Evaluating Urban Greenery Through the Front-Facing Street View Imagery: Insights from a Nanjing Case Study
Abstract
1. Introduction
- What are their relationships?
- What kind of scenarios do each of them apply to?
- Why is FFGVI more accurate than GVI in measuring urban street greenery?
2. Literature Review
2.1. Street View Images
2.2. Green View Index
2.3. Semantic Segmentation
3. Materials and Methods
3.1. Study Area
3.2. Research Framework
3.3. Azimuth Calculation and Street View Images Collection
3.4. Image Segmentation
3.5. FFGVI and SCGVI Calculation
3.6. Evaluation of FFGVI and SCGVI in Comparison with GVI
4. Results
4.1. Distribution and Correlation Between Different GVIs
4.2. Comparison of GVIs for Intersections and Road Points
4.3. The Variations of the Four Orientation GVIs
4.4. Spatial Distribution of Boulevards
5. Discussion
5.1. Measuring Street Greenery from the Front-Facing Street View Images
5.2. FFGVI, SCGVI, and GVI
5.3. Differences from Other Methods
5.4. Methodology Extensions
5.5. Recommendations for Planning Practice and Urban Governance
5.6. Limitations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
GVI | Green View Index |
FFGVI | Front-Facing Green View Index |
SCGVI | Street Canyon Green View Index |
References
- Wolf, K.L. Business District Streetscapes, Trees, and Consumer Response. J. For. 2005, 103, 396–400. [Google Scholar] [CrossRef]
- Houlden, V.; Weich, S.; Porto de Albuquerque, J.; Jarvis, S.; Rees, K. The Relationship between Greenspace and the Mental Wellbeing of Adults: A Systematic Review. PLoS ONE 2018, 13, e0203000. [Google Scholar] [CrossRef] [PubMed]
- Ki, D.; Lee, S. Analyzing the Effects of Green View Index of Neighborhood Streets on Walking Time Using Google Street View and Deep Learning. Landsc. Urban Plan. 2021, 205, 103920. [Google Scholar] [CrossRef]
- Helbich, M. Using Deep Learning to Examine Street View Green and Blue Spaces and Their Associations with Geriatric Depression in Beijing, China. Environ. Int. 2019, 126, 107–117. [Google Scholar] [CrossRef]
- Aoki, Y. Evaluation Methods for Landscapes with Greenery. Landsc. Res. 1991, 16, 3–6. [Google Scholar] [CrossRef]
- Bargh, J.A.; Chen, M.; Burrows, L. Automaticity of Social Behavior: Direct Effects of Trait Construct and Stereotype Activation on Action. J. Personal. Soc. Psychol. 1996, 71, 230. [Google Scholar] [CrossRef]
- Seiferling, I. Green Streets − Quantifying and Mapping Urban Trees with Street-Level Imagery and Computer Vision. Landsc. Urban Plan. 2017, 165, 93–101. [Google Scholar] [CrossRef]
- Biljecki, F.; Zhao, T.; Liang, X.; Hou, Y. Sensitivity of Measuring the Urban Form and Greenery Using Street-Level Imagery: A Comparative Study of Approaches and Visual Perspectives. Int. J. Appl. Earth Obs. Geoinf. 2023, 122, 103385. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, S.; Hipp, J.R.; Ki, D. Decoding Urban Landscapes: Google Street View and Measurement Sensitivity. Comput. Environ. Urban Syst. 2021, 88, 101626. [Google Scholar] [CrossRef]
- Ye, Y.; Richards, D.; Lu, Y.; Song, X.; Zhuang, Y.; Zeng, W.; Zhong, T. Measuring Daily Accessed Street Greenery: A Human-Scale Approach for Informing Better Urban Planning Practices. Landsc. Urban Plan. 2019, 191, 103434. [Google Scholar] [CrossRef]
- Law, S.; Seresinhe, C.I.; Shen, Y.; Gutierrez-Roig, M. Street-Frontage-Net: Urban Image Classification Using Deep Convolutional Neural Networks. Int. J. Geogr. Inf. Sci. 2020, 34, 681–707. [Google Scholar] [CrossRef]
- Han, Y.; Zhong, T.; Yeh, A.G.O.; Zhong, X.; Chen, M.; Lü, G. Mapping Seasonal Changes of Street Greenery Using Multi-Temporal Street-View Images. Sustain. Cities Soc. 2023, 92, 104498. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, A. Analyzing Green View Index and Green View Index Best Path Using Google Street View and Deep Learning. J. Comput. Des. Eng. 2022, 9, 2010–2023. [Google Scholar] [CrossRef]
- Xu, J. Understanding the Nonlinear Effects of the Street Canyon Characteristics on Human Perceptions with Street View Images. Ecol. Indic. 2023, 154, 110756. [Google Scholar] [CrossRef]
- Zhu, J.; Gong, Y.; Liu, C.; Du, J.; Song, C.; Chen, J.; Pei, T. Assessing the Effects of Subjective and Objective Measures on Housing Prices with Street View Imagery: A Case Study of Suzhou. Land 2023, 12, 2095. [Google Scholar] [CrossRef]
- Zhu, J.; Liu, C.; Yu, C.; Du, J. An Assessment of How Street View Imagery and Remote-Sensing Data of Green and Blue Spaces Can Explain Variations in Housing Prices: A Case Study in Suzhou, China. Remote Sens. Lett. 2024, 15, 1209–1217. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, L.; Mcbride, J.; Gong, P. Can You See Green? Assessing the Visibility of Urban Forests in Cities. Landsc. Urban Plan. 2009, 91, 97–104. [Google Scholar] [CrossRef]
- Ewing, R.; Handy, S. Measuring the Unmeasurable: Urban Design Qualities Related to Walkability. J. Urban Des. 2009, 14, 65–84. [Google Scholar] [CrossRef]
- Biljecki, F.; Ito, K. Street View Imagery in Urban Analytics and GIS: A Review. Landsc. Urban Plan. 2021, 215, 104217. [Google Scholar] [CrossRef]
- Fan, Z.; Zhang, F.; Loo, B.P.Y.; Ratti, C. Urban Visual Intelligence: Uncovering Hidden City Profiles with Street View Images. Proc. Natl. Acad. Sci. USA 2023, 120, e2220417120. [Google Scholar] [CrossRef]
- Wu, C.; Du, Y.; Li, S.; Liu, P.; Ye, X. Does Visual Contact with Green Space Impact Housing Pricesʔ An Integrated Approach of Machine Learning and Hedonic Modeling Based on the Perception of Green Space. Land Use Policy 2022, 115, 106048. [Google Scholar] [CrossRef]
- Rzotkiewicz, A.; Pearson, A.L.; Dougherty, B.V.; Shortridge, A.; Wilson, N. Systematic Review of the Use of Google Street View in Health Research: Major Themes, Strengths, Weaknesses and Possibilities for Future Research. Health Place 2018, 52, 240–246. [Google Scholar] [CrossRef]
- Li, X.; Zhang, C.; Li, W.; Ricard, R.; Meng, Q.; Zhang, W. Assessing Street-Level Urban Greenery Using Google Street View and a Modified Green View Index. Urban For. Urban Green. 2015, 14, 675–685. [Google Scholar] [CrossRef]
- Xia, Y.; Yabuki, N.; Fukuda, T. Development of a System for Assessing the Quality of Urban Street-Level Greenery Using Street View Images and Deep Learning. Urban For. Urban Green. 2021, 59, 126995. [Google Scholar] [CrossRef]
- Kumakoshi, Y.; Chan, S.Y.; Koizumi, H.; Li, X.; Yoshimura, Y. Standardized Green View Index and Quantification of Different Metrics of Urban Green Vegetation. Sustainability 2020, 12, 7434. [Google Scholar] [CrossRef]
- Rui, J. Measuring Streetscape Perceptions from Driveways and Sidewalks to Inform Pedestrian-Oriented Street Renewal in Düsseldorf. Cities 2023, 141, 104472. [Google Scholar] [CrossRef]
- Gong, F.-Y.; Zeng, Z.-C.; Zhang, F.; Li, X.; Ng, E.; Norford, L.K. Mapping Sky, Tree, and Building View Factors of Street Canyons in a High-Density Urban Environment. Build. Environ. 2018, 134, 155–167. [Google Scholar] [CrossRef]
- Chen, L.-C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. In Computer Vision–ECCV 2018; Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2018; Volume 11211, pp. 833–851. ISBN 978-3-030-01233-5. [Google Scholar]
- Zhang, H.; Li, F.; Xu, H.; Huang, S.; Liu, S.; Ni, L.M.; Zhang, L. MP-Former: Mask-Piloted Transformer for Image Segmentation. arXiv 2023, arXiv:2303.07336. [Google Scholar]
- Wang, L.; Hou, C.; Zhang, Y.; He, J. Measuring Solar Radiation and Spatio-Temporal Distribution in Different Street Network Direction through Solar Trajectories and Street View Images. Int. J. Appl. Earth Obs. Geoinf. 2024, 132, 104058. [Google Scholar] [CrossRef]
- Cheng, B.; Misra, I.; Schwing, A.G.; Kirillov, A.; Girdhar, R. Masked-Attention Mask Transformer for Universal Image Segmentation. arXiv 2022, arXiv:2112.01527. [Google Scholar] [CrossRef]
- Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler, M.; Benenson, R.; Franke, U.; Roth, S.; Schiele, B. The Cityscapes Dataset for Semantic Urban Scene Understanding. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 3213–3223. [Google Scholar]
- Hu, C.-B.; Zhang, F.; Gong, F.-Y.; Ratti, C.; Li, X. Classification and Mapping of Urban Canyon Geometry Using Google Street View Images and Deep Multitask Learning. Build. Environ. 2020, 167, 106424. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, Y.; Sun, Q.; Hu, C.; Liu, H.; Chen, C.; Xiao, P. Tree Failure Assessment of London Plane (Platanus acerifolia (Aiton) Willd.) Street Trees in Nanjing City. Forests 2023, 14, 1696. [Google Scholar] [CrossRef]
- Li, X. A Novel Method for Predicting and Mapping the Occurrence of Sun Glare Using Google Street View. Transp. Res. Part C Emerg. Technol. 2019, 106, 132–144. [Google Scholar] [CrossRef]
- Li, X.; Ratti, C. Mapping the Spatio-Temporal Distribution of Solar Radiation within Street Canyons of Boston Using Google Street View Panoramas and Building Height Model. Landsc. Urban Plan. 2019, 191, 103387. [Google Scholar] [CrossRef]
- Deng, M.; Yang, W.; Chen, C.; Wu, Z.; Liu, Y.; Xiang, C. Street-Level Solar Radiation Mapping and Patterns Profiling Using Baidu Street View Images. Sustain. Cities Soc. 2021, 75, 103289. [Google Scholar] [CrossRef]
- Aikoh, T.; Homma, R.; Abe, Y. Comparing Conventional Manual Measurement of the Green View Index with Modern Automatic Methods Using Google Street View and Semantic Segmentation. Urban For. Urban Green. 2023, 80, 127845. [Google Scholar] [CrossRef]
- Sánchez, I.A.V.; Labib, S.M. Accessing Eye-Level Greenness Visibility from Open-Source Street View Images: A Methodological Development and Implementation in Multi-City and Multi-Country Contexts. Sustain. Cities Soc. 2024, 103, 105262. [Google Scholar] [CrossRef]
- Ki, D.; Chen, Z.; Lee, S.; Lieu, S. A Novel Walkability Index Using Google Street View and Deep Learning. Sustain. Cities Soc. 2023, 99, 104896. [Google Scholar] [CrossRef]
- Hosseini, M.; Miranda, F.; Lin, J.; Silva, C.T. CitySurfaces: City-Scale Semantic Segmentation of Sidewalk Materials. Sustain. Cities Soc. 2022, 79, 103630. [Google Scholar] [CrossRef]
- Li, X.; Zhang, C.; Li, W. Building Block Level Urban Land-Use Information Retrieval Based on Google Street View Images. GIScience Remote Sens. 2017, 54, 819–835. [Google Scholar] [CrossRef]
- Novack, T.; Vorbeck, L.; Lorei, H.; Zipf, A. Towards Detecting Building Facades with Graffiti Artwork Based on Street View Images. IJGI 2020, 9, 98. [Google Scholar] [CrossRef]
- Hou, Y.; Quintana, M.; Khomiakov, M.; Yap, W.; Ouyang, J.; Ito, K.; Wang, Z.; Zhao, T.; Biljecki, F. Global Streetscapes—A Comprehensive Dataset of 10 Million Street-Level Images across 688 Cities for Urban Science and Analytics. ISPRS J. Photogramm. Remote Sens. 2024, 215, 216–238. [Google Scholar] [CrossRef]
- Ki, D.; Park, K.; Chen, Z. Bridging the Gap between Pedestrian and Street Views for Human-Centric Environment Measurement: A GIS-Based 3D Virtual Environment. Landsc. Urban Plan. 2023, 240, 104873. [Google Scholar] [CrossRef]
Statistics | Front GVI (%) | Back GVI (%) | Left GVI (%) | Right GVI (%) | GVI (%) |
---|---|---|---|---|---|
Mean | 26.206 | 24.296 | 19.766 | 22.695 | 23.241 |
Std | 9.093 | 7.358 | 10.064 | 12.379 | 7.250 |
CV | 0.347 | 0.303 | 0.509 | 0.545 | 0.312 |
ID | Road Name | Chinese Name | SCGVI | Length (m) |
---|---|---|---|---|
➀ | Bo ai east road | 博爱东路 | 97.69 | 589 |
➁ | Jin jiang road | 锦江路 | 97.45 | 2469 |
➂ | He hai road | 河海路 | 97.38 | 663 |
➃ | Zhong hua road | 中华路 | 97.23 | 2774 |
➄ | Mian hua di road | 棉花堤路 | 97.20 | 980 |
➅ | Huan ling road | 环陵路 | 96.86 | 2439 |
➆ | Hu bin road | 湖滨路 | 96.01 | 1174 |
➇ | Huan hu road | 环湖路 | 95.42 | 8285 |
➈ | Bo ai west road | 博爱西路 | 95.33 | 490 |
➉ | Weng zhong road | 翁仲路 | 94.64 | 931 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.; Huang, Y.; Cao, Z.; Zhang, Y.; Ding, Y.; Du, J. Evaluating Urban Greenery Through the Front-Facing Street View Imagery: Insights from a Nanjing Case Study. ISPRS Int. J. Geo-Inf. 2025, 14, 287. https://doi.org/10.3390/ijgi14080287
Zhu J, Huang Y, Cao Z, Zhang Y, Ding Y, Du J. Evaluating Urban Greenery Through the Front-Facing Street View Imagery: Insights from a Nanjing Case Study. ISPRS International Journal of Geo-Information. 2025; 14(8):287. https://doi.org/10.3390/ijgi14080287
Chicago/Turabian StyleZhu, Jin, Yingjing Huang, Ziyue Cao, Yue Zhang, Yuan Ding, and Jinglong Du. 2025. "Evaluating Urban Greenery Through the Front-Facing Street View Imagery: Insights from a Nanjing Case Study" ISPRS International Journal of Geo-Information 14, no. 8: 287. https://doi.org/10.3390/ijgi14080287
APA StyleZhu, J., Huang, Y., Cao, Z., Zhang, Y., Ding, Y., & Du, J. (2025). Evaluating Urban Greenery Through the Front-Facing Street View Imagery: Insights from a Nanjing Case Study. ISPRS International Journal of Geo-Information, 14(8), 287. https://doi.org/10.3390/ijgi14080287