Generative AI for Geospatial Analysis: Fine-Tuning ChatGPT to Convert Natural Language into Python-Based Geospatial Computations
Abstract
Highlights
- Fine-tuning GPT-4o-mini on geospatial queries significantly improves Python code generation for spatial analysis tasks
- The fine-tuned model achieved an 89.7% accuracy rate, improving 49.2 percentage points over the baseline.
- Integrating LLMs into geospatial dashboards enables real-time, user-friendly analysis for smart city management.
- This framework offers scalable potential for domain-specific AI tools in geospatial science and smart urban analytics.
Abstract
1. Introduction
1.1. Background
1.2. State-of-the-Art: The Intersection of LLMs and Geospatial Analysis
1.3. Research Goal and Questions
2. Materials and Methods
2.1. Overview of Research Design
- Virginia polygon shapefiles representing county and ZIP code boundaries, based on the U.S. Census Bureau’s TIGER/Line database, which served as the spatial units for aggregation and spatial filtering.
- A dataset of street addresses, randomly sampled across Virginia, to simulate realistic inputs for location-based accessibility analyses.
- A point shapefile of hospital locations, obtained from the Virginia Geographic Information Network (VGIN), which provided accurate and up-to-date healthcare facility coordinates essential for proximity and network-based accessibility calculations.
2.2. As-Is Model: OpenAI’s GPT-4o-Mini
2.3. Fine-Tuned Model Framework
2.3.1. Fine-Tuning Procedure
2.3.2. Model Usage and Operation Architecture
2.4. Evaluation Setup for the Performance Comparison of As-Is and Fine-Tuned Model
2.5. External Validation for Geographic Generalizability
3. Results
3.1. Performance Comparison Between As-Is and Fine-Tuned Models
3.2. Analysis of Error Types of As-Is and Fine-Tuned Models
4. Discussions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Prompt Format for As-Is Model Evaluation
- Below is the standardized prompt format used to evaluate the As-Is model. Each question was inserted into the {question} placeholder. Contextual information about the shapefile variables was provided to ensure the model had adequate knowledge of the geospatial data structure.
- “““
- Generate me the Python code to solve the question: {question}
- Use the three shapefiles stored in the variables “counties”, “zip_code”, and “healthcare”.
- The variable “counties”, is a polygon shapefile containing information about counties in the U.S.
- Important Column names include…
- […]
- Follow these additional instructions:
- (1) Do not include ‘’’python or wrap code as string. This code should be able to be directly executed.
- (2) When the code is complete, please add the line “#End of Code” at the bottom of the generated code.
- […]
- (6) Do not include comments in the code.
- (7) When asked about an address, reference “from geopy.geocoders import ArcGIS”.
- (8) Make sure the result is visible as a print statement.
- (9) Do not use “op”, instead use “predicate” when generating code for spatial functions.
- “““
Appendix A.2. Sample Prompt-Completion Pairs Used for Fine-Tuning
- Below are selected examples of natural language prompts and corresponding Python code completions used in the fine-tuning dataset. Each completion was designed to reflect proper geospatial processing techniques using Python libraries such as GeoPandas and aligned with the real data structures provided during training.
- Example 1: Driving-Time Accessibility Query Using an Address
- Prompt:
- How many clinics are accessible within 30 min of 1500 Maplewood Dr, Richmond, VA?
- Completion:
- address = “1500 Maplewood Dr, Richmond, VA”
- coordinates = get_coordinates(address)
- if coordinates:
- mapbox_token = mapbox_api
- minutes = 30
- isochrone_geojson = get_isochrone(coordinates, mapbox_token, minutes=minutes)
- if isochrone_geojson:
- clinics_within_isochrone = find_clinics_within_isochrone(isochrone_geojson, healthcare)
- if len(clinics_within_isochrone) == 0:
- print(f“Sadly, no clinics are accessible within {minutes} minutes of {address}.”)
- else:
- print(f“There are {len(clinics_within_isochrone)} clinics accessible within {minutes} minutes of {address}.”)
- else:
- print(f“The address ‘{address}’ could not be found. Please try again.”)
- #End of Code
- Example 2: County-Based Query with Fuzzy Name Matching
- Prompt:
- How many clinics are located in Fairfax County?
- Completion:
- input_name = “Fairfax County”
- corrected_name = correct_name(input_name, true_county_names)
- place = counties[counties[“NAMELSAD”] == corrected_name]
- county_boundary = place.geometry.union_all()
- clinics = healthcare[healthcare.within(county_boundary)]
- if len(clinics) == 0:
- print(f“Currently, there are no clinics available in {corrected_name}.”)
- else:
- print(f“Good news! {corrected_name} has {len(clinics)} clinics available.”)
- #End of Code
Appendix A.3. Mathematical Formalization of Geospatial Operations
References
- Jiang, H.; Li, M.; Witte, P.; Geertman, S.; Pan, H. Urban Chatter: Exploring the potential of ChatGPT-like and generative AI in enhancing planning support. Cities 2025, 158, 105701. [Google Scholar] [CrossRef]
- Zhang, Y.; Wei, C.; He, Z.; Yu, W. GeoGPT: An assistant for understanding and processing geospatial tasks. Int. J. Appl. Earth Obs. Geoinf. 2024, 131, 103976. [Google Scholar] [CrossRef]
- Ullah, A.; Qi, G.; Hussain, S.; Ullah, I.; Ali, Z. The Role of LLMs in Sustainable Smart Cities: Applications, Challenges, and Future Directions. arXiv 2024, arXiv:2402.14596. [Google Scholar] [CrossRef]
- Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al. Language Models are Few-Shot Learners. Adv. Neural Inf. Process. Syst. 2020, 33, 1877–1901. [Google Scholar]
- Fang, C.; Miao, N.; Srivastav, S.; Liu, J.; Zhang, R.; Fang, R.; Tsang, R.; Nazari, N.; Wang, H.; Homayoun, H. Large Language Models for Code Analysis: Do {LLMs} Really Do Their Job? In Proceedings of the 33rd USENIX Security Symposium (USENIX Security 24), Philadelphia, PA, USA, 14–16 August 2024; pp. 829–846. [Google Scholar]
- Akinboyewa, T.; Li, Z.; Ning, H.; Lessani, M.N. GIS copilot: Towards an autonomous GIS agent for spatial analysis. arXiv 2024, arXiv:2411.03205. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Z.; He, Z.; Li, J.; Mai, G.; Lin, J.; Wei, C.; Yu, W. BB-GeoGPT: A framework for learning a large language model for geographic information science. Inf. Process. Manag. 2024, 61, 103808. [Google Scholar] [CrossRef]
- Hochmair, H.H.; Juhász, L.; Kemp, T. Correctness Comparison of ChatGPT-4, Gemini, Claude-3, and Copilot for Spatial Tasks. Trans. GIS 2024, 28, 2219–2231. [Google Scholar] [CrossRef]
- Mooney, P.; Cui, W.; Guan, B.; Juhász, L. Towards Understanding the Geospatial Skills of ChatGPT: Taking a Geographic Information Systems (GIS) Exam. In Proceedings of the 6th ACM SIGSPATIAL International Workshop on AI for Geographic Knowledge Discover, Hamburg, Germany, 13 November 2023. [Google Scholar]
- Mahmoudi, H.; Camboim, S.; Brovelli, M.A. Development of a Voice Virtual Assistant for the Geospatial Data Visualization Application on the Web. ISPRS Int. J. Geo-Inf. 2023, 12, 441. [Google Scholar] [CrossRef]
- Morocho, V.; Achig, R.; Bustamante, J.; Mendieta, F. Virtual Assistants to Bring Geospatial Information Closer to a Smart Citizen. In Proceedings of the 2022 IEEE Sixth Ecuador Technical Chapters Meeting (ETCM), Quito, Ecuador, 11–14 October 2022; pp. 1–6. [Google Scholar]
- Wang, S.; Tao, H.; Huang, X.; Yun, L.; Ce, Z.; Huan, N.; Rui, Z.; Zhenlong, L.; Ye, X. GPT, Large Language Models (LLMs) and Generative Artificial Intelligence (GAI) Models in Geospatial Science: A Systematic Review. Int. J. Digit. Earth 2024, 17, 2353122. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J.; Jang, K.M.; Lourentzou, I. Exploring the limitations in how ChatGPT introduces environmental justice issues in the United States: A case study of 3108 counties. Telemat. Inform. 2024, 86, 102085. [Google Scholar] [CrossRef]
- Akinboyewa, T.; Ning, H.; Lessani, M.N.; Li, Z. Automated floodwater depth estimation using large multimodal model for rapid flood mapping. Comput. Urban Sci. 2024, 4, 12. [Google Scholar] [CrossRef]
- Jang, K.M.; Kim, J. Multimodal Large Language Models as Built Environment Auditing Tools. Prof. Geogr. 2025, 77, 84–90. [Google Scholar] [CrossRef]
- Jiang, Y.; Yang, C. Is ChatGPT a Good Geospatial Data Analyst? Exploring the Integration of Natural Language into Structured Query Language within a Spatial Database. ISPRS Int. J. Geo Inf. 2024, 13, 26. [Google Scholar] [CrossRef]
- Mansourian, A.; Oucheikh, R. ChatGeoAI: Enabling Geospatial Analysis for Public through Natural Language, with Large Language Models. ISPRS Int. J. Geo Inf. 2024, 13, 348. [Google Scholar] [CrossRef]
- Ning, H.; Zhenlong, L.; Temitope, A.; Lessani, M.N. An autonomous GIS agent framework for geospatial data retrieval. Int. J. Digit. Earth 2025, 18, 2458688. [Google Scholar] [CrossRef]
- Renshaw, A.; Lourentzou, I.; Lee, J.; Crawford, T.; Kim, J. Comparing the Spatial Querying Capacity of Large Language Models: OpenAI’s ChatGPT and Google’s Gemini Pro. Prof. Geogr. 2025, 77, 186–198. [Google Scholar] [CrossRef]
- Zhang, Y.; He, Z.; Li, J.; Lin, J.; Guan, Q.; Yu, W. MapGPT: An Autonomous Framework for Mapping by Integrating Large Language Model and Cartographic Tools. Cartogr. Geogr. Inf. Sci. 2024, 51, 717–743. [Google Scholar] [CrossRef]
- Zhang, M.; He, J.; Lei, S.; Yue, M.; Wang, L.; Lu, C.-T. Can LLM Find the Green Circle? Investigation and Human-Guided Tool Manipulation for Compositional Generalization. In Proceedings of the ICASSP 2024—2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Seoul, Republic of Korea, 14–19 April 2024; pp. 11996–12000. [Google Scholar]
- Tao, R.; Xu, J. Mapping with ChatGPT. ISPRS Int. J. Geo Inf. 2023, 12, 284. [Google Scholar] [CrossRef]
- Li, Z.; Ning, H. Autonomous GIS: The next-generation AI-powered GIS. Int. J. Digit. Earth 2023, 16, 4668–4686. [Google Scholar] [CrossRef]
- Wei, C.; Yifan, Z.; Xinru, Z.; Ziyi, Z.; Zhiyun, W.; Jianfeng, L.; Qingfeng, G.; Yu, W. GeoTool-GPT: A Trainable Method for Facilitating Large Language Models to Master GIS Tools. Int. J. Geogr. Inf. Sci. 2025, 39, 707–731. [Google Scholar] [CrossRef]
- Rahman, F.; Oliver, R.; Buehler, R.; Lee, J.; Crawford, T.; Kim, J. Impacts of Point of Interest (POI) Data Selection on 15-Minute City (15-MC) Accessibility Scores and Inequality Assessments. Transp. Res. Part A Policy Pract. 2025, 195, 104429. [Google Scholar] [CrossRef]
- Kim, J.; Karki, S.; Brickhouse, T.; Vujicic, M.; Nasseh, K.; Wang, C.; Zhang, M. Navigating Disparities in Dental Health-A Transit-Based Investigation of Access to Dental Care in Virginia. Community Dent. Oral Epidemiol. 2025, 53, 117–124. [Google Scholar] [CrossRef]
- Yiannakoulias, N. Spatial intelligence and contextual relevance in AI-driven health information retrieval. Appl. Geogr. 2024, 171, 103392. [Google Scholar] [CrossRef]
- Ong, J.C.L.; Seng, B.J.J.; Law, J.Z.F.; Low, L.L.; Kwa, A.L.H.; Giacomini, K.M.; Ting, D.S.W. Artificial intelligence, ChatGPT, and other large language models for social determinants of health: Current state and future directions. Cell Rep. Med. 2024, 5, 101356. [Google Scholar] [CrossRef]
- OpenAI. Advancing Cost-Efficient Intelligence. Available online: https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/ (accessed on 2 July 2025).
- OpenAI. Fine-Tuning Guide. Available online: https://platform.openai.com/docs/guides/fine-tuning (accessed on 2 July 2025).
- Gramacki, P.; Martins, B.; Szymański, P. Evaluation of Code LLMs on Geospatial Code Generation. In Proceedings of the Proceedings of the 7th ACM SIGSPATIAL International Workshop on AI for Geographic Knowledge Discovery, Atlanta, GA, USA, 29 October–1 November 2024; pp. 54–62. [Google Scholar]
- Hou, S.; Shen, Z.; Zhao, A.; Liang, J.; Gui, Z.; Guan, X.; Li, R.; Wu, H. GeoCode-GPT: A Large Language Model for Geospatial Code Generation Tasks. arXiv 2024, arXiv:2410.17031. [Google Scholar] [CrossRef]
- Hou, S.; Jiao, H.; Shen, Z.; Liang, J.; Zhao, A.; Zhang, X.; Wang, J.; Wu, H. Chain-of-Programming (CoP): Empowering Large Language Models for Geospatial Code Generation. arXiv 2024, arXiv:2411.10753. [Google Scholar] [CrossRef]
- Ikumapayi, N. Automated Front-End Code Generation Using OpenAI: Empowering Web Development Efficiency. SSRN Electron. J. 2023, 4590704. [Google Scholar] [CrossRef]
- Gupta, D.V.; Ishaqui, A.S.A.; Kadiyala, D.K. Geode: A Zero-shot Geospatial Question-Answering Agent with Explicit Reasoning and Precise Spatio-Temporal Retrieval. arXiv 2024, arXiv:2407.11014. [Google Scholar]
- Dai, H.; Li, Y.; Liu, Z.; Zhao, L.; Wu, Z.; Song, S.; Shen, Y.; Zhu, D.; Li, X.; Li, S. Ad-Autogpt: An Autonomous Gpt for Alzheimer’s Disease Infodemiology. arXiv 2023, arXiv:2306.10095. [Google Scholar] [CrossRef]
- Xu, L.; Zhao, S.; Lin, Q.; Chen, L.; Luo, Q.; Wu, S.; Ye, X.; Feng, H.; Du, Z. Evaluating Large Language Models on Spatial Tasks: A Multi-Task Benchmarking Study. arXiv 2024, arXiv:2408.14438. [Google Scholar] [CrossRef]
- Gupta, S.; Nandwani, Y.; Yehudai, A.; Mishra, M.; Pandey, G.; Raghu, D.; Joshi, S. Selective Self-Rehearsal: A Fine-Tuning Approach to Improve Generalization in Large Language Models. arXiv 2024, arXiv:2409.04787. [Google Scholar]
- Plewe, B.; Dibiase, D.; Demers, M.; Johnson, A.; Kemp, K.; Wentz, E. Geographic Information Science & Technology Body of Knowledge; University Consortium for Geographic Information Science: Chesapeake, VA, USA, 2006. [Google Scholar]
- Engine, A.G. Nearest Neighbors. Available online: https://developers.arcgis.com/geoanalytics/tools/nearest-neighbors (accessed on 2 July 2025).
- Masis, T.; O’Connor, B. Where on earth do users say they are?: Geo-entity linking for noisy multilingual user input. arXiv 2024, arXiv:2404.18784. [Google Scholar] [CrossRef]
- Bell, S.; Marlow, T.; Wombacher, K.; Hitt, A.; Parikh, N.; Zsom, A.; Frickel, S. Automated Data Extraction from Historical City Directories: The Rise and Fall of Mid-Century Gas Stations in Providence, RI. PLoS ONE 2020, 15, e0220219. [Google Scholar] [CrossRef] [PubMed]
- Martynov, N.; Baushenko, M.; Kozlova, A.; Kolomeytseva, K.; Abramov, A.; Fenogenova, A. A methodology for generative spelling correction via natural spelling errors emulation across multiple domains and languages. arXiv 2023, arXiv:2308.09435. [Google Scholar] [CrossRef]
- Shaw, N. Geographical Information Systems and Health: Current State and Future Directions. Healthc. Inform. Res. 2012, 18, 88–96. [Google Scholar] [CrossRef]
- Fuzzywuzzy: Fuzzy String Matching in Python. Available online: https://github.com/seatgeek/fuzzywuzzy (accessed on 2 July 2025).
- Lee, S.; Jang, S.; Jang, S.; Lee, D.; Yu, H. Exploring Language Model’s Code Generation Ability with Auxiliary Functions. arXiv 2024, arXiv:2403.10575. [Google Scholar] [CrossRef]
- Han, Y.; Liu, J.; Luo, A.; Wang, Y.; Bao, S. Fine-Tuning LLM-Assisted Chinese Disaster Geospatial Intelligence Extraction and Case Studies. ISPRS Int. J. Geo Inf. 2025, 14, 79. [Google Scholar] [CrossRef]
- Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. Bert: Pre-Training of Deep Bidirectional Transformers for Language UNDERSTANDING. In Proceedings of the 2019 conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, MN, USA, 2–7 June 2019; Volume 1, pp. 4171–4186. [Google Scholar]
- Manvi, R.; Khanna, S.; Mai, G.; Burke, M.; Lobell, D.; Ermon, S. Geollm: Extracting geospatial knowledge from large language models. arXiv 2023, arXiv:2310.06213. [Google Scholar]
- Frontier AI LLMs, Assistants, Agents, Services | Mistral AI. Available online: https://mistral.ai/ (accessed on 2 July 2025).
- Deepseek. Available online: https://deep-seek.chat (accessed on 2 July 2025).
- Lin, Q.; Hu, R.; Li, H.; Wu, S.; Li, Y.; Fang, K.; Feng, H.; Du, Z.; Xu, L. ShapefileGPT: A Multi-Agent Large Language Model Framework for Automated Shapefile Processing. arXiv 2024, arXiv:2410.12376. [Google Scholar]
- Openrouteservice. Available online: https://openrouteservice.org/ (accessed on 2 July 2025).
- Nominatim. Available online: https://nominatim.org/ (accessed on 2 July 2025).
- Jing, C.; Du, M.; Li, S.; Liu, S. Geospatial Dashboards for Monitoring Smart City Performance. Sustainability 2019, 11, 5648. [Google Scholar] [CrossRef]
- Praharaj, S.; Wentz, E. Building Community Resilience Through Geospatial Information Dashboards. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, XLVIII-4/W5-2022, 151–157. [Google Scholar] [CrossRef]
- Lwin, K.K.; Sekimoto, Y.; Takeuchi, W.; Zettsu, K. City Geospatial Dashboard: IoT and Big Data Analytics for Geospatial Solutions Provider in Disaster Management. In Proceedings of the 2019 International Conference on Information and Communication Technologies for Disaster Management (ICT-DM), Paris, France, 18–20 December 2019; pp. 1–4. [Google Scholar]
- Dong, Y.; Jiang, X.; Jin, Z.; Li, G. Self-Collaboration Code Generation via ChatGPT. ACM Trans. Softw. Eng. Methodol. 2024, 33, 1–38. [Google Scholar] [CrossRef]
- Bernhäuserová, V.; Krajňáková, L.; Hátlová, K.; Hanus, M. The Limits of GIS Implementation in Education: A Systematic Review. ISPRS Int. J. Geo Inf. 2022, 11, 592. [Google Scholar] [CrossRef]
Correct (%) | Incorrect (%) | Execution Failure Rate (%) | Non-Executable Count | Average Tokens | |
---|---|---|---|---|---|
Q1. How many clinics are in “X” County? | |||||
As-Is (3.5 Turbo) | 22% | 78% | 88% | 69 | 775 |
As-Is (4o-mini) | 67% | 33% | 91% | 30 | 746 |
Fine-tuned | 94% | 6% | 100% | 6 | 169 |
Improvement | +27% points improved | 80% reduction in code errors | 77% reduced | ||
Q2. How many clinics are in the area with the ZIP code “X”? | |||||
As-Is (3.5 Turbo) | 23% | 77% | 96% | 74 | 764 |
As-Is (4o-mini) | 76% | 24% | 100% | 24 | 747 |
Fine-tuned | 94% | 6% | 100% | 6 | 156 |
Improvement | +18% points improved | 75% reduction in code errors | 79% reduced | ||
Q3. What is the closest clinic to “X Address”? | |||||
As-Is (3.5 Turbo) | 5% | 95% | 94% | 89 | 843 |
As-Is (4o-mini) | 20% | 80% | 94% | 75 | 909 |
Fine-tuned | 78% | 22% | 59% | 13 | 297 |
Improvement | +58% points improved | 83% reduction in code errors | 67% reduced | ||
Q4. How many clinics are within 10 miles of the centroid of the “X” County? | |||||
As-Is (3.5 Turbo) | 28% | 72% | 90% | 65 | 861 |
As-Is (4o-mini) | 39% | 61% | 87% | 53 | 807 |
Fine-tuned | 98% | 2% | 0% | 0 | 160 |
Improvement | +59% points improved | 100% reduction in code errors | 80% reduced | ||
Q5. How many clinics are within 10 miles of the centroid of the area with the ZIP code “X”? | |||||
As-Is (3.5 Turbo) | 22% | 78% | 88% | 69 | 823 |
As-Is (4o-mini) | 29% | 71% | 39% | 28 | 797 |
Fine-tuned | 99% | 1% | 100% | 1 | 235 |
Improvement | +70% points improved | 96% reduction in code errors | 71% reduced | ||
Q6. How many clinics are within a 15-min driving time of “X Address”? | |||||
As-Is (3.5 Turbo) | 6% | 94% | 96% | 90 | 887 |
As-Is (4o-mini) | 12% | 88% | 99% | 87 | 924 |
Fine-tuned | 75% | 25% | 84% | 21 | 283 |
Improvement | +63% points improved | 76% reduction in code errors | 69% reduced | ||
Summary | |||||
As-Is (3.5 Turbo) | 17.7% | 82.3% | 92.3% | 456 | 826 |
As-Is (4o-mini) | 40.5% | 59.5% | 83.2% | 297 | 822 |
Fine-tuned | 89.7% | 10.3% | 75.8% | 47 | 217 |
Improvement | +49.2% points improved | 84.2% reduction in code errors | 74% reduced |
Correct (%) | Incorrect (%) | Execution Failure Rate (%) | Non-Executable Count | Average Tokens | |
---|---|---|---|---|---|
Q1. How many clinics are in “X” County? | |||||
As-Is (3.5 Turbo) | 18% | 82% | 78% | 64 | 780 |
As-Is (4o-mini) | 71% | 29% | 86% | 25 | 756 |
Fine-tuned | 92% | 8% | 63% | 5 | 171 |
Improvement | +21% points improved | 80% reduction in code errors | 77% reduced | ||
Q6. How many clinics are within a 15-min driving time of “X Address”? | |||||
As-Is (3.5 Turbo) | 9% | 91% | 93% | 85 | 892 |
As-Is (4o-mini) | 10% | 90% | 89% | 80 | 843 |
Fine-tuned | 73% | 27% | 85% | 23 | 298 |
Improvement | +63% points improved | 71% reduction in code errors | 65% reduced |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sherman, Z.; Sharma Dulal, S.; Cho, J.-H.; Zhang, M.; Kim, J. Generative AI for Geospatial Analysis: Fine-Tuning ChatGPT to Convert Natural Language into Python-Based Geospatial Computations. ISPRS Int. J. Geo-Inf. 2025, 14, 314. https://doi.org/10.3390/ijgi14080314
Sherman Z, Sharma Dulal S, Cho J-H, Zhang M, Kim J. Generative AI for Geospatial Analysis: Fine-Tuning ChatGPT to Convert Natural Language into Python-Based Geospatial Computations. ISPRS International Journal of Geo-Information. 2025; 14(8):314. https://doi.org/10.3390/ijgi14080314
Chicago/Turabian StyleSherman, Zachary, Sandesh Sharma Dulal, Jin-Hee Cho, Mengxi Zhang, and Junghwan Kim. 2025. "Generative AI for Geospatial Analysis: Fine-Tuning ChatGPT to Convert Natural Language into Python-Based Geospatial Computations" ISPRS International Journal of Geo-Information 14, no. 8: 314. https://doi.org/10.3390/ijgi14080314
APA StyleSherman, Z., Sharma Dulal, S., Cho, J.-H., Zhang, M., & Kim, J. (2025). Generative AI for Geospatial Analysis: Fine-Tuning ChatGPT to Convert Natural Language into Python-Based Geospatial Computations. ISPRS International Journal of Geo-Information, 14(8), 314. https://doi.org/10.3390/ijgi14080314