by the quartiles of all the routes. | <=Q1 | 3 | D: Set of intersections on the routes. k: Total number of intersections in D. n: Total distances of the route from the base of the hill, n = k |
>Q1 and <=Q2 | 2 | ||||
>Q2 and <=Q3 | 1 | ||||
>Q3 | 0 | ||||
Type of intersections | For each intersection, its type of directionality was determined, favoring one-way directions and fewer intersections. The resulting weighting was adjusted according to the proportion of intersections of that type on the route. | Uni * = 1 | 3 | route i for type x | |
Uni = 2 | 3 | ||||
Bi = 1 | 2 | ||||
Bi = 2 | 1 | ||||
Uni or Bi = 2 or 3 | 0 | ||||
Directionality | Directionality of the route | Each route was identified in terms of its directionality. | Unidirectional | 3 | D = 3 and 0 when it is not |
Bidirectional | 0 | ||||
Speed | Average route speed | A 5 m area of influence was defined per route, within which EOD zones were identified. Car trips in Valparaíso were then analyzed to obtain an average distance and speed per zone, which allowed an estimated average speed per route to be calculated. | <=Q1 | 3 | Speed = m: Total number of people traveling by car (for the distances). p: Total number of people traveling by car (for thetime). |
>Q1 and <=Q2 | 2 | ||||
>Q2 and <=Q3 | 1 | ||||
>Q3 | 0 |
Downhill | |||||||||
ID | Slope per Section (%) | Total Distance from Metro Station | Total Distance from the Initial Elevation of the Hill | Average Distance of the Route Sections | Total Number of Accidents by Area of Influence of the Route | Total Intersections | Type of Intersections | Average Route Speed | |
1 | 16.43 | 1105.71 | 871.88 | 65.06 | 3 | 17 | Uni = 1 | 6 | 4.62 |
Uni = 2 | 6 | ||||||||
Bi = 1 | 3 | ||||||||
Bi = 2 | 1 | ||||||||
Uni or Bi = 2 or 3 | 1 | ||||||||
2 | 15.4 | 1884.36 | 782.39 | 75.4 | 16 | 24 | Uni = 1 | 8 | 9.04 |
Uni = 2 | 6 | ||||||||
Bi = 1 | 5 | ||||||||
Bi = 2 | 2 | ||||||||
Uni or Bi = 2 or 3 | 3 | ||||||||
3 | 11.22 | 1258.99 | 586.46 | 89.96 | 9 | 14 | Uni = 1 | 6 | 15.51 |
Uni = 2 | 5 | ||||||||
Bi = 2 | 2 | ||||||||
Uni or Bi = 2 or 3 | 1 | ||||||||
4 | 13.35 | 1560.03 | 894.02 | 70.93 | 12 | 21 | Uni = 1 | 9 | 9.17 |
Uni = 2 | 5 | ||||||||
Bi = 1 | 4 | ||||||||
Bi = 2 | 1 | ||||||||
Uni or Bi = 2 or 3 | 2 | ||||||||
5 | 15.12 | 2165.09 | 893.74 | 83.3 | 12 | 26 | Uni = 1 | 11 | 8.22 |
Uni = 2 | 9 | ||||||||
Bi = 1 | 4 | ||||||||
Bi = 2 | 1 | ||||||||
Uni or Bi = 2 or 3 | 1 | ||||||||
6 | 12.57 | 1677.74 | 1182.95 | 83.92 | 12 | 19 | Uni = 1 | 5 | 9.92 |
Uni = 2 | 7 | ||||||||
Bi = 1 | 6 | ||||||||
Uni or Bi = 2 or 3 | 1 | ||||||||
7 | 12.98 | 1559.32 | 787.02 | 70.9 | 6 | 21 | Uni = 2 | 8 | 8.42 |
Bi = 1 | 8 | ||||||||
Bi = 2 | 4 | ||||||||
Uni or Bi = 2 or 3 | 1 | ||||||||
8 | 10.56 | 1516.66 | 1021.86 | 101.15 | 12 | 14 | Uni = 1 | 4 | 9.24 |
Uni = 2 | 6 | ||||||||
Bi = 1 | 2 | ||||||||
Bi = 2 | 1 | ||||||||
Uni or Bi = 2 or 3 | 1 | ||||||||
9 | 10.36 | 1447.93 | 1166.47 | 160.94 | 0 | 9 | Uni = 1 | 1 | 20.04 |
Uni = 2 | 3 | ||||||||
Bi = 1 | 2 | ||||||||
Bi = 2 | 3 | ||||||||
10 | 10.25 | 1537.23 | 1042.46 | 118.29 | 14 | 12 | Uni = 1 | 2 | 9.92 |
Uni = 2 | 6 | ||||||||
Bi = 1 | 1 | ||||||||
Bi = 2 | 2 | ||||||||
Uni or Bi = 2 or 3 | 1 | ||||||||
Uphill | |||||||||
ID | Slope per Section (%) | Total Distance from Metro Station | Total Distance from the Initial Elevation of the Hill | Average Distance of the Route Sections | Total Number of Accidents by Area of Influence of the Route | Total Intersections | Type of Intersections | Average Route Speed | |
1 | 16.47 | 1552.71 | 780.71 | 64.72 | 6 | 24 | Uni = 1 | 12 | 7.36 |
Uni = 2 | 4 | ||||||||
Bi = 1 | 4 | ||||||||
Bi = 2 | 1 | ||||||||
Uni or Bi = 2 or 3 | 3 | ||||||||
2 | 19.77 | 1532.4 | 780.71 | 73 | 6 | 21 | Uni = 1 | 11 | 9.62 |
Uni = 2 | 3 | ||||||||
Bi = 1 | 3 | ||||||||
Bi = 2 | 1 | ||||||||
Uni or Bi = 2 or 3 | 3 | ||||||||
3 | 12.52 | 1302.68 | 586.46 | 162.89 | 11 | 8 | Uni = 1 | 2 | 11.98 |
Uni = 2 | 4 | ||||||||
Bi = 2 | 2 | ||||||||
4 | 18.77 | 1704.85 | 953.17 | 77.52 | 7 | 22 | Uni = 1 | 14 | 8.17 |
Uni = 2 | 2 | ||||||||
Bi = 1 | 4 | ||||||||
Uni or Bi = 2 or 3 | 2 | ||||||||
5 | 15.72 | 1725.2 | 953.19 | 69.03 | 7 | 25 | Bi = 1 | 4 | 7.04 |
Uni = 1 | 15 | ||||||||
Uni = 2 | 4 | ||||||||
Uni or Bi = 2 or 3 | 2 | ||||||||
6 | 19.14 | 2274.39 | 1242.4 | 103.42 | 13 | 22 | Uni = 1 | 9 | 9.02 |
Uni = 2 | 4 | ||||||||
Bi = 1 | 7 | ||||||||
Uni or Bi = 2 or 3 | 2 | ||||||||
7 | 10.85 | 1871.34 | 787.03 | 72 | 8 | 25 | Uni = 1 | 2 | 8.46 |
Uni = 2 | 9 | ||||||||
Bi = 1 | 7 | ||||||||
Bi = 2 | 6 | ||||||||
Uni or Bi = 2 or 3 | 1 | ||||||||
8 | 19.99 | 2054.21 | 1021.81 | 136.99 | 12 | 15 | Uni = 1 | 8 | 8.26 |
Uni = 2 | 2 | ||||||||
Bi = 1 | 2 | ||||||||
Bi = 2 | 1 | ||||||||
Uni or Bi = 2 or 3 | 2 | ||||||||
9 | 12.29 | 1536.81 | 1166.42 | 139.76 | 0 | 11 | Uni = 1 | 3 | 14.52 |
Uni = 2 | 2 | ||||||||
Bi = 1 | 2 | ||||||||
Bi = 2 | 4 | ||||||||
10 | 21.14 | 2136.59 | 1042.45 | 164.41 | 14 | 13 | Uni = 1 | 4 | 9.17 |
Uni = 2 | 4 | ||||||||
Bi = 1 | 1 | ||||||||
Bi = 2 | 2 | ||||||||
Uni or Bi = 2 or 3 | 2 |
Bidirectional | |||||||||
---|---|---|---|---|---|---|---|---|---|
ID | Slope per Section (%) | Total Distance from Metro Station | Total Distance from the Initial Elevation of the Hill | Average Distance of the Route Sections | Total Number of Accidents by Area of Influence of the Route | Total Intersections | Type of Intersections | Average Route Speed | |
11 | 11.17 | 2313.4 | 1398.23 | 110.2 | 16 | 20 | Uni = 1 | 3 | 6.74 |
Uni = 2 | 5 | ||||||||
Bi = 1 | 7 | ||||||||
Bi = 2 | 5 | ||||||||
12 | 6.74 | 1528.82 | 616.82 | 109.24 | 14 | 13 | Uni = 2 | 5 | 6.74 |
Bi = 1 | 3 | ||||||||
Bi = 2 | 5 |
Downhill | |||||||||
ID | Slope per Section (%) | Total Distance from Metro Station | Total Distance from the Initial Elevation of the Hill | Average Distance of the Route Sections | Total Number of Accidents by Area of Influence of the Route | Total Intersections | Type of Intersections | Average Route Speed | |
13 | 13.06 | 3713.58 | 2612.7 | 67.54 | 23 | 53 | Uni = 1 | 12 | 4.8 |
Uni = 2 | 2 | ||||||||
Bi = 1 | 27 | ||||||||
Bi = 2 | 7 | ||||||||
Uni or Bi = 2 or 3 | 5 | ||||||||
14 | 12.35 | 2603.41 | 2099.77 | 86.81 | 6 | 29 | Uni = 1 | 4 | 10.67 |
Uni = 2 | 1 | ||||||||
Bi = 1 | 16 | ||||||||
Bi = 2 | 8 | ||||||||
15 | 9.61 | 3127.91 | 1455.54 | 89.4 | 43 | 32 | Uni = 1 | 8 | 4.19 |
Uni = 2 | 3 | ||||||||
Bi = 1 | 14 | ||||||||
Bi = 2 | 2 | ||||||||
Uni or Bi = 2 or 3 | 5 | ||||||||
Uphill | |||||||||
ID | Slope per Section (%) | Total Distance from Metro Station | Total Distance from the Initial Elevation of the Hill | Average Distance of the Route Sections | Total Number of Accidents by Area of Influence of the Route | Total Intersections | Type of Intersections | Average Route Speed | |
13 | 13.16 | 3648.27 | 2573.13 | 71.56 | 15 | 50 | Uni = 1 | 9 | 4.34 |
Uni = 2 | 5 | ||||||||
Bi = 1 | 22 | ||||||||
Bi = 2 | 8 | ||||||||
Uni or Bi = 2 or 3 | 6 | ||||||||
14 | 12.8 | 2567.07 | 2127.96 | 91.71 | 7 | 28 | Uni = 1 | 4 | 10.67 |
Uni = 2 | 1 | ||||||||
Bi = 1 | 17 | ||||||||
Bi = 2 | 6 | ||||||||
15 | 10.4 | 3140.45 | 1455.52 | 104.72 | 27 | 28 | Uni = 1 | 1 | 4.29 |
Uni = 2 | 11 | ||||||||
Bi = 1 | 10 | ||||||||
Bi = 2 | 3 | ||||||||
Uni or Bi = 2 or 3 | 3 |
References
- Niemann, M.; Braun, K.F.; Otto, E.; Tiefenbrunner, M.; Wüster, J.; Stöckle, U.; Ahmad, S.S.; Märdian, S.; Graef, F. Dangers of E-Mobility: A Systematic Review and Meta-Analysis of Sustained Injury Patterns and Injury Severity. Saf. Sci. 2023, 167, 106283. [Google Scholar] [CrossRef]
- Uluk, D.; Lindner, T.; Palmowski, Y.; Garritzmann, C.; Göncz, E.; Dahne, M.; Möckel, M.; Gerlach, U.A. E-Scooter: Erste Erkenntnisse über Unfallursachen und Verletzungsmuster. Notf. Rettungsmed. 2020, 23, 293–298. [Google Scholar] [CrossRef]
- Germany Federal Ministry of Justice Road Traffic Act (Straßenverkehrsgesetz) (Section 7–20). Available online: https://www.gesetze-im-internet.de/englisch_stvg/englisch_stvg.html (accessed on 3 September 2024).
- Ministerie van Binnenlandse Zaken en Koninkrijksrelaties Regeling Voertuigen. Available online: https://wetten.overheid.nl/BWBR0025798/2018-05-20 (accessed on 3 September 2024).
- Consumer Product Safety Commission Electric Bicycles; Advance Notice of Proposed Rulemaking; Request for Comments and Information. Available online: https://www.federalregister.gov/documents/2024/03/15/2024-05472/electric-bicycles-advance-notice-of-proposed-rulemaking-request-for-comments-and-information (accessed on 3 September 2024).
- Ministry of Transportation and Infrastructure. E-Bike Rules of the Road—Province of British Columbia. Available online: https://www2.gov.bc.ca/gov/content/transportation/driving-and-cycling/cycling/e-bike-rules-of-the-road (accessed on 3 September 2024).
- Conselho Nacional de Trânsito. Resolução No 465, de 27 de Novembro de 2013; Contran: Brasília, Brasil, 2009. [Google Scholar]
- Ministerio de Vivienda y Urbanismo. Vialidad Ciclo-Inclusiva; Serie Espacios Públicos Urbanos; Ministerio de Vivienda y Urbanismo: Santiago, Chile, 2015. [Google Scholar]
- Bici Cosas Cicletada a Lo Vásquez, Todo lo Que Necesitas Saber—Bicicosas. Available online: https://www.bicicosas.cl/cicletada-a-lo-vasquez-todo-lo-que-necesitas-saber/ (accessed on 3 September 2024).
- Estación Chile e-Bike Tour 7 Cerros de Valparaiso. Available online: https://www.estacionchile.cl/detalle-tour.php?tour=74 (accessed on 3 September 2024).
- Instituto Nacional de Estadísticas Instituto Nacional de Estadísticas | REDATAM Procesamiento y Diseminación. Available online: https://redatam.org/ (accessed on 24 April 2024).
- Fernandes, V.A.; Tirado, H.M. Sustainable Mobility in Valparaíso, Chile, and its Relationship with Topography and Socio-Spatial Conditions. J. Sustain. Sci. Manag. 2021, 16, 122–134. [Google Scholar] [CrossRef]
- Aprigliano, V.; Toro, C.; Rojas, G.; Barros, G.; Fukushi, M.; Seriani, S. Effects of the Built Environment and Sociodemographic Factors on Accessibility in the City of Valparaíso, Chile. J. Transp. Geogr. 2024, 118, 103931. [Google Scholar] [CrossRef]
- Aprigliano, V.; Seriani, S.; Toro, C.; Rojas, G.; Fukushi, M.; Cardoso, M.; Silva, M.A.V.D.; Cucumides, C.; De Oliveira, U.R.; Henríquez, C.; et al. Built Environment Effect on Metro Ridership in Metropolitan Area of Valparaíso, Chile, under Different Influence Area Approaches. ISPRS Int. J. Geo-Inf. 2024, 13, 266. [Google Scholar] [CrossRef]
- United Nations. THE 17 GOALS|Sustainable Development. Available online: https://sdgs.un.org/goals (accessed on 3 September 2024).
- Bunyamin, W.M.H.W.; Baharom, R.; Munim, W.N.W.A. Wireless Battery Charger with Power Factor Correction for Electric Bike. In Proceedings of the 2023 IEEE Industrial Electronics and Applications Conference (IEACon), Penang, Malaysia, 6 November 2023; IEEE: New York, NY, USA, 2023; pp. 139–144. [Google Scholar]
- Yasir, A.; Hu, X.; Ahmad, M.; Alvarado, R.; Anser, M.K.; Işık, C.; Choo, A.; Ausaf, A.; Khan, I.A. Factors Affecting Electric Bike Adoption: Seeking an Energy-Efficient Solution for the Post-COVID Era. Front. Energy Res. 2022, 9, 817107. [Google Scholar] [CrossRef]
- Salmeron-Manzano, E.; Manzano-Agugliaro, F. The Electric Bicycle: Worldwide Research Trends. Energies 2018, 11, 1894. [Google Scholar] [CrossRef]
- Biblioteca del Congreso Nacional de Chile Ley 21088|Modifica la Ley de Tránsito para Incorporar Disposiciones sobre Convivencia de los Distintos Medios de Transporte. Available online: https://www.bcn.cl/leychile/navegar?idNorma=1118358 (accessed on 26 November 2024).
- Güldü, E.; Kuşçu Şimşek, Ç.; Selim, S. A Study on the Improvement of Bicycle Transportation in Sivas City Using Hybrid Multi-Criteria Model Based Network Analysis. Env. Dev. Sustain. 2024. [Google Scholar] [CrossRef]
- Hsu, T.P.; Lin, Y.T. A Model for Planning a Bicycle Network with Multi-Criteria Suitability Evaluation Using GIS. In WIT Transactions on Ecology and the Environment; WIT Press: Southampton, UK, 2011; Volume 148, pp. 243–252. [Google Scholar] [CrossRef]
- Ryu, S.; Chen, A.; Su, J.; Choi, K. A Multi-Class, Multi-Criteria Bicycle Traffic Assignment Model. Int. J. Sustain. Transp. 2021, 15, 524–540. [Google Scholar] [CrossRef]
- Pais, F.; Monteiro, J.; Sousa, N.; Coutinho-Rodrigues, J.; Natividade-Jesus, E. A Multicriteria Methodology for Maintenance Planning of Cycling Infrastructure. Proc. Inst. Civ. Eng. Eng. Sustain. 2022, 175, 248–264. [Google Scholar] [CrossRef]
- Chondrogianni, D.; Stephanedes, Y.J.; Fatourou, P. Assessing Cycling Accessibility in Urban Areas through the Implementation of a New Cycling Scheme. Sustainability 2023, 15, 14472. [Google Scholar] [CrossRef]
- Nematchoua, M.; Deuse, C.; Cools, M.; Reiter, S. Evaluation of the Potential of Classic and Electric Bicycle Commuting as an Impetus for the Transition towards Environmentally Sustainable Cities: A Case Study of the University Campuses in Liege, Belgium. Renew. Sustain. Energy Rev. 2020, 119, 109544. [Google Scholar] [CrossRef]
- Brand, C.; Dons, E.; Anaya-Boig, E.; Avila-Palencia, I.; Clark, A.; De Nazelle, A.; Gascon, M.; Gaupp-Berghausen, M.; Gerike, R.; Götschi, T.; et al. The Climate Change Mitigation Effects of Daily Active Travel in Cities. Transp. Res. Part D Transp. Environ. 2021, 93, 102764. [Google Scholar] [CrossRef]
- Hrncir, J.; Zilecky, P.; Song, Q.; Jakob, M. Practical Multicriteria Urban Bicycle Routing. IEEE Trans. Intell. Transport. Syst. 2017, 18, 493–504. [Google Scholar] [CrossRef]
- Tal, I.; Olaru, A.; Muntean, G.-M. eWARPE—Energy-Efficient Weather-Aware Route Planner for Electric Bicycles. In Proceedings of the 2013 21st IEEE International Conference on Network Protocols (ICNP), Goettingen, Germany, 7–10 October 2013; IEEE: New York, NY, USA, 2013; pp. 1–6. [Google Scholar]
- Behrendt, F. Cycling the Smart and Sustainable City: Analyzing EC Policy Documents on Internet of Things, Mobility and Transport, and Smart Cities. Sustainability 2019, 11, 763. [Google Scholar] [CrossRef]
- Meireles, M.; Ribeiro, P.J.G. Digital Platform/Mobile App to Boost Cycling for the Promotion of Sustainable Mobility in Mid-Sized Starter Cycling Cities. Sustainability 2020, 12, 2064. [Google Scholar] [CrossRef]
- Oliveira, F.; Nery, D.; Costa, D.G.; Silva, I.; Lima, L. A Survey of Technologies and Recent Developments for Sustainable Smart Cycling. Sustainability 2021, 13, 3422. [Google Scholar] [CrossRef]
- Đerek, J.; Sikora, M. Bicycle Route Planning Using Multiple Criteria GIS Analysis. In Proceedings of the 2019 International Conference on Software, Telecommunications and Computer Networks (SoftCOM), Split, Croatia, 19–21 September 2019; IEEE: New York, NY, USA, 2019; pp. 1–5. [Google Scholar]
- Hrncir, J.; Song, Q.; Zilecky, P.; Nemet, M.; Jakob, M. Bicycle Route Planning with Route Choice Preferences. Front. Artif. Intell. Appl. 2014, 263, 1149–1154. [Google Scholar] [CrossRef]
- Lopez-Escolano, C.; Campos, A.P.; Pardos, S.V.; Nedeliakova, E.; Stefancova, V. Incorporating Bicycles into Urban Mobility: An Opportunity for Sustainable Development. Komunikácie 2017, 19, 68–73. [Google Scholar] [CrossRef]
- Maltese, I.; Gatta, V.; Marcucci, E. Active Travel in Sustainable Urban Mobility Plans. An Italian Overview. Res. Transp. Bus. Manag. 2021, 40, 100621. [Google Scholar] [CrossRef]
- Pritchard, R. Revealed Preference Methods for Studying Bicycle Route Choice—A Systematic Review. IJERPH 2018, 15, 470. [Google Scholar] [CrossRef] [PubMed]
- De Jong, T.; Böcker, L.; Weber, C. Road Infrastructures, Spatial Surroundings, and the Demand and Route Choices for Cycling: Evidence from a GPS-Based Mode Detection Study from Oslo, Norway. Environ. Plan. B Urban. Anal. City Sci. 2023, 50, 2133–2150. [Google Scholar] [CrossRef]
- Saplıoğlu, M.; Aydın, M.M. Choosing Safe and Suitable Bicycle Routes to Integrate Cycling and Public Transport Systems. J. Transp. Health 2018, 10, 236–252. [Google Scholar] [CrossRef]
- Đerek, J.; Sikora, M.; Kraljević, L.; Russo, M. Using Neural Networks for Bicycle Route Planning. Appl. Sci. 2021, 11, 10065. [Google Scholar] [CrossRef]
- Perger, T.; Auer, H. Energy Efficient Route Planning for Electric Vehicles with Special Consideration of the Topography and Battery Lifetime. Energy Effic. 2020, 13, 1705–1726. [Google Scholar] [CrossRef]
- Milakis, D.; Athanasopoulos, K.; Vafeiadis, E.; Vasileiadis, K.; Vlastos, T. Planning of the Athens Metropolitan Cycle Network Using Participative Multicriteria Gis Analysis. Procedia Soc. Behav. Sci. 2012, 48, 816–826. [Google Scholar] [CrossRef]
- Beukes, E.; Vanderschuren, M.; Zuidgeest, M.; Brussel, M. Creating Liveable Neighborhoods through Context-Sensitive Multimodal Road Planning. Transp. Res. Rec. 2011, 2244, 27–33. [Google Scholar] [CrossRef]
- Jiménez, P.; Calatrava, M. Cycle Lane Network to Connect the Different Campuses of Technical University of Cartagena (Spain). In Proceedings of the 11th International Conferenceth on Urban Regeneration and Sustainability (SC 2016), Alicante, Spain, 12 July 2016; Volume 204, pp. 765–775. [Google Scholar]
- Grisé, E.; El-Geneidy, A. If We Build It, Who Will Benefit? A Multi-Criteria Approach for the Prioritization of New Bicycle Lanes in Quebec City, Canada. J. Transp. Land Use 2018, 11, 217–235. [Google Scholar] [CrossRef]
- Zagorskas, J.; Turskis, Z. Setting Priority List for Construction Works of Bicycle Path Segments Based on Eckenrode Rating and ARAS-F Decision Support Method Integrated in GIS. Transport 2020, 35, 179–192. [Google Scholar] [CrossRef]
- Santos, B.; Passos, S.; Gonçalves, J.; Matias, I. Spatial Multi-Criteria Analysis for Road Segment Cycling Suitability Assessment. Sustainability 2022, 14, 9928. [Google Scholar] [CrossRef]
- Milakis, D.; Athanasopoulos, K. What about People in Cycle Network Planning? Applying Participative Multicriteria GIS Analysis in the Case of the Athens Metropolitan Cycle Network. J. Transp. Geogr. 2014, 35, 120–129. [Google Scholar] [CrossRef]
- Zuo, T.; Wei, H. Bikeway Prioritization to Increase Bicycle Network Connectivity and Bicycle-Transit Connection: A Multi-Criteria Decision Analysis Approach. Transp. Res. Part A Policy Pract. 2019, 129, 52–71. [Google Scholar] [CrossRef]
- Fitch, D.T.; Handy, S.L. Road Environments and Bicyclist Route Choice: The Cases of Davis and San Francisco, CA. J. Transp. Geogr. 2020, 85, 102705. [Google Scholar] [CrossRef]
- Hardinghaus, M.; Papantoniou, P. Evaluating Cyclists’ Route Preferences with Respect to Infrastructure. Sustainability 2020, 12, 3375. [Google Scholar] [CrossRef]
- Desjardins, E.; Higgins, C.D.; Scott, D.M.; Apatu, E.; Páez, A. Using Environmental Audits and Photo-Journeys to Compare Objective Attributes and Bicyclists’ Perceptions of Bicycle Routes. J. Transp. Health 2021, 22, 101092. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, D.; Timmermans, H.J.P.; De Vries, B. Differences in Street-Scale Built Environment Preferences towards Biking: A Latent Class Analysis of Stated Choice Data. Int. J. Urban. Sustain. Dev. 2021, 13, 706–714. [Google Scholar] [CrossRef]
- Özkan, S.P. Kentsel Alanda CBS Kullanarak Bisiklet Altyapısı Rota Planlaması: İzmir Örneği. Planning 2020, 30, 41275. [Google Scholar] [CrossRef]
- Baeva, S.; Shterev, V.; Stoimenov, E.; Hinov, N. Risk Assessment and Route Optimization for Life and Health Self-Keeping during e-Cycling. In AIP Conference Proceedings; AIP Publishing: Sozopol, Bulgaria, 2019. [Google Scholar]
- Baeva, S.; Shterev, V.; Yochev, K.; Hinov, N. Route Optimization for Long Durability Battery Life during E-Bike Cycling. In AIP Conference Proceedings; AIP Publishing: Sozopol, Bulgaria, 2019; p. 080017. [Google Scholar]
- Bi, H.; Shang, W.-L.; Chen, Y.; Wang, K.; Yu, Q.; Sui, Y. GIS Aided Sustainable Urban Road Management with a Unifying Queueing and Neural Network Model. Appl. Energy 2021, 291, 116818. [Google Scholar] [CrossRef]
- CEDEUS. Área Metropolitana de Valparaíso. Available online: https://indicadores.cedeus.cl/ciudad/16 (accessed on 12 September 2024).
- Biblioteca del Congreso Nacional de Chile. Reportes Estadísticos 2024 de Valparaíso. Biblioteca Del Congreso Nacional de Chile. Available online: https://www.bcn.cl/siit/reportescomunales/comunas_v.html?anno=2024&idcom=5101 (accessed on 23 September 2024).
- Ministerio de Transporte y Telecomunicaciones. Mapa de Recorrido de Buses, Trolebuses y Estaciones de Metro En Valparaíso 2014. Valparaíso, Chile. Available online: https://www.subtrans.gob.cl/region-de-valparaiso.html (accessed on 3 March 2024).
- Biblioteca del Congreso Nacional de Chile. Clima y Vegetación Región de Valparaíso. Available online: https://www.bcn.cl/siit/nuestropais/region5/clima.htm (accessed on 23 September 2024).
- BioBio Chile. Advierten Llegada de Sistema Frontal a la Región de Valparaíso: Se Esperan Hasta 100 mm de Agua. Available online: https://www.biobiochile.cl/noticias/nacional/region-de-valparaiso/2024/06/11/advierten-llegada-de-sistema-frontal-a-la-region-de-valparaiso-se-esperan-hasta-100-mm-de-agua.shtml (accessed on 23 September 2024).
- BioBio Chile. Región de Valparaíso se Prepara Para Recibir dos Sistemas Frontales Esta Semana: Hay Alerta Preventiva. Available online: https://www.biobiochile.cl/noticias/nacional/region-de-valparaiso/2024/06/17/region-de-valparaiso-se-prepara-para-recibir-dos-sistemas-frontales-esta-semana-hay-alerta-preventiva.shtml (accessed on 23 September 2024).
- Diario UChile Declaran Alerta Roja para las Provincias de Valparaíso y Marga Marga por Lluvias. Available online: https://radio.uchile.cl/2024/06/21/declaran-alerta-roja-para-las-provincias-de-valparaiso-y-marga-marga-por-lluvias/ (accessed on 23 September 2024).
- Garmin Garmin Connect. Available online: https://connect.garmin.com/modern/home (accessed on 26 November 2024).
- IDE Geoportal de Chile—DEM Alos Palsar Región de Valparaíso 2024. Ministerio de Bienes Nacionales. Santiago. Available online: https://www.geoportal.cl/catalog (accessed on 20 April 2024).
- Ministerio de Vivienda y Urbanismo. Decreto 47 FIJA Nuevo Texto de la Ordenanza General de la Ley General de Urbanismo y Construcciones; MINVU: Santiago, Chile, 1992. [Google Scholar]
- CONASET Portal de Información Geoespacial CONASET 2024. Santiago, Chile. Available online: https://mapas-conaset.opendata.arcgis.com (accessed on 25 May 2024).
- Saaty, R.W. The Analytic Hierarchy Process—What It Is and How It Is Used. Math. Model. 1987, 9, 161–176. [Google Scholar] [CrossRef]
- Matias, I.; Virtudes, A. Bicycle Solutions in Mountain Cities: CycloCable® in Trondheim-Norway. IOP Conf. Ser. Mater. Sci. Eng. 2019, 603, 022024. [Google Scholar] [CrossRef]
- SECTRA Encuestas de Movilidad. Available online: https://www.sectra.gob.cl/encuestas_movilidad/encuestas_movilidad.htm (accessed on 30 May 2024).
Factors | Contextualization | Source |
---|---|---|
Connectivity and Accessibility | Ensure that cycle paths are connected to other modes of transport, maximizing accessibility, and facilitating intermodality. | [47,48] |
Departure Time | Adjust the departure time to avoid heavy traffic and adverse weather conditions and optimize the energy consumption on electric bikes. | [28,40] |
Topography | Assessment of road slopes, a critical factor in cities with uneven terrain, is especially important for the viability of electric bicycle routes. | [24,32,33,38,40,46] |
Road Safety | Focus on reducing the risks for cyclists by assessing the intersection density, traffic volume and speed, and the presence of safe infrastructure and identifying areas with a high risk of accidents to avoid dangerous routes and ensure the safety of cyclists, both on regular and electric bikes. | [38,49,50] |
Cycling Infrastructure | Emphasis is placed on the need for dedicated, high-quality cycle paths to ensure safety and comfort, which is essential for cyclists’ route selection. Choosing main roads that offer better maintenance, reduced exposure to traffic conflicts (e.g., intersections), and safety is especially important for e-bikes due to their sensitivity to uneven surfaces. | [32,37,38,51,52] |
Environmental and Urban Conditions | This includes consideration of green areas, landscaping, and air quality along the routes, improving the experience, and encouraging the use of bicycles. | [23,49,53] |
Travel Time | Consider total travel time to select faster and more efficient routes, taking into account distance, obstacles, and elevation changes. | [27,33] |
Multimodal Integration | This promotes the integration of cycle paths with public transport stations, facilitating the combined use of bicycles and public transport. | [43,48] |
Weather Conditions and Climate | Consider the effects of weather, such as rain, wind, and temperature, which can affect the safety and comfort of cyclists, especially for e-bike users. | [28,40,52,54,55] |
Demand and Potential Use | Assess projected demand and user profiles to ensure that cycle paths meet the needs of those who depend on them most. | [44,45] |
Rider Comfort | Consider pavement quality, road width, directionality, and the presence of obstacles to ensure a safe and comfortable cycling experience. | [23,27,33,52] |
Costs and Economic Viability | Analyze the cost of implementing and maintaining cycle paths to ensure that resources are used efficiently, balancing the benefits and investments. | [43,45] |
Energy Cost | Assessment of the energy consumption along routes is required, considering energy regeneration during braking and energy efficiency in electric bicycles. | [18,56] |
Zone | Hill Name | |
---|---|---|
1 | Arrayán | Yungay |
Alegre | Florida | |
Concepción | Cordillera | |
Cárcel | Bellavista | |
La Loma | San Juan de Dios | |
2 | Mariposa | Monjas |
La Cruz | ||
3 | Barón | Placeres |
Lecheros | Ramaditas | |
Larraín | Rodelillo | |
Polanco | O’Higgins |
Zone | ID | Street Name | Metro Station | Route type | Directionality |
---|---|---|---|---|---|
1 | 1 | Almirante Montt | Puerto | Dual route | One-Way |
2 | Almirante Montt | Bellavista | Dual route | One-Way | |
3 | Carampangue | Puerto | Dual route | Bidirectional | |
4 | Cumming | Bellavista | Dual route | One-Way | |
5 | Cumming | Puerto | Dual route | One-Way | |
6 | Ecuador/Cumming | Bellavista | Dual route | Bidirectional | |
7 | Ferrari | Bellavista | Dual route | Bidirectional | |
8 | Guillermo Rivera | Bellavista | Dual route | Bidirectional | |
9 | Tomás Ramos | Puerto | Dual route | Bidirectional | |
10 | Yerbas Buenas | Bellavista | Dual route | Bidirectional | |
2 | 11 | Baquedano | Francia | Round trip | Bidirectional |
12 | Francia | Francia | Round trip | Bidirectional | |
3 | 13 | Barón | Barón | Dual route | Bidirectional |
14 | Placeres/Matta | Portales | Dual route | Bidirectional | |
15 | Washington | Barón | Dual route | Bidirectional |
Downhill | |||||||
Stats | Mean | Std | Min | 25% | 50% | 75% | Max |
Slope per section (%) | 12.72 | 7.01 | 0.71 | 7.34 | 11.33 | 16.43 | 42 |
Total distance from metro station | 1935.23 | 772 | 1105.71 | 1516.66 | 1560.03 | 2165.09 | 3713.58 |
Total distance from the initial elevation of the hill | 1184.4 | 573.14 | 586.46 | 871.88 | 1021.86 | 1182.95 | 2612.7 |
Average distance of the route sections | 83.06 | 89.02 | 0.6 | 35.79 | 60.4 | 97.6 | 788.27 |
Total number of accidents by area of influence of the route | 12.92 | 10.79 | 0 | 6 | 12 | 14 | 43 |
Total intersections | 22.38 | 11.41 | 9 | 14 | 21 | 26 | 53 |
Directionality of the route [Uni = 1] | 6.42 | 3.37 | 1 | 4 | 6 | 8.25 | 12 |
Directionality of the route [Uni = 2] | 5.08 | 2.29 | 1 | 3 | 6 | 6 | 9 |
Directionality of the route [Bi = 1] | 7.67 | 7.69 | 1 | 2.75 | 4.5 | 9.5 | 27 |
Directionality of the route [Bi = 2] | 2.83 | 2.37 | 1 | 1 | 2 | 3.25 | 8 |
Directionality of the route [Uni or Bi = 2 or 3] | 2 | 1.61 | 1 | 1 | 1 | 2.5 | 5 |
Average route speed | 9.52 | 4.34 | 4.19 | 8.22 | 9.17 | 9.92 | 20.04 |
Uphill | |||||||
Stats | Mean | Std | Min | 25% | 50% | 75% | Max |
Slope per section (%) | 15.1 | 8.54 | 0 | 8.87 | 13.51 | 20.26 | 42 |
Total distance from metro station | 2080.54 | 686.19 | 1302.68 | 1552.71 | 1871.34 | 2274.39 | 3648.27 |
Total distance from the initial elevation of the hill | 1190.07 | 569.39 | 586.46 | 787.03 | 1021.81 | 1242.4 | 2573.13 |
Average distance of the route sections | 91.41 | 97.97 | 0.6 | 35.59 | 62.2 | 106.95 | 788.27 |
Total number of accidents by area of influence of the route | 10.23 | 6.5 | 0 | 7 | 8 | 13 | 27 |
Total intersections | 22.46 | 10.5 | 8 | 15 | 22 | 25 | 50 |
Directionality of the route [Uni = 1] | 7.23 | 4.85 | 1 | 3 | 8 | 11 | 15 |
Directionality of the route [Uni = 2] | 4.23 | 2.83 | 1 | 2 | 4 | 4 | 11 |
Directionality of the route [Bi = 1] | 6.92 | 6.49 | 1 | 2.75 | 4 | 7.75 | 22 |
Directionality of the route [Bi = 2] | 3.4 | 2.5 | 1 | 1.25 | 2.5 | 5.5 | 8 |
Directionality of the route [Uni or Bi = 2 or 3] | 2.5 | 1.08 | 1 | 2 | 2 | 3 | 5 |
Average route speed | 8.68 | 2.79 | 4.29 | 7.36 | 8.46 | 9.62 | 14.52 |
Bidirectional | |||||||
Stats | Mean | Std | Min | 25% | 50% | 75% | Max |
Slope per section (%) | 9.4 | 8.98 | 0 | 4 | 5.36 | 10 | 30.64 |
Total distance from metro station | 1921.1 | 554.78 | 1528.82 | 1724.96 | 1921.1 | 2117.25 | 2313.4 |
Total distance from the initial elevation of the hill | 1007.53 | 552.53 | 616.82 | 812.17 | 1007.53 | 1202.88 | 1398.23 |
Average distance of the route sections | 109.81 | 137.01 | 1.44 | 38.99 | 66.87 | 117.4 | 620.63 |
Total number of accidents by area of influence of the route | 15 | 1.41 | 14 | 14.5 | 15 | 15.5 | 16 |
Total intersections | 16.5 | 4.95 | 13 | 14.75 | 16.5 | 18.25 | 20 |
Directionality of the route [Uni = 1] | 3 | - | 3 | 3 | 3 | 3 | 3 |
Directionality of the route [Uni = 2] | 5 | 0 | 5 | 5 | 5 | 5 | 5 |
Directionality of the route [Bi = 1] | 5 | 2.83 | 3 | 4 | 5 | 6 | 7 |
Directionality of the route [Bi = 2] | 5 | 0 | 5 | 5 | 5 | 5 | 5 |
Average route speed | 6.74 | 0 | 6.74 | 6.74 | 6.74 | 6.74 | 6.74 |
Criteria | Weight |
---|---|
Speed | 0.4681 |
Directionality | 0.1741 |
Intersections | 0.159 |
Traffic accidents | 0.0996 |
Distance | 0.0534 |
Average slope | 0.0458 |
Professional Role | Average Work Experience (Years) | Total Experts | |
---|---|---|---|
Female | Male | ||
Academic | 15.0 | 15.5 | 6 (43%) |
Private System Professional | - | 7.0 | 3 (21%) |
Private System Professional, Postgraduate Student (Master’s or Doctorate) | - | 7.0 | 2 (14%) |
Public System Professional | - | 4.0 | 2 (14%) |
Public System Professional, Postgraduate Student (Master’s or Doctorate) | 24.0 | - | 1 (7%) |
Total Experts | 3 (21%) | 11 (79%) | 14 (100%) |
ID | Street Name | Metro Station | Uphill | Downhill | Bidireccional |
---|---|---|---|---|---|
1 | Almirante Montt | Puerto | 7.06 | 6.56 | - |
2 | Almirante Montt | Bellavista | 6.03 | 5.75 | - |
3 | Carampangue | Puerto | 3.27 | 5.25 | - |
4 | Cumming | Bellavista | 8.03 | 6.47 | - |
5 | Cumming | Puerto | 9.41 (↑) | 9.49 (↑) | - |
6 | Ecuador/Cumming | Bellavista | 5.27 | 4.93 | - |
7 | Ferrari | Francia | 4.9 | 4.58 | - |
8 | Guillermo Rivera | Bellavista | 4.29 | 4.85 | - |
9 | Tomás Ramos | Puerto | 2.44 (↓) | 2.17 (↓) | - |
10 | Yerbas Buenas | Bellavista | 3.58 | 3.4 | - |
11 | Baquedano | Francia | - | - | 4.08 (↑) |
12 | Francia | Francia | - | - | 3.87 (↓) |
13 | Barón | Barón | 6.77 | 7.91 | - |
14 | Placeres/Matta | Portales | 4.31 | 4.02 | - |
15 | Washington | Barón | 5.17 | 5.35 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aprigliano, V.; Toro, C.; Rojas, G.; Bastías, I.; Cardoso, M.; Santos, T.; da Silva, M.A.V.; Bustos, E.; de Oliveira, U.R.; Seriani, S. Mapping the Dream: Designing Optimal E-Bike Routes in Valparaíso, Chile, Using a Multicriteria Analysis and an Experimental Study. ISPRS Int. J. Geo-Inf. 2025, 14, 38. https://doi.org/10.3390/ijgi14010038
Aprigliano V, Toro C, Rojas G, Bastías I, Cardoso M, Santos T, da Silva MAV, Bustos E, de Oliveira UR, Seriani S. Mapping the Dream: Designing Optimal E-Bike Routes in Valparaíso, Chile, Using a Multicriteria Analysis and an Experimental Study. ISPRS International Journal of Geo-Information. 2025; 14(1):38. https://doi.org/10.3390/ijgi14010038
Chicago/Turabian StyleAprigliano, Vicente, Catalina Toro, Gonzalo Rojas, Iván Bastías, Marcus Cardoso, Tálita Santos, Marcelino Aurélio Vieira da Silva, Emilio Bustos, Ualison Rébula de Oliveira, and Sebastian Seriani. 2025. "Mapping the Dream: Designing Optimal E-Bike Routes in Valparaíso, Chile, Using a Multicriteria Analysis and an Experimental Study" ISPRS International Journal of Geo-Information 14, no. 1: 38. https://doi.org/10.3390/ijgi14010038
APA StyleAprigliano, V., Toro, C., Rojas, G., Bastías, I., Cardoso, M., Santos, T., da Silva, M. A. V., Bustos, E., de Oliveira, U. R., & Seriani, S. (2025). Mapping the Dream: Designing Optimal E-Bike Routes in Valparaíso, Chile, Using a Multicriteria Analysis and an Experimental Study. ISPRS International Journal of Geo-Information, 14(1), 38. https://doi.org/10.3390/ijgi14010038