Light Detection and Ranging (LiDAR) and Multispectral Scanner (MSS) Studies Examine Coastal Environments Influenced by Mining
Abstract
:1. Introduction
2. Methods and Materials
2.1. CHARTS Overflights and Mass Calculations
GIS Software | Task |
---|---|
ENVI 4.7 | Resampled 2-m2 LiDAR data DEM into 3-m2 resolution bathymetry maps; the locations and orientation of the laser source was determined by GPS and internal measurement units; 2008 LiDAR DEM provided height measurements of the 2008 pile. |
ArcGIS 9.3 | Digitized aerial photographs and georeferencing. |
ArcGIS, ENVI | Quantified shoreline edge changes on the original tailing pile; Estimated redeposition along southern beaches; mapped the original pile’s changing boundaries, to which we fit polygons; used the remains of surface sluiceways on the pile to estimate the heights of the material. In volume calculations utilized an area of 9 m2; Bottom contours of 1906 (Lake Superior Coast Chart 4) were superimposed on 2008 LiDAR above-ground aerial map of the shoreline stamp sands to calculate the above and below volume of stamp sands. |
ERDAS IMAGINE | The MSS substrate classification map required three components: (1) finished 2008 LiDAR bathymetry map; (2) finished MSS mosaic, stitched together from various overflight tracks; (3) Lyzenga calculations to create the depth-independent bottom reflectance image. Because of glint problems, three-band MSS data (band 2, 490 nm blue; band 3,581 nm, green) from NAIP 2009 flyover were utilized, taken under calmer conditions. MSS images were projected to the Universal Transverse Mercator Zone 16 coordinate system, translating the data from MSS images; utilized bottom type attributes (albedo, color, depth-corrected radiance) to construct sediment classification. |
2.2. Passive Color (CHARTS Hyperspectral and MSS) Substrate Classifications around Buffalo Reef
2.3. Underwater Video (ROV), Side-Scan Sonar, Ponar Substrate Sampling and Benthic Faunal Characterization
3. Results
3.1. Features of Grand (Big) Traverse Bay
3.2. Tailing Pile Erosion and Dispersal
Fit Type | Regression | Y-Intercept | Slope | SE | R2 |
---|---|---|---|---|---|
Linear | Deposition onto onshore | −133.15 | 0.07 | 0.002 | 0.99 |
Fit Type | Source | Equation | y0 | A1 | t1 | R2 | X- Intercept | Lower Limit | Upper Limit |
---|---|---|---|---|---|---|---|---|---|
Non-linear | original pile mass | y = A1∙e(−x/t1) + y0 | −1.424 | 7.65 × 1016 | 53.8197 | 0.99 | 2,073 | 2,042 | >2,080 |
3.3. Biological Effects
4. Discussion
4.1. Evaluation of the Combined LiDAR and MSS Approach to Coastal Tailing Discharges
4.2. Environmental Effects along the Keweenaw Coastline
GSWIC Summary | Southern Site | Northern Site | Groundwater | |||
---|---|---|---|---|---|---|
Samples taken | 24 | 274 | 10 | |||
Element | Number | % | Number | % | Number | % |
Aluminum (Al) | 20 | 83 | 271 | 99 | DNE * | |
Chromium (Cr) | 19 | 79 | 65 | 24 | 5 | 50 |
Cobalt (Co) | 24 | 100 | 271 | 99 | DNE * | |
Copper (Cu) | 24 | 100 | 274 | 100 | 10 | 100 |
Manganese (Mn) | 7 | 29 | 159 | 58 | 5 | 50 |
Nickel (Ni) | 8 | 33 | 168 | 61 | 8 | 80 |
Silver | 9 | 38 | 216 | 79 | 8 | 80 |
Zinc (Zn) | 10 | 42 | 242 | 88 | 8 | 80 |
4.3. Potential Economic Consequences of Buffalo Reef Collapse
4.4. Regional and Global Concerns about Coastal Tailing Discharges
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ackermann, F. Airborne laser scanning-present status and future expectations. J. Photogram. Remote Sens. 1999, 54, 64–67. [Google Scholar] [CrossRef]
- Crow, P.; Benham, S.; Devereux, B.J.; Amable, G.S. Woodland vegetation and its implications for archaeological survey using LiDAR. Forestry 2007, 80, 241–252. [Google Scholar] [CrossRef]
- Kerfoot, W.C.; Yousef, F.; Green, S.A.; Regis, R.; Shuchman, R.; Brooks, C.N.; Sayers, M.; Sabol, B.; Graves, M. LiDAR (Light Detection and Ranging) and multispectral studies of disturbed Lake Superior coastal environments. Limnol. Oceanogr. 2012, 57, 749–771. [Google Scholar] [CrossRef]
- Banks, K.W.; Riegl, B.; Shinn, E.A.; Piller, W.E.; Dodge, R.E. Geomorphology of the Southeast Florida continental reef tract (Miami-Dade, Broward, and Palm Beach Counties, USA). Coral Reefs 2007, 26, 617–633. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Studies Regarding the Effect of the Reserve Mining Company Discharge on Lake Superior; Office of General Enforcement & Council: Washington, DC, USA, 1973.
- Kemp, A.L.W.; Williams, J.D.H.; Thomas, R.L.; Gregory, M.L. Impact of man’s activities on the chemical composition of the sediments of Lakes Superior and Huron. Water Air Soil Pollut. 1978, 10, 381–402. [Google Scholar]
- Kerfoot, W.C.; Nriagu, J.O. Copper mining, copper cycling and mercury in the Lake Superior ecosystem: An introduction. J. Great Lakes Res. 1999, 25, 594–598. [Google Scholar] [CrossRef]
- Kerfoot, W.C.; Jeong, J.; Robbins, J.A. Lake Superior Mining and the Proposed Mercury Zero-Discharge Region. In State of Lake Superior; Munawar, M., Ed.; Noida Goodword Books: New Delhi, India, 2009; pp. 153–216. [Google Scholar]
- Kerfoot, W.C.; Lauster, G.; Robbins, J.A. Paleolimnological study of copper mining around Lake Superior: Artificial varves from Portage Lake provide a high resolution record. Limnol. Oceanogr. 1994, 39, 649–669. [Google Scholar]
- Kolak, J.J.; Long, D.T.; Kerfoot, W.C.; Beals, T.M.; Eisenreich, S.J. Nearshore versus offshore copper loading in Lake Superior sediments: Implications for transport and cycling. J. Great Lakes Res. 1999, 25, 611–624. [Google Scholar] [CrossRef]
- Gewurtz, S.B.; Shen, L.; Helm, P.A.; Waltho, J.; Reiner, E.J.; Painter, S.; Brindle, I.D.; Marvin, C.H. Spatial distributions of legacy contaminants in sediments of lakes Huron and Superior. J. Great Lakes Res. 2008, 34, 153–168. [Google Scholar] [CrossRef]
- LaRocque, P.E.; West, G.R. Airborne Laser Hydrography: An Introduction. In Proceedings of ROPME/PERSGA/IHB Workshop on Hydrographic Activities in the ROPME Sea Area and Red Sea, Kuwait City, Kuwait, 24–27 October 1990.
- Murdoch, W.A. Boom Copper: The Story of the First United States Mining Boom; MacMillan: New York, NY, USA, 1943. [Google Scholar]
- Benedict, C.H. Lake Superior Milling Practice; Michigan College of Mining and Technology: Houghton, MI, USA, 1955. [Google Scholar]
- Kerfoot, W.C.; Harting, S.L.; Jeong, J.; Robbins, J.A.; Rossmann, R. Local, regional and global implications of elemental mercury in metal (copper, silver, gold, and zinc) ores: Insights from Lake Superior sediments. J. Great Lakes Res. 2004, 52, 162–184. [Google Scholar]
- Butler, B.S.; Burbank, W.S. The Copper Deposits of Michigan; US Government Printing Office: Washington, DC, USA, 1929. [Google Scholar]
- Babcock, L.L.; Spiroff, K. Recovery of Copper from Michigan Stamp Sands; US Bureau of Mines Project G0180241 (SWD-18); Michigan Technological University: Houghton, MI, USA, 1970; Volume 1, p. 57. [Google Scholar]
- Jeong, J.; Urban, N.R.; Green, S. Release of copper from mine tailings on the Keweenaw Peninsula. J. Great Lakes Res. 1999, 25, 721–734. [Google Scholar] [CrossRef]
- Malueg, K.W.; Schuytema, G.S.; Krawczyk, D.F.; Gakstatter, J.H. Laboratory sediment toxicity tests, sediment chemistry and distribution of benthic macroinvertebrates in sediments from the Keweenaw Waterway, Michigan. Environ. Toxicol. Chem. 1984, 3, 233–242. [Google Scholar] [CrossRef]
- MDEQ. Toxicological Evaluation for the Gay, Michigan Stamp Sand; Weston Solutions: Houghton, MI, USA, 2006.
- Kerfoot, W.C.; Robbins, J.A. Nearshore regions of Lake Superior: Multi-element signatures of mining discharges and a test of Pb-210 deposition under conditions of variable sediment mass flux. J. Great Lakes Res. 1999, 25, 611–624. [Google Scholar] [CrossRef]
- Goodyear, C.S.; Edsall, T.A.; Ormsby, D.M.; Dempsey, D.M.O.; Moss, G.D.; Polanski, P.E. Atlas of the Spawning and Nursery Areas of Great Lakes Fishes; United States Fish and Wildlife Service: Daphne, AL, USA, 1982. [Google Scholar]
- Chiriboga, E.D.; Mattes, W.P. Buffalo Reef and Substrate Mapping Project; Administrative Report 08-04; Great Lakes Indian Fish and Wildlife Commission (GLIFWC): Odanah, WI, USA, 2008. [Google Scholar]
- Mazina’igan. A Chronicle of the Lake Superior Ojibwe; Great Lakes Indian Fish and Wildlife Commission: Odanah, WI, USA, 2007. [Google Scholar]
- Reif, M.K.; Wozencraft, J.M.; Dunkin, L.M.; Sylvester, C.S.; Macon, C.L. A review of US Army Corps of Engineers airborne coastal mapping in the Great Lakes. J. Great Lakes Res. 2013, 39, 194–204. [Google Scholar] [CrossRef]
- Wozencraft, J.M. Complete Coastal Mapping with Airborne Lidar. In Proceedings of the Oceans MTS/IEEE, Biloxi, MS, USA, 29–31 October 2002; Volume 2, pp. 1194–1198.
- Wozencraft, J.M.; Lillycrop, J.W. JALBTCX coastal mapping for rthe USACE. Int. Hydrogr. Rev. 2006, 7, 28–37. [Google Scholar]
- LaRocque, P.E.; Banic, J.R.; Cunningham, A.G. Design description and field testing of the SHOALS-1000T airborne bathymeter. SPIE 2004. [Google Scholar] [CrossRef]
- Lillesand, T.M.; Kiefer, R.W.; Chipman, J.W. Remote Sensing and Image Interpretation, 6th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Hedley, J.D.; Harborne, A.R.; Mumby, P.J. Simple and robust removal of sun glint for mapping shallow-water benthos. Int. J. Remote Sens. 2005, 26, 2107–2112. [Google Scholar] [CrossRef]
- Yousef, F.; Kerfoot, W.C.; Brooks, C.N.; Shuchman, R.; Sabol, B.; Graves, M. Using LiDAR to reconstruct the history of a coastal environment influenced by legacy mining. J. Great Lakes Res. 2013, 39, 205–216. [Google Scholar] [CrossRef]
- Biberhofer, J.; Procopec, C.M. Delineation and Characterization of Aquatic Substrate Features on or Adjacent to Buffalo Reef, Keweenaw Bay, Lake Superior; Technical Note AERMB-TN06; Environment Canada National Water Resource Institute (NWRI): Burlington, ON, Canada, 2008. [Google Scholar]
- Jensen, J.R. Introductory Digital Image Processing: A Remote Sensing Perspective, 3rd ed.; Prentice Hall PTR: Upper Saddle River, NJ, USA, 2004. [Google Scholar]
- Lam, D.C. Simulation of water circulation and chloride transports in Lake Superior for summer 1973. J. Great Lakes Res. 1978, 4, 343–349. [Google Scholar] [CrossRef]
- Chen, C.; Zhu, J.; Ralph, E.; Green, S.A.; Wells Budd, J.; Zhang, F.Y. Prognostic modeling studies of the Keweenaw current in Lake Superior. Part I: Formation and evolution. J. Phys. Oceanogr. 2001, 31, 379–395. [Google Scholar] [CrossRef]
- Sabol, B.; Lord, E.; Reine, K.; Shafer, D. Comparison of Acoustic and Aerial Photographic Methods for Quantifying the Distribution of Submersed Aquatic Vegetation in Sagamore Creek, NH; ERDC TN-DOER-E23; US Army Engineer Research and Development Center: Vicksburg, MS, USA, 2008. [Google Scholar]
- Lyzenga, D.R. Remote sensing of bottom reflectance and water attenuation parameters in shallow water using aircraft and Landsat data. Int. J. Remote Sens. 1981, 2, 71–82. [Google Scholar] [CrossRef]
- Weston Solutions of Michigan, Inc. Migrating Stamp Sand Migration Plan Technical Evaluation; Remediation and Redevelopment Division: Chilton, MI, USA, 2007. [Google Scholar]
- Sloss, P.W.; Saylor, J.H. Large-Scale Current Measurements in Lake Superior; NOAA Technical Report ERL 363-GLERL 8; Great Lakes Environmental Research Laboratory: Ann Arbor, MI, USA, 1976. [Google Scholar]
- Zhu, J.; Chen, C.; Ralph, E.; Green, S.A.; Budd, J.W.; Zhang, F.Y. Prognostic modeling studies of the Keweenaw current in Lake Superior. Part II: Simulation. J. Phys. Oceanogr. 2001, 31, 396–410. [Google Scholar] [CrossRef]
- Rasmussen, T.; Fraser, R.; Lemberg, D.S.; Regis, R. Mapping stamp sand dynamics: Gay, Michigan. J. Great Lakes Res. 2002, 28, 276–284. [Google Scholar] [CrossRef]
- Kraft, K.J. Pontoporeia distribution along the Keweenaw shore of Lake Superior affected by copper tailings. J. Great Lakes Res. 1979, 7, 258–263. [Google Scholar] [CrossRef]
- Kerfoot, W.C.; Harting, S.; Rossmann, R.; Robbins, J.A. Anthropogenic copper inventories and mercury profiles from Lake Superior: Evidence for mining impacts. J. Great Lakes Res. 1999, 25, 663–682. [Google Scholar] [CrossRef]
- Lytle, R.D. In situ copper toxicity tests: Applying likelihood ratio tests to Daphnia pulex incubations in Keeweenaw Peninsula waters. J. Great Lakes Res. 1999, 25, 744–759. [Google Scholar] [CrossRef]
- Kerfoot, W.C.; Robbins, J.A.; Weider, L.J. A new approach to historical reconstruction: Combining descriptive and experimental paleolimnology. Limnol. Oceanogr. 1999, 44, 1232–1247. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Integrated Risk Assessment System (IRIS); US Environmental Protection Agency: Washington, DC, USA, 1992.
- Kraft, K.J.; Sypniewski, R.H. Effect of sediment copper on the distribution of benthic macroinvertebrates in the Keweenaw Waterway. J. Great Lakes Res. 1981, 7, 258–263. [Google Scholar] [CrossRef]
- Ankley, G.T.; Mattson, V.R.; Leonard, E.N.; West, C.W.; Bennett, J.L. Predicting the acute toxicity of copper in freshwater sediments: Evaluation of the role of acid volatile sulfide. Environ. Toxicol. Chem. 1993, 11, 315–320. [Google Scholar]
- Schubauer-Berigan, M.K.; Dierkes, J.R.; Monson, P.D.; Ankley, G.T. pH-dependent toxicity of Cd, Cu, Ni, Pb, and Zn to Ceriodaphnia dubia, Pimephales promelas, Hyalella azteca and Lumbriculus variegates. Environ. Toxicol. Chem. 1993, 12, 1261–1266. [Google Scholar]
- West, C.W.; Mattson, V.R.; Leonard, E.N.; Phipps, G.L.; Ankley, G.T. Comparison of the relative sensitivity of three benthic invertebrates to copper contaminated sediments from the Keweenaw Waterway. Hydrobiologia 1993, 262, 57–68. [Google Scholar] [CrossRef]
- Michigan Department Of Environmental Quality. A Sediment Chemistry of Lake Superior Shoreline in the Vicinity of Gay, Keweenaw and Houghton Counties, Michigan August 26,27, and 28, 2008; Michigan Department Of Environmental Quality: Lansing, MI, USA, 2012.
- Cook, P.M.; Glass, G.E., Tucker. Asbestiform amphibole minerals: Detection and measurement of high concentrations in municipal water supplies. Science 1974, 185, 853–855. [Google Scholar]
- International Joint Commission. Great Lakes Water Quality, 1977 Annual Report; Great Lakes Water Quality Board: Windsor, ON, USA, 1977. [Google Scholar]
- Wynn, G. Canada and Arctic North America: An Environmental History; ABC-CILO, Inc.: Santa Barbara, CA, USA, 2007. [Google Scholar]
- Martinez-Frias, J. Mine waste pollutes Mediterranean. Nature 1997, 388, 120. [Google Scholar] [CrossRef]
- Moran, R.; Reichelt-Brushett, A.; Young, R. Out of sight, out of mine: Ocean dumping of mine wastes; The world’s oceans, already imperiled, face a new threat. WorldWatch 2009, 22, 30–34. [Google Scholar]
- Coldwell, J.R.; Gensler, E.C. Potential for Submarine Tailings Disposal to Affect the Availability of Minerals from United States Coastal Areas; Open File Report 101-93; US Bureau of Mines: Juneau, AK, USA, 1993. [Google Scholar]
- Ellis, D.V.; Robertson, J.D. Underwater Placement of Mine Tailings: Case Examples and Principles. In Environmental Impacts of Mining Activities; Azcue, J.M., Ed.; Springer Verlag: Berlin/Heidelberg, Germany, 1999; pp. 123–141. [Google Scholar]
- Younger, P.L. Towards regulatory criteria for discharging iron-rich mine water into the sea. Mine Water Environ. 2008, 27, 56–61. [Google Scholar] [CrossRef]
- Vogt, C. International Assessment Of Marine and Riverine Disposal of Mine Tailings. In Proceedings of the Secretariat, London Convention/London Protocol, International Maritime Organization, London, England & United Nations Environment Programme-Global Program of Action, London, UK, 1 November 2012; p. 134.
- Grimalt, J.O.; Ferrer, M.; Macpherson, E. The mine tailing accident in Aznalcollar. Sci. Total Environ. 1999, 242, 3–11. [Google Scholar] [CrossRef]
- Marges, M.; Su, G.S.; Ragragio, E. Assessing heavy metals in the waters and soils of Calancan Bay, Marinduque Island, Philippines. J. Appl. Sci. Environ. Sanit. 2011, 6, 45–49. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Kerfoot, W.C.; Hobmeier, M.M.; Yousef, F.; Green, S.A.; Regis, R.; Brooks, C.N.; Shuchman, R.; Anderson, J.; Reif, M. Light Detection and Ranging (LiDAR) and Multispectral Scanner (MSS) Studies Examine Coastal Environments Influenced by Mining. ISPRS Int. J. Geo-Inf. 2014, 3, 66-95. https://doi.org/10.3390/ijgi3010066
Kerfoot WC, Hobmeier MM, Yousef F, Green SA, Regis R, Brooks CN, Shuchman R, Anderson J, Reif M. Light Detection and Ranging (LiDAR) and Multispectral Scanner (MSS) Studies Examine Coastal Environments Influenced by Mining. ISPRS International Journal of Geo-Information. 2014; 3(1):66-95. https://doi.org/10.3390/ijgi3010066
Chicago/Turabian StyleKerfoot, W. Charles, Martin M. Hobmeier, Foad Yousef, Sarah A. Green, Robert Regis, Colin N. Brooks, Robert Shuchman, Jamey Anderson, and Molly Reif. 2014. "Light Detection and Ranging (LiDAR) and Multispectral Scanner (MSS) Studies Examine Coastal Environments Influenced by Mining" ISPRS International Journal of Geo-Information 3, no. 1: 66-95. https://doi.org/10.3390/ijgi3010066