Volunteered Geographic Information in Natural Hazard Analysis: A Systematic Literature Review of Current Approaches with a Focus on Preparedness and Mitigation
Abstract
:1. Introduction
2. Methods
2.1. Literature Search
2.1.1. Databases
2.1.2. Query Terms
2.2. Data Screening
2.3. Information Extraction and Synthesis
2.3.1. Study Objective
2.3.2. Study Area
2.3.3. Hazard Type
2.3.4. Data Source
2.3.5. Level of Engagement of Citizens
2.3.6. Type of Integration of VGI
3. Results
3.1. Study Area
3.2. Hazard Type
3.3. Data Source
3.4. Level of Engagement of Citizens
3.4.1. Crowdsourcing
3.4.2. Distributed Intelligence
3.4.3. Participatory Science
3.5. Type of Integration of VGI
4. Discussion
5. Opportunities and Challenges for the Use of VGI in the Mitigation and Preparedness Phase of Hazard Analysis
5.1. Conception Level
5.2. Realization Level
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
GIS | Geographic Information System |
GNSS | Global Navigation Satellite System |
OSM | OpenStreetMap |
SLR | Systematic Literature Review |
VGI | Volunteered Geographic Information |
References
- Felgentreff, C.; Glade, T. Naturrisiken und Sozialkatastrophen; Spektrum Akademischer Verlag: Berlin, Germany, 2008. [Google Scholar]
- EM-DAT. The OFDA/CRED International Disaster Database. Available online: http://www.emdat.be/disaster_trends/index.html (accessed on 21 May 2016).
- Ebert, A.; Banzhaf, E.; McPhee, J. The influence of urban expansion on the flood hazard in santiago de chile. In Proceedings of the 2009 Joint Urban Remote Sensing Event, Shanghai, China, 20–22 May 2009; pp. 1–7.
- Dikau, R.; Pohl, J. Hazards: Naturgefahren und Naturrisiken. In Geographie: Physische Geographie und Humangeographie; Gebhardt, H., Glaser, R., Radtke, U., Reuber, P., Eds.; Spektrum Akademischer Verlag: Heidelberg, Germany, 2011; pp. 1115–1168. [Google Scholar]
- Cova, T.J. GIS in emergency management. In Geographical Information Systems: Management Issues and Applications, 2nd ed.; Longley, P.A., Goodchild, M.F., Maguire, D.J., Rhind, D.W., Eds.; Wiley: New York, NY, USA, 1999; pp. 845–858. [Google Scholar]
- Ebert, A.; Welz, J.; Heinrichs, D.; Krellenberg, K.; Hansjürgens, B. Socio-environmental change and flood risks: The case of Santiago de Chile. Erdkunde 2010, 64, 303–313. [Google Scholar] [CrossRef]
- Cardona, O.D.; van Aalst, M.K.; Birkmann, J.; Fordham, M.; McGregor, G.; Perez, R.; Pulwarty, R.S.; Schipper, E.L.F.; Sinh, B.T. Determinants of risk: Exposure and vulnerability. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; Field, C.B., Barros, V., Stocker, T.F., Qin, D., Dokken, D.J., Ebi, K.L., Mastrandrea, M.D., Mach, K.J., Plattner, G.-K., Allen, S.K., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012; pp. 65–108. [Google Scholar]
- Wisner, B. At Risk: Natural Hazards, People's Vulnerability and Disasters, 2nd ed.; Routledge: London, UK; New York, NY, USA, 2008. [Google Scholar]
- Poser, K.; Dransch, D. Volunteered geographic information for disaster management with application to rapid flood damage estimation. Geomatica 2010, 64, 89–98. [Google Scholar]
- Roche, S.; Propeck-Zimmermann, E.; Mericskay, B. Geoweb and crisis management: Issues and perspectives of volunteered geographic information. GeoJournal 2013, 78, 21–40. [Google Scholar] [CrossRef]
- Goodchild, M.F. Citizens as sensors: The world of volunteered geography. GeoJournal 2007, 69, 211–221. [Google Scholar] [CrossRef]
- OpenStreetMap. Openstreetmap. Available online: http://www.openstreetmap.org (accessed on 17 March 2015).
- Fan, H.; Zipf, A.; Fu, Q.; Neis, P. Quality assessment for building footprints data on openstreetmap. Int. J. Geogr. Inf. Sci. 2014, 28, 700–719. [Google Scholar] [CrossRef]
- Jokar Arsanjani, J.; Bakillah, M. Understanding the potential relationship between the socio-economic variables and contributions to openstreetmap. Int. J. Digit. Earth 2015. [Google Scholar] [CrossRef]
- De Longueville, B.; Annoni, A.; Schade, S.; Ostlaender, N.; Whitmore, C. Digital earth’s nervous system for crisis events: Real-time sensor web enablement of volunteered geographic information. Int. J. Digit. Earth 2010, 3, 242–259. [Google Scholar] [CrossRef]
- Spinsanti, L.; Ostermann, F. Automated geographic context analysis for volunteered information. Appl. Geogr. 2013, 43, 36–44. [Google Scholar] [CrossRef]
- De Albuquerque, J.P.; Herfort, B.; Brenning, A.; Zipf, A. A geographic approach for combining social media and authoritative data towards identifying useful information for disaster management. Int. J. Geogr. Inf. Sci. 2015, 29, 667–689. [Google Scholar] [CrossRef]
- Enenkel, M.; See, L.; Bonifacio, R.; Boken, V.; Chaney, N.; Vinck, P.; You, L.; Dutra, E.; Anderson, M. Drought and food security—Improving decision-support via new technologies and innovative collaboration. Glob. Food Secur. 2015, 4, 51–55. [Google Scholar] [CrossRef]
- OpenStreetMap. Bing License. Available online: http://wiki.openstreetmap.org/w/images/d/d8/Bing_license.pdf (accessed on 31 May 2015).
- OpenStreetMap. Openstreetmap Bing. Available online: http://wiki.openstreetmap.org/wiki/Bing (accessed on 31 May 2015).
- Craglia, M.; Ostermann, F.; Spinsanti, L. Digital earth from vision to practice: Making sense of citizen-generated content. Int. J. Digit. Earth 2012, 5, 398–416. [Google Scholar] [CrossRef]
- Haklay, M. Citizen science and volunteered geographic information: Overview and typology of participation. In Crowdsourcing Geographic Knowledge; Sui, D., Elwood, S., Goodchild, M., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 105–122. [Google Scholar]
- Birkmann, J.; Welle, T.; Krause, D.; Wolfertz, J.; Suarez, D.C.; Setiadi, N. WorldRiskIndex: Concept and results. In WorldRiskReport 2011; Jeschonnek, L., Ed.; Bündnis Entwicklung Hilft: Berlin, Deutschland, 2011; pp. 13–41. [Google Scholar]
- Landwehr, P.M.; Carley, K.M. Social media in disaster relief. In Data Mining and Knowledge Discovery for Big Data: Methodologies, Challenge and Opportunities; Chu, W.W., Ed.; Springer: Berlin, Germany, 2014; pp. 225–257. [Google Scholar]
- Horita, F.E.A.; Degrossi, L.C.; Assis, L.F.F.G.; Zipf, A.; Porto de Albuquerque, J. The use of volunteered geographic information and crowdsourcing in disaster management: A systematic literature review. In Proceedings of the Americas Conference on Information Systems AMCIS 2013, Chicago, IL, USA, 15–17 August 2013.
- Aimone, A.M.; Perumal, N.; Cole, D. A systematic review of the application and utility of geographical information systems for exploring disease-disease relationships in paediatric global health research: The case of anaemia and malaria. Int. J. Health Geogr. 2013, 12. [Google Scholar] [CrossRef] [PubMed]
- Marx, S.; Phalkey, R.; Aranda-Jan, C.; Profe, J.; Sauerborn, R.; Höfle, B. Geographic information analysis and web-based geoportals to explore malnutrition in sub-saharan africa: A systematic review of approaches. BMC Public Health 2014, 14. [Google Scholar] [CrossRef] [PubMed]
- Kitchenham, B.; Pearl Brereton, O.; Budgen, D.; Turner, M.; Bailey, J.; Linkman, S. Systematic literature reviews in software engineering—A systematic literature review. Inf. Softw. Technol. 2009, 51, 7–15. [Google Scholar] [CrossRef]
- Falagas, M.E.; Pitsouni, E.I.; Malietzis, G.A.; Pappas, G. Comparison of pubmed, scopus, web of science, and google scholar: Strengths and weaknesses. FASEB J. 2008, 22, 338–342. [Google Scholar] [CrossRef] [PubMed]
- Web of Science. Web of Knowledge. Available online: http://www.webofknowledge.com (accessed on 31 May 2015).
- Scopus. Available online: http://www.scopus.com (accessed on 31 May 2015).
- Khan, K.S.; Kunz, R.; Kleijnen, J.; Antes, G. Five steps to conducting a systematic review. J. R. Soc. Med. 2003, 96, 118–121. [Google Scholar] [CrossRef] [PubMed]
- Greenhalgh, T.; Peacock, R. Effectiveness and efficiency of search methods in systematic reviews of complex evidence: Audit of primary sources. BMJ 2005, 331, 1064–1065. [Google Scholar] [CrossRef] [PubMed]
- Peduzzi, P.; Dao, H.; Herold, C.; Mouton, F. Assessing global exposure and vulnerability towards natural hazards: The disaster risk index. Nat. Hazards Earth Syst. Sci. 2009, 9, 1149–1159. [Google Scholar] [CrossRef]
- Silvestro, F.; Gabellani, S.; Giannoni, F.; Parodi, A.; Rebora, N.; Rudari, R.; Siccardi, F. A hydrological analysis of the 4 november 2011 event in genoa. Nat. Hazards Earth Syst. Sci. 2012, 12, 2743–2752. [Google Scholar] [CrossRef]
- Ismail-Zadeh, A. Extreme Natural Hazards, Disaster Risks and Societal Implications; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Liu, S.B. Crisis crowdsourcing framework: Designing strategic configurations of crowdsourcing for the emergency management domain. Comput. Support. Coop. Work 2014, 23, 389–443. [Google Scholar] [CrossRef]
- Dorn, H.; Vetter, M.; Höfle, B. GIS-based roughness derivation for flood simulations: A comparison of orthophotos, lidar and crowdsourced geodata. Remote Sens. 2014, 6, 1739–1759. [Google Scholar] [CrossRef]
- Schnebele, E.; Cervone, G. Improving remote sensing flood assessment using volunteered geographical data. Nat. Hazards Earth Syst. Sci. 2013, 13, 669–677. [Google Scholar] [CrossRef]
- Amaratunga, C.A. Building community disaster resilience through a virtual community of practice (VCOP). Int. J. Disaster Resil. Built Environ. 2014, 5, 66–78. [Google Scholar] [CrossRef]
- Ferster, C.J.; Coops, N.C.; Harshaw, H.W.; Kozak, R.A.; Meitner, M.J. An exploratory assessment of a smartphone application for public participation in forest fuels measurement in the wildland-urban interface. Forests 2013, 4, 1199–1219. [Google Scholar] [CrossRef]
- Allen, C. A resource for those preparing for and responding to natural disasters, humanitarian crises, and major healthcare emergencies. J. Evid. Based Med. 2014, 7, 234–237. [Google Scholar] [CrossRef] [PubMed]
- Ferster, C.J.; Coops, N.C. Assessing the quality of forest fuel loading data collected using public participation methods and smartphones. Int. J. Wildland Fire 2014, 23, 585–590. [Google Scholar] [CrossRef]
- Middleton, S.E.; Sabeur, Z.A.; Löwe, P.; Hammitzsch, M.; Tavakoli, S.; Poslad, S. Multi-disciplinary approaches to intelligently sharing large-volumes of real-time sensor data during natural disasters. Data Sci. J. 2013, 12, WDS109–WDS113. [Google Scholar] [CrossRef]
- Wan, Z.M.; Hong, Y.; Khan, S.; Gourley, J.; Flamig, Z.; Kirschbaum, D.; Tang, G.Q. A cloud-based global flood disaster community cyber-infrastructure: Development and demonstration. Environ. Model. Softw. 2014, 58, 86–94. [Google Scholar] [CrossRef]
- Barron, C.; Neis, P.; Zipf, A. A comprehensive framework for intrinsic openstreetmap quality analysis. Trans. GIS 2014, 18, 877–895. [Google Scholar] [CrossRef]
- Haklay, M. How good is volunteered geographical information? A comparative study of openstreetmap and ordnance survey datasets. Environ. Plan. B Plan. Des. 2010, 37, 682–703. [Google Scholar] [CrossRef]
- Bruns, A. Produsage. In Proceedings of the 6th ACM SIGCHI Conference on Creativity & Cognition, Washington, DC, USA, 13–15 June 2007; ACM: New York, NY, USA, 2007; pp. 99–106. [Google Scholar]
- Houston, J.B.; Hawthorne, J.; Perreault, M.F.; Park, E.H.; Goldstein Hode, M.; Halliwell, M.R.; Turner McGowen, S.E.; Davis, R.; Vaid, S.; McElderry, J.A.; et al. Social media and disasters: A functional framework for social media use in disaster planning, response, and research. Disasters 2014, 39, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Monroe, M.C.; Pennisi, L.; McCaffrey, S.; Mileti, D. Social Science to Improve Fuels Management: A Synthesis of Research Relevant to Communicating with Homeowners about Fuels Management; General Technical Report NC-267; US Department of Agriculture Forest Service, North Central Research Station: St. Paul, MA, USA, 2006. [Google Scholar]
- Crawford, K.; Finn, M. The limits of crisis data: Analytical and ethical challenges of using social and mobile data to understand disasters. GeoJournal 2015, 80, 491–502. [Google Scholar] [CrossRef]
- Goodchild, M.F.; Li, L. Assuring the quality of volunteered geographic information. Spat. Stat. 2012, 1, 110–120. [Google Scholar] [CrossRef]
- Gall, M.; Nguyen, K.H.; Cutter, S.L. Integrated research on disaster risk: Is it really integrated? Int. J. Disaster Risk Reduct. 2015, 12, 255–267. [Google Scholar] [CrossRef]
- Georgiadou, Y.; Lungo, J.H.; Richter, C. Citizen sensors or extreme publics? Transparency and accountability interventions on the mobile geoweb. Int. J. Digit. Earth 2013, 7, 516–533. [Google Scholar] [CrossRef]
- Koks, E.E.; Jongman, B.; Husby, T.G.; Botzen, W.J.W. Combining hazard, exposure and social vulnerability to provide lessons for flood risk management. Environ. Sci. Policy 2015, 47, 42–52. [Google Scholar] [CrossRef]
- Mechler, R.; Bouwer, L.M. Understanding trends and projections of disaster losses and climate change: Is vulnerability the missing link? Clim. Chang. 2015, 133, 23–25. [Google Scholar] [CrossRef]
- Neis, P.; Zielstra, D.; Zipf, A. The street network evolution of crowdsourced maps: Openstreetmap in Germany 2007–2011. Future Internet 2012, 4, 1–21. [Google Scholar] [CrossRef]
- Zielstra, D.; Zipf, A. A comparative study of proprietary geodata and volunteered geographic information for Germany. In Proceedings of the 13th AGILE International Conference on Geographic Information Science, Guimarães, Portugal, 10–14 May 2010.
- Klonner, C.; Barron, C.; Neis, P.; Höfle, B. Updating digital elevation models via change detection and fusion of human and remote sensor data in urban environments. Int. J. Digit. Earth 2015, 8, 153–171. [Google Scholar] [CrossRef]
- Felgentreff, C.; Dombrowsky, W.R. Hazard-, Risiko- und Katastrophenforschung. In Naturrisiken und Sozialkatastrophen; Felgentreff, C., Glade, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 13–29. [Google Scholar]
- Li, L.; Goodchild, M.F.; Xu, B. Spatial, temporal, and socioeconomic patterns in the use of twitter and flickr. Cartogr. Geogr. Inf. Sci. 2013, 40, 61–77. [Google Scholar] [CrossRef]
- Burningham, K.; Fielding, J.; Thrush, D. “It’ll never happen to me”: Understanding public awareness of local flood risk. Disasters 2008, 32, 216–238. [Google Scholar] [CrossRef] [PubMed]
- Wachinger, G.; Renn, O.; Begg, C.; Kuhlicke, C. The risk perception paradox—Implications for governance and communication of natural hazards. Risk Anal. 2013, 33, 1049–1065. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, R.; Lekshmy, V.M.; Rao, S.; Sasidhar, K. A novel approach to urban flood monitoring using computer vision. In Proceedings of the 5th International Conference on Computing, Communications and Networking Technologies, Hefei, China, 11–13 July 2014.
Geographic Content | ||
---|---|---|
Explicit | Implicit | |
Explicitly-volunteered Active sensing | “True” VGI, e.g., OpenStreetMap | Volunteered (geo)spatial information, such as Wikipedia articles about non-geographic topics containing place names |
Implicitly-volunteered Passive sensing | Citizen-Generated Geographic Content (CGGC), e.g., Tweets referring to the properties of an identifiable place | User-Generated (geo)Spatial Content (UGSC), like Tweets only mentioning a place in the context of another (non-geographic) topic |
Hazard Analysis | VGI |
---|---|
disaster* | Web 2.0 |
crisis | Neogeograph* |
crises | volunteered geograph* |
flood* | vgi |
earthquake* | crowdsourc* |
fire* | crowd-sourc* |
volcan* eruption* | crowd sourc* |
storm* | user-generated content* |
drought* | ugc |
tsunami* | social media |
mass movement* | citizen science |
collective sens* |
Dimensions | Categories |
---|---|
Study objective | Platform for information exchange, integration of VGI, e.g., for simulations, situation awareness and decision support within disaster management process, quality evaluation |
Study area | Country |
Hazard type | Specific type or several types |
Data source | Social media (Twitter, Flickr), additional information from the web, collaborative project (OSM), web platform, smartphone application |
Level of engagement and participation | Crowdsourcing, distributed intelligence, participatory science and extreme citizen science [22] |
Type of integration of VGI | Complementation or alternative to other datasets |
Article | Study Objective | Study Area | Hazard Type | Data Source | Level of Engagement of Citizens | Type of Integration of VGI |
---|---|---|---|---|---|---|
[42] | Resource platform for crisis management actors for fast information access | Global | Several | Web platform, social media | Participatory Science | Integration of crisis management resources; for information sharing and distribution |
[40] | Use Web 2.0 methods for establishing virtual communities of practices; increase community engagement in the mitigation phase | Canada | Several | Web platform, social media | Participatory Science | Integration of crisis mitigation activities; web as knowledge management system |
[15] | Develop active and dynamic multidimensional framework: monitor changes, react to crisis and improve citizens’ ability to contribute to situation awareness and decision making | United Kingdom | Forest fire | Social media | Crowdsourcing | VGI as a complementary source to remote sensing information |
[38] | Use of different datasets for analysis of the applicability of roughness map derivation for flood simulations | Austria | Flood | Collaborative project (OSM) | Distributed Intelligence | Up-to-date alternative to official and remote sensing data |
[18] | Decision-support for agricultural droughts that threaten the livelihoods of people living in vulnerable regions | Several countries in Africa | Agricultural drought | Mobile phone application | Participatory Science | Integration of remote sensing and weather data |
[41] | Get more extensive datasets of fuel loading data | Canada | Forest fire | Mobile phone application | Participatory Science | Integration of data collected by experts |
[43] | Evaluation of the quality of forest fuels data collected by volunteers using smartphone application designed by a research team | Canada | Forest fire | Mobile phone application | Participatory Science | Integration of data collected by experts |
[44] | Share and process large-volumes of real-time sensor data via a multi-disciplinary approach; build knowledge-based service architecture for multi-risk environmental decision-support | Countries within the North-Eastern Atlantic and Mediterranean region | Tsunami | Social media (Twitter), additional info from web (YouTube, RSS feeds) | Crowdsourcing | Integration of other sensor data (tide gauges, buoys, seismic sensors, satellites, earthquake alerts) |
[39] | Integration of VGI data into flood assessment via remote sensing data | USA | Flood | Social media (Flickr), additional info from web (videos, photos, Wikipedia, abc24.com) | Crowdsourcing | Integration of remote sensing data via fusion to improve flood assessment; VGI as ground data |
[35] | Multi-catchment approach to simulate flooding: evaluation of the inclusion of the information of citizens for monitoring | Italy | Flood | Mobile phone application, additional info from the web (YouTube, videos, photos) | Participatory Science | Integration of technical monitoring (gauges, radar data) in order to verify simulation model results |
[43] | Cyberflood: cloud computing service, i.e., a unified, global flood cyber-infrastructure:
| Global; Example in USA | Flood | Web platform | Participatory Science | Integration of official data for real-time analysis, hydrologic model evaluation, flood risk management and awareness |
Hazard Type | Number of Studies |
---|---|
Several | 3 |
Floods | 4 |
Agricultural droughts | 1 |
Forest fires | 3 |
Tsunamis | 1 |
Level of Engagement | Number of Studies |
---|---|
Crowdsourcing | 3 |
Distributed Intelligence | 1 |
Participatory Science | 7 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klonner, C.; Marx, S.; Usón, T.; Porto de Albuquerque, J.; Höfle, B. Volunteered Geographic Information in Natural Hazard Analysis: A Systematic Literature Review of Current Approaches with a Focus on Preparedness and Mitigation. ISPRS Int. J. Geo-Inf. 2016, 5, 103. https://doi.org/10.3390/ijgi5070103
Klonner C, Marx S, Usón T, Porto de Albuquerque J, Höfle B. Volunteered Geographic Information in Natural Hazard Analysis: A Systematic Literature Review of Current Approaches with a Focus on Preparedness and Mitigation. ISPRS International Journal of Geo-Information. 2016; 5(7):103. https://doi.org/10.3390/ijgi5070103
Chicago/Turabian StyleKlonner, Carolin, Sabrina Marx, Tomás Usón, João Porto de Albuquerque, and Bernhard Höfle. 2016. "Volunteered Geographic Information in Natural Hazard Analysis: A Systematic Literature Review of Current Approaches with a Focus on Preparedness and Mitigation" ISPRS International Journal of Geo-Information 5, no. 7: 103. https://doi.org/10.3390/ijgi5070103
APA StyleKlonner, C., Marx, S., Usón, T., Porto de Albuquerque, J., & Höfle, B. (2016). Volunteered Geographic Information in Natural Hazard Analysis: A Systematic Literature Review of Current Approaches with a Focus on Preparedness and Mitigation. ISPRS International Journal of Geo-Information, 5(7), 103. https://doi.org/10.3390/ijgi5070103