Analysis of the Spatio-Temporal Evolution Characteristics and Influencing Factors of Habitat Quality in Hubei Province over the Past Three Decades
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. Data Resource and Preprocessing
2.3. Research Methods
2.3.1. InVEST Model
2.3.2. Spatial Autocorrelation
2.3.3. Geographical Detector Model
3. Results
3.1. Spatio-Temporal Variations in Habitat Quality
- Analysis of Habitat Quality Change Characteristics
- Analysis of Spatial Characteristics of Habitat Quality
- Analysis of Spatio-Temporal Evolution Characteristics of Habitat Quality
3.2. Spatial Autocorrelation Analysis
3.3. Analysis of Drivers of Habitat Quality Spatial Variation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- The United Nations. (1993, December 29). Convention on Biological Diversity. Available online: https://www.un.org/zh/documents/treaty/cbd (accessed on 3 January 2024).
- Tilman, D. Biodiversity & environmental sustainability amid human domination of global ecosystems. Daedalus 2012, 141, 108–120. [Google Scholar]
- Xu, W.; Ouyang, Z.; Jiang, Z. Assessment of giant panda habitat in the Daxiangling Mountain Range, Sichuan, China. Biodivers. Sci. 2006, 14, 223. [Google Scholar] [CrossRef]
- Thiel, R.P. Relationship between road densities and wolf habitat suitability in Wisconsin. Am. Midl. Nat. 1985, 113, 404–407. [Google Scholar] [CrossRef]
- Katsvanga, C.A.T.; Jimu, L.; Mupangwa, J.F. Susceptibility of pine stands to bark stripping by chacma baboons Papio ursinus in the Eastern Highlands of Zimbabwe. Curr. Zool. 2009, 55, 389–395. [Google Scholar] [CrossRef]
- Jetz, W.; Wilcove, D.S.; Dobson, A.P. Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biol. 2007, 5, e157. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.Y.; Xu, D.W.; Xu, J. Analysis of Landscape Patterns and Spatio-temporal Evolution of Habitat Quality in the PU River Basin Based on the InVEST Model. J. Soil Water Conserv. 2024, 38, 258–267. [Google Scholar]
- Wang, J.; Yan, Y.L.; Wang, J.M. Temporal-spatial variation characteristics and prediction of habitat quality in Min River Basin. Acta Ecol. Sin. 2021, 41, 5837–5848. [Google Scholar]
- Mou, F.Y.; Huang, Q.; Chen, L. Eco-environmental Quality Driving Force Detection Using Optimized Geographic Detector. Soil Water Conserv. 2024, 31, 440–449. [Google Scholar]
- Teng, Y.L.; Xie, M.M.; Wang, H.H. Land use transition in resource-based cities and its impact on habitat quality: A case of Wuhai City. Acta Ecol. Sin. 2022, 42, 7941–7951. [Google Scholar]
- Peng, J.; Xie, P.; Liu, Y.X. Integrated ecological risk assessment and spatial development trade-offs in low-slope hilly land: A case study in Dali Bai Autonomous Prefecture, China. Acta Geogr. Sin. 2015, 70, 1747–1761. [Google Scholar]
- Berta Aneseyee, A.; Noszczyk, T.; Soromessa, T. The InVEST habitat quality model associated with land use/cover changes: A qualitative case study of the Winike Watershed in the Omo-Gibe Basin, Southwest Ethiopia. Remote Sens. 2020, 12, 1103. [Google Scholar] [CrossRef]
- Yongxiu, S.; Shiliang, L.; Fangning, S. Spatio-temporal variations and coupling of human activity intensity and ecosystem services based on the four-quadrant model on the Qinghai-Tibet Plateau. Sci. Total Environ. 2020, 743, 140721. [Google Scholar] [CrossRef]
- Tang, F.; Fu, M.; Wang, L. Land-use change in Changli County, China: Predicting its spatio-temporal evolution in habitat quality. Ecol. Indic. 2020, 117, 106719. [Google Scholar] [CrossRef]
- Yang, Y. Evolution of habitat quality and association with land-use changes in mountainous areas: A case study of the Taihang Mountains in Hebei Province, China. Ecol. Indic. 2021, 129, 107967. [Google Scholar] [CrossRef]
- Yohannes, H.; Soromessa, T.; Argaw, M. Spatio-temporal changes in habitat quality and linkage with landscape characteristics in the Beressa watershed, Blue Nile basin of Ethiopian highlands. J. Environ. Manag. 2021, 281, 111885. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.X.; Wang, B.; Wu, X.F. Impact of land use compactness change on the habitat quality of green space in Wuhan City. Acta Ecol. Sin. 2023, 43, 5726–5739. [Google Scholar]
- Zhang, T.; Hu, Y.Z.; Hu, H.H. Prediction of land use and habitat quality in Harbin City based on the PLUS-InVEST model. Environ. Sci. 2024, 45, 4709–4721. [Google Scholar]
- Tang, J.; Zhou, L.; Deng, X.W. Impacts and predictions of urban expansion on habitat in the densely populated case study of the Yellow River Basin, China. Ecol. Indic. 2023, 151, 110320. [Google Scholar] [CrossRef]
- Yang, L.; Wang, J.L.; Zhou, W. Coupling evolution analysis of LUCC and habitat quality in Dongting Lake Basin based on multi-scenario simulation. China Environ. Sci. 2023, 43, 863–873. [Google Scholar]
- Hu, J.X.; Zhu, Y.Y.; Wang, W.L.; Xiong, Y.; Tu, Y. Temporal and Prediction of Habitat Quality Along the Gan-Canal in Jiangxi Province. Environ. Sci. 2024, 1–16. [Google Scholar] [CrossRef]
- Ma, L.; Jin, T.T.; Wen, Y.H. The research progress of InVEST model. Ecol. Econ. 2015, 31, 126–131. [Google Scholar]
- Wu, L.; Sun, C.; Fan, F. Estimating the characteristic spatiotemporal variation in habitat quality using the invest model—A case study from Guangdong–Hong Kong–Macao Greater Bay Area. Remote Sens. 2021, 13, 1008. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Y.X.; Lv, C.J. Research progress on application of ecosystem service functions based on InVEST model. Ecol. Sci. 2022, 41, 237–242. [Google Scholar]
- Wang, H.; Xu, Y.; Liu, C. Response of habitat quality to land use change based on geographical weighted regression. Acta Sci. Nat. 2019, 55, 509–518. [Google Scholar]
- Wei, F.; Zhan, X. Delineation of rigid urban growth boundary based on habitat quality and carbon storage. J. Zhejiang Univ. Eng. Sci. 2019, 53, 1478–1487. [Google Scholar]
- Yang, Z.P.; Xu, J.W.; Feng, X.H. Effects of land use change on habitat based on InVEST model in Northeast China. Ecol. Sci. 2018, 37, 139–147. [Google Scholar]
- Zhang, J.; Liao, T.J.; Huang, J.L.; Zhou, L. Research of Habitat Quality in Wanzhou District. Hunan Agric. Sci. 2017, 45–50. [Google Scholar] [CrossRef]
- Zhang, X.D.; Wu, D.; Wang, Y.; Zhao, Y.X.; Ma, Y.; Ma, Y.X.; Ni, H.L. Spatio-temporal evolution characteristics and influencing factors of habitat quality in Yinchuan City by coupling InVEST and Geodetector models. A. L. Geogr. 2024, 07, 1242–1251. [Google Scholar]
- Zhang, H.T.; Li, J.L.; Tian, P. Spatio-temporal evolution of habitat quality in the East China Sea continental coastal zone based on land use changes. Acta Ecol. Sin. 2023, 43, 1–11. [Google Scholar]
- Zhou, J.X.; Cai, M.F.; Huang, Z.Q.; Guo, F.S.; Zhai, J.C. Spatio-temporal evolution characteristics and prediction of habitat quality in Jiangxi Province. Acta Ecol. Sin. 2023, 43, 7623–7636. [Google Scholar]
- Duan, P.; Chen, W.B.; Yang, H.; Liang, X. Influence and interactions of habitat fragmentation processes on habitat quality in watersheds. Acta Ecol. Sin. 2024, 14, 1–14. [Google Scholar]
- Bao, Y.B.; Liu, K.; Li, T. Effects of land use change on habitat based on InVEST model-taking Yellow River Wetland nature reserve in Shaanxi Province as an example. A. Z. Res. 2015, 32, 622–629. [Google Scholar]
- Ahmadi Mirghaed, F.; Souri, B. Relationships between habitat quality and ecological properties across Ziarat Basin in northern Iran. Environ. Dev. Sustain. 2021, 23, 16192–16207. [Google Scholar] [CrossRef]
- Xiao, P.; Zhou, Y.; Li, M. Spatiotemporal patterns of habitat quality and its topographic gradient effects of Hubei Province based on the InVEST model. Environ. Dev. Sustain. 2023, 25, 6419–6448. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, Z.Y.; Xu, L.; Gao, W.X. Response and influencing factors of habitat quality and land use change in the Tarim River Basin. A. Z. Res. 2024, 41, 2132–2142. [Google Scholar]
- Anselin, L. Local indicators of spatial association-LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Zhang, M.Y.; Wang, K.L.; Liu, H.Y. Effect of ecological engineering projects on ecosystem services in a karst region: A case study of northwest Guangxi, China. J. Clean. Prod. 2018, 183, 831–842. [Google Scholar] [CrossRef]
- Zhang, Z.; Tu, Y.; Li, X. Quantifying the Spatiotemporal Patterns of Urbanization along Urban-RuralGradient with a Roadscape Transect Approach: A Case Study in Shanghai, China. Sustainability 2016, 8, 1–19. [Google Scholar] [CrossRef]
- Zheng, Z.M.; Fu, B.J.; Hu, H.T. A method to identify the variable ecosystem services relationshipacross time, a case study on Yanhe Basin, China. Landsc. Ecol. 2014, 29, 1689–1696. [Google Scholar] [CrossRef]
- Luo, Y.; Peng, W.; Dong, Y. Geographical exploration of the spatial pattern of the surface temperature and its influencing factors in western Sichuan Plateau: A case of Xichang City. A. L. Geogr. 2020, 43, 738–749. [Google Scholar]
- Xu, C.D. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar]
- Cao, M.Y.; An, R.; Liu, Y.F.; Guo, B.B. Spatial-temporal Characteristics and Influencing Factors of Habitat Quality in Hubei Province. Ecol. Civiliz. Construction. 2022, 11, 54–60. [Google Scholar]
- Lan, Z.Q.; Yue, B.R.; Wang, J.R. Spatial Control of Urban Water Source in the Northern Piedmont of Qinling Mountains Based on “Pattern-Function” Relationship. J. Chin. Urban For. 2022, 20, 66–73. [Google Scholar]
- Liu, D.Q.; Huai, H.Y.; Tang, L.; Wu, A.N. Spatiotemporal Evolution and Driving Factors of Habitat Quality in Shanghai from 2000 to 2020. J. Ecol. Rural. Environ. 2024, 40. [Google Scholar] [CrossRef]
Data Set | Data Type | Data Resource | Utilization |
---|---|---|---|
The region of the study area | Shpfile (1:10,000) | National Basic Geographic Information Resource Catalogue Service System (https://mulu.tianditu.gov.cn) (accessed on 26 September 2023) | Depart the study area |
Land use data | TIF (30 m) | Chinese Academy of Sciences, Center for Resource and Environmental Sciences (https://www.resdc.cn) (accessed on 26 September 2023) | Calculate EI |
DEM data | TIF (30 m) | Geospatial Data cloud (https://www.gscloud.cn) (accessed on 26 September 2023) | Driving factor |
Precipitation data | TIF (1 km) | National Earth System Science Data Center (https://www.geodata.cn) (accessed on 1 October 2023) | Driving factor |
Temperature data | TIF (1 km) | National Earth System Science Data Center (https://www.geodata.cn) (accessed on 1 October 2023) | Driving factor |
Population density data | TIF (1 km) | worldpop (https://www.worldpop.org) (accessed on 27 September 2023) | Driving factor |
Population data | TIF (1 km) | Resource and Environmental Science Data Platform (https://www.resdc.cn) (accessed on 27 September 2023) | Driving factor |
GDP data | TIF (1 km) | National Earth System Science Data Center (https://www.geodata.cn) (accessed on 27 September 2023) | Driving factor |
Nighttime Light Index | TIF (1 km) | National Earth System Science Data Center (https://www.geodata.cn) (accessed on 3 October 2023) | Driving factor |
Construction Land Index | TIF (1 km) | Land use data | Driving factor |
Threat Factors | Weight | Maximum Impact Distance/km | Decline Type |
---|---|---|---|
Rural residential areas | 0.6 | 5 | Exponential decline |
Other built-up areas | 1 | 12 | Exponential decline |
Bare land | 0.1 | 3 | Linear decline |
Dry land | 0.3 | 1 | Linear decline |
Urban land | 1 | 10 | Exponential decline |
Land Use Types | Habitat Suitability | Threat Factors | ||||
---|---|---|---|---|---|---|
Rural Residential Areas | Other Built-up Areas | Bare Soil | Dry Land | Urban Land | ||
Paddy fields | 0.3 | 0.6 | 0.5 | 1 | 1 | 0.5 |
Dry land | 0.3 | 0.6 | 0.5 | 1 | 0 | 0.7 |
Forest land | 1 | 0.7 | 0.7 | 1 | 0.7 | 0.7 |
Shrub land | 0.9 | 0.5 | 0.6 | 1 | 0.6 | 0.6 |
Sparse forest land | 0.7 | 0.7 | 0.6 | 1 | 0.7 | 0.8 |
Other forest land | 0.5 | 0.7 | 0.6 | 1 | 0.5 | 0.6 |
High coverage grassland | 0.8 | 0.7 | 0.4 | 1 | 0.7 | 0.6 |
Medium coverage grassland | 0.6 | 0.6 | 0.5 | 1 | 0.5 | 0.6 |
Low coverage grassland | 0.5 | 0.5 | 0.5 | 1 | 0.5 | 0.6 |
Rivers and canals | 0.9 | 0.4 | 0.4 | 1 | 0.4 | 0.5 |
Lakes | 1 | 0.6 | 0.5 | 1 | 0.7 | 0.7 |
Reservoirs and ponds | 0.7 | 0.6 | 0.4 | 1 | 0.6 | 0.6 |
Beaches | 0.6 | 0.7 | 0.7 | 1 | 0.6 | 0.8 |
Urban land | 0 | 0 | 0 | 0 | 0 | 0.2 |
Rural residential areas | 0 | 0 | 0 | 0 | 0 | 0.6 |
Other built-up areas | 0 | 0 | 0 | 0 | 0 | 0 |
Wetlands | 0.8 | 0.8 | 0.7 | 1 | 0.7 | 0.8 |
Bare soil | 0 | 0.2 | 0 | 0 | 0 | 0.3 |
Bare rocky terrain | 0 | 0.2 | 0 | 0 | 0 | 0.3 |
Level | Area Proportion/% | |||
---|---|---|---|---|
1990 | 2000 | 2010 | 2020 | |
Poor [0, 0.2] | 6.69 | 6.84 | 8.47 | 8.08 |
Fair [0.2, 0.4] | 33.92 | 33.66 | 31.49 | 32.42 |
Moderate [0.4, 0.6] | 3.50 | 3.63 | 3.92 | 3.80 |
Good [0.6, 0.8] | 19.68 | 19.78 | 20.18 | 19.71 |
Excellent [0.8, 1] | 36.21 | 36.09 | 35.94 | 35.99 |
Factors | 1990 | 2000 | 2010 | 2020 |
---|---|---|---|---|
Aspect | 0.021 | 0.021 | 0.021 | 0.018 |
Elevation | 0.404 | 0.394 | 0.398 | 0.393 |
Slope | 0.411 | 0.402 | 0.400 | 0.401 |
Precipitation | 0.245 | 0.238 | 0.208 | 0.203 |
Temperature | 0.248 | 0.238 | 0.229 | 0.228 |
Gross Domestic Product | 0.241 | 0.222 | 0.188 | 0.211 |
Population Density | 0.245 | 0.235 | 0.231 | 0.230 |
Population | 0.241 | 0.219 | 0.221 | 0.214 |
Nighttime Light Index | 0.443 | 0.411 | 0.402 | 0.398 |
Construction land index | 0.809 | 0.833 | 0.858 | 0.875 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miao, J.; Xia, H.; Li, F.; Yang, J. Analysis of the Spatio-Temporal Evolution Characteristics and Influencing Factors of Habitat Quality in Hubei Province over the Past Three Decades. ISPRS Int. J. Geo-Inf. 2025, 14, 98. https://doi.org/10.3390/ijgi14030098
Miao J, Xia H, Li F, Yang J. Analysis of the Spatio-Temporal Evolution Characteristics and Influencing Factors of Habitat Quality in Hubei Province over the Past Three Decades. ISPRS International Journal of Geo-Information. 2025; 14(3):98. https://doi.org/10.3390/ijgi14030098
Chicago/Turabian StyleMiao, Jie, Huiqiong Xia, Fu Li, and Jialin Yang. 2025. "Analysis of the Spatio-Temporal Evolution Characteristics and Influencing Factors of Habitat Quality in Hubei Province over the Past Three Decades" ISPRS International Journal of Geo-Information 14, no. 3: 98. https://doi.org/10.3390/ijgi14030098
APA StyleMiao, J., Xia, H., Li, F., & Yang, J. (2025). Analysis of the Spatio-Temporal Evolution Characteristics and Influencing Factors of Habitat Quality in Hubei Province over the Past Three Decades. ISPRS International Journal of Geo-Information, 14(3), 98. https://doi.org/10.3390/ijgi14030098