Advancing AI-Driven Geospatial Analysis and Data Generation: Methods, Applications and Future Directions
1. Introduction
2. AI Methods in the SI
3. AI Applications in the SI
4. Future Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Janowicz, K.; Gao, S.; McKenzie, G.; Hu, Y.; Bhaduri, B. GeoAI: Spatially Explicit Artificial Intelligence Techniques for Geographic Knowledge Discovery and Beyond. Int. J. Geogr. Inf. Sci. 2020, 34, 625–636. [Google Scholar] [CrossRef]
- Gao, S.; Hu, Y.; Li, W.; Zou, L. Special Issue on Geospatial Artificial Intelligence. GeoInformatica 2023, 27, 133–136. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Arundel, S.; Gao, S.; Goodchild, M.; Hu, Y.; Wang, S.; Zipf, A. GeoAI for Science and the Science of GeoAI. J. Spat. Inf. Sci. 2024, 29, 1–17. [Google Scholar] [CrossRef]
- Mai, G.; Xie, Y.; Jia, X.; Lao, N.; Rao, J.; Zhu, Q.; Liu, Z.; Chiang, Y.-Y.; Jiao, J. Towards the next Generation of Geospatial Artificial Intelligence. Int. J. Appl. Earth Obs. Geoinf. 2025, 136, 104368. [Google Scholar] [CrossRef]
- Sabbata, S.D.; Ballatore, A.; Miller, H.J.; Sieber, R.; Tyukin, I.; Yeboah, G. GeoAI in Urban Analytics. Int. J. Geogr. Inf. Sci. 2023, 37, 2455–2463. [Google Scholar] [CrossRef]
- Choi, Y. GeoAI: Integration of Artificial Intelligence, Machine Learning, and Deep Learning with GIS. Appl. Sci. 2023, 13, 3895. [Google Scholar] [CrossRef]
- Scheider, S.; Richter, K.-F. GeoAI. KI-Künstl. Intell. 2023, 37, 5–9. [Google Scholar] [CrossRef]
- Choudhury, T.; Um, J.-S. Special Issue: Geospatial Data Analysis through Artificial Intelligence: Editorial Column. GeoJournal 2023, 88, 1–2. [Google Scholar] [CrossRef]
- Hochmair, H.H.; Navratil, G.; Huang, H. Perspectives on Advanced Technologies in Spatial Data Collection and Analysis. Geographies 2023, 3, 709–713. [Google Scholar] [CrossRef]
- Song, Y.; Kalacska, M.; Gašparović, M.; Yao, J.; Najibi, N. Advances in Geocomputation and Geospatial Artificial Intelligence (GeoAI) for Mapping. Int. J. Appl. Earth Obs. Geoinf. 2023, 120, 103300. [Google Scholar] [CrossRef]
- Wang, S.; Huang, X.; Liu, P.; Zhang, M.; Biljecki, F.; Hu, T.; Fu, X.; Liu, L.; Liu, X.; Wang, R.; et al. Mapping the Landscape and Roadmap of Geospatial Artificial Intelligence (GeoAI) in Quantitative Human Geography: An Extensive Systematic Review. Int. J. Appl. Earth Obs. Geoinf. 2024, 128, 103734. [Google Scholar] [CrossRef]
- Liu, P.; Biljecki, F. A Review of Spatially-Explicit GeoAI Applications in Urban Geography. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102936. [Google Scholar] [CrossRef]
- Anderson, K.; Tooth, S.; Kim, D.; Resler, L.M.; Schillereff, D.; Williams, J.W.; Rocchini, D.; Ponette-González, A.G.; Kuhn, N.J.; Brian, J.V. A Horizon Scan for Novel and Impactful Areas of Physical Geography Research in 2023 and Beyond. Prog. Phys. Geogr. Earth Environ. 2024, 48, 3–23. [Google Scholar] [CrossRef]
- Kang, Y.; Gao, S.; Roth, R.E. Artificial Intelligence Studies in Cartography: A Review and Synthesis of Methods, Applications, and Ethics. Cartogr. Geogr. Inf. Sci. 2024, 51, 599–630. [Google Scholar] [CrossRef]
- Gao, S.; Rao, J.; Liang, Y.; Kang, Y.; Zhu, J.; Zhu, R. GeoAI Methodological Foundations: Deep Neural Networks and Knowledge Graphs. In Handbook of Geospatial Artificial Intelligence; CRC Press: Boca Raton, FL, USA, 2023; ISBN 978-1-00-330842-3. [Google Scholar]
- Kedron, P.; Hoffman, T.D.; Bardin, S. Reproducibility and Replicability in GeoAI. In Handbook of Geospatial Artificial Intelligence; CRC Press: Boca Raton, FL, USA, 2023; ISBN 978-1-00-330842-3. [Google Scholar]
- McKenzie, G.; Zhang, H.; Gambs, S. Privacy and Ethics in GeoAI. In Handbook of Geospatial Artificial Intelligence; CRC Press: Boca Raton, FL, USA, 2023; ISBN 978-1-00-330842-3. [Google Scholar]
- Juhász, L. Assessing Publication Trends in Selected GIScience Journals. Int. J. Geogr. Inf. Sci. 2024, 38, 1443–1467. [Google Scholar] [CrossRef]
- Heipke, C. Crowdsourcing Geospatial Data. ISPRS J. Photogramm. Remote Sens. 2010, 65, 550–557. [Google Scholar] [CrossRef]
- Rickles, P.; Ellul, C.; Haklay, M. A Suggested Framework and Guidelines for Learning GIS in Interdisciplinary Research. Geo Geogr. Environ. 2017, 4, e00046. [Google Scholar] [CrossRef]
- Cheng, T.; Haworth, J.; Ozkan, M.C. Spatiotemporal AI for Transportation. In Handbook of Geospatial Artificial Intelligence; Gao, S., Hu, Y., Li, W., Eds.; CRC Press: Boca Raton, FL, USA, 2023; pp. 248–259. ISBN 978-1-00-330842-3. [Google Scholar]
- Vinuesa, R.; Azizpour, H.; Leite, I.; Balaam, M.; Dignum, V.; Domisch, S.; Felländer, A.; Langhans, S.D.; Tegmark, M.; Fuso Nerini, F. The Role of Artificial Intelligence in Achieving the Sustainable Development Goals. Nat. Commun. 2020, 11, 233. [Google Scholar] [CrossRef]
- Akhyar, A.; Asyraf Zulkifley, M.; Lee, J.; Song, T.; Han, J.; Cho, C.; Hyun, S.; Son, Y.; Hong, B.-W. Deep Artificial Intelligence Applications for Natural Disaster Management Systems: A Methodological Review. Ecol. Indic. 2024, 163, 112067. [Google Scholar] [CrossRef]
- Abid, S.K.; Sulaiman, N.; Chan, S.W.; Nazir, U.; Abid, M.; Han, H.; Ariza-Montes, A.; Vega-Muñoz, A. Toward an Integrated Disaster Management Approach: How Artificial Intelligence Can Boost Disaster Management. Sustainability 2021, 13, 12560. [Google Scholar] [CrossRef]
- Martín, L.; Sánchez, L.; Lanza, J.; Sotres, P. Development and Evaluation of Artificial Intelligence Techniques for IoT Data Quality Assessment and Curation. Internet Things 2023, 22, 100779. [Google Scholar] [CrossRef]
- Huang, C.; Mees, O.; Zeng, A.; Burgard, W. Visual Language Maps for Robot Navigation. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), London, UK, 29 May–2 June 2023. [Google Scholar]
- Wang, S.; Hu, T.; Xiao, H.; Li, Y.; Zhang, C.; Ning, H.; Zhu, R.; Li, Z.; Ye, X. GPT, Large Language Models (LLMs) and Generative Artificial Intelligence (GAI) Models in Geospatial Science: A Systematic Review. Int. J. Digit. Earth 2024, 17, 2353122. [Google Scholar] [CrossRef]
- Mai, G.; Lao, N.; He, Y.; Song, J.; Ermon, S. CSP: Self-Supervised Contrastive Spatial Pre-Training for Geospatial-Visual Representations. In Proceedings of the 40th International Conference on Machine Learning, ICML’23, Honolulu, HI, USA, 23–29 July 2023; Volume 202, pp. 23498–23515. [Google Scholar]
- Balsebre, P.; Huang, W.; Cong, G.; Li, Y. City Foundation Models for Learning General Purpose Representations from OpenStreetMap. In Proceedings of the 33rd ACM International Conference on Information and Knowledge Management, Boise, ID, USA, 21–25 October 2024; Association for Computing Machinery: New York, NY, USA, 2024; pp. 87–97. [Google Scholar]
- Mooney, P.; Cui, W.; Guan, B.; Juhász, L. Towards Understanding the Geospatial Skills of ChatGPT: Taking a Geographic Information Systems (GIS) Exam. In Proceedings of the 6th ACM SIGSPATIAL International Workshop on AI for Geographic Knowledge Discovery, Hamburg, Germany, 13 November 2023; Association for Computing Machinery: New York, NY, USA, 2023; pp. 85–94. [Google Scholar]
- Hochmair, H.H.; Juhász, L.; Kemp, T. Correctness Comparison of ChatGPT-4, Gemini, Claude-3, and Copilot for Spatial Tasks. Trans. GIS 2024, 28, 2219–2231. [Google Scholar] [CrossRef]
- Hu, X.; Kersten, J.; Klan, F.; Farzana, S.M. Toponym Resolution Leveraging Lightweight and Open-Source Large Language Models and Geo-Knowledge. Int. J. Geogr. Inf. Sci. 2024, 1–28. [Google Scholar] [CrossRef]
- Li, F.; Hogg, D.C.; Cohn, A.G. Advancing Spatial Reasoning in Large Language Models: An In-Depth Evaluation and Enhancement Using the StepGame Benchmark. Proc. AAAI Conf. Artif. Intell. 2024, 38, 18500–18507. [Google Scholar] [CrossRef]
- Juhász, L.; Mooney, P.; Hochmair, H.H.; Guan, B. ChatGPT as a Mapping Assistant: A Novel Method to Enrich Maps with Generative AI and Content Derived from Street-Level Photographs. In Proceedings of the Spatial Data Science Symposium 2023 Paper Proceedings, Virtual, 5–6 September 2023. [Google Scholar]
- Zhang, Y.; Wei, C.; He, Z.; Yu, W. GeoGPT: An Assistant for Understanding and Processing Geospatial Tasks. Int. J. Appl. Earth Obs. Geoinf. 2024, 131, 103976. [Google Scholar] [CrossRef]
- Lamberti, W.F. An Overview of Explainable and Interpretable AI. In AI Assurance: Towards Trustworthy, Explainable, Safe, and Ethical AI; Batarseh, F.A., Freeman, L.J., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 55–123. ISBN 978-0-323-91919-7. [Google Scholar]
- Luo, Y.; Wan, Z.; Chen, Y.; Mai, G.; Chung, F.; Larson, K. TransFlower: An Explainable Transformer-Based Model with Flow-to-Flow Attention for Commuting Flow Prediction. arXiv 2024, arXiv:2402.15398. [Google Scholar]
- Sughiarta, G.; Kurnianingsih, A.; Gopaladinne, S.R.; Shrivastava, S.; Gorla, H.K.R.; Böhlen, M. GeoAI in Resource-Constrained Environments. In Proceedings of the 2024 Conference on AI, Science, Engineering, and Technology (AIxSET), Laguna Hills, CA, USA, 30 September–2 October 2024; pp. 129–136. [Google Scholar]
- Janowicz, K. Philosophical Foundations of GeoAI: Exploring Sustainability, Diversity, and Bias in GeoAI and Spatial Data Science. In Handbook of Geospatial Artificial Intelligence; CRC Press: Boca Raton, FL, USA, 2023; ISBN 978-1-00-330842-3. [Google Scholar]
- Li, W. GeoAI: Where Machine Learning and Big Data Converge in GIScience. J. Spat. Inf. Sci. 2020, 20, 71–77. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hochmair, H.H.; Juhász, L.; Li, H. Advancing AI-Driven Geospatial Analysis and Data Generation: Methods, Applications and Future Directions. ISPRS Int. J. Geo-Inf. 2025, 14, 56. https://doi.org/10.3390/ijgi14020056
Hochmair HH, Juhász L, Li H. Advancing AI-Driven Geospatial Analysis and Data Generation: Methods, Applications and Future Directions. ISPRS International Journal of Geo-Information. 2025; 14(2):56. https://doi.org/10.3390/ijgi14020056
Chicago/Turabian StyleHochmair, Hartwig H., Levente Juhász, and Hao Li. 2025. "Advancing AI-Driven Geospatial Analysis and Data Generation: Methods, Applications and Future Directions" ISPRS International Journal of Geo-Information 14, no. 2: 56. https://doi.org/10.3390/ijgi14020056
APA StyleHochmair, H. H., Juhász, L., & Li, H. (2025). Advancing AI-Driven Geospatial Analysis and Data Generation: Methods, Applications and Future Directions. ISPRS International Journal of Geo-Information, 14(2), 56. https://doi.org/10.3390/ijgi14020056