Exploring the Role of the Spatial Characteristics of Visible and Near-Infrared Reflectance in Predicting Soil Organic Carbon Density
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Laboratory Measurements and Spectral Pre-Processing
2.3. PLSR and GWR
2.4. Model Evaluation
3. Results
3.1. Basic Statistics of SOCD
3.2. Pretreatment of the Spectral Features
3.3. Spatial Characteristics of the Spectral Reflectance
3.4. Prediction of SOCD by PLSR and GWR
3.5. Model Validation and Evaluation
4. Discussion
4.1. Spatial Autocorrelation and Nonstationarity of PCs
4.2. Advantages of GWR
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Pataki, D.; Alig, R.; Fung, A.; Golubiewski, N.; Kennedy, C.; McPherson, E.; Nowak, D.; Pouyat, R.; Romero Lankao, P. Urban ecosystems and the North American carbon cycle. Glob. Chang. Biol. 2006, 12, 2092–2102. [Google Scholar] [CrossRef]
- Hoffmann, U.; Hoffmann, T.; Jurasinski, G.; Glatzel, S.; Kuhn, N. Assessing the spatial variability of soil organic carbon stocks in an alpine setting (Grindelwald, Swiss Alps). Geoderma 2014, 232, 270–283. [Google Scholar] [CrossRef]
- Vasques, G.; Grunwald, S.; Sickman, J. Comparison of multivariate methods for inferential modeling of soil carbon using visible/near-infrared spectra. Geoderma 2008, 146, 14–25. [Google Scholar] [CrossRef]
- Eswaran, H.; van Den Berg, E.; Reich, P. Organic carbon in soils of the world. Soil Sci. Soc. Am. J. 1993, 57, 192–194. [Google Scholar] [CrossRef]
- Wang, S.-q.; Zhou, C.-h.; Li, K.-r.; Zhu, S.-l.; Huang, F.-h. Estimation of soil organic carbon reservoir in China. J. Geogr. Sci. 2001, 11, 3–13. [Google Scholar]
- Viscarra Rossel, R.A.; Walvoort, D.J.J.; McBratney, A.B.; Janik, L.J.; Skjemstad, J.O. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 2006, 131, 59–75. [Google Scholar] [CrossRef]
- Stenberg, B.; Rossel, R.A.V.; Mouazen, A.M.; Wetterlind, J. Visible and near infrared spectroscopy in soil science. In Advances in Agronomy, Vol 107; Sparks, D.L., Ed.; Elsevier: Boston, MA, USA, 2010; pp. 163–215. [Google Scholar]
- Viscarra Rossel, R.A.; Hicks, W.S. Soil organic carbon and its fractions estimated by visible-near infrared transfer functions. Eur. J. Soil Sci. 2015, 66, 438–450. [Google Scholar] [CrossRef]
- Gomez, C.; Rossel, R.A.V.; McBratney, A.B. Soil organic carbon prediction by hyperspectral remote sensing and field VIS-NIR spectroscopy: An Australian case study. Geoderma 2008, 146, 403–411. [Google Scholar] [CrossRef]
- Sreenivas, K.; Sujatha, G.; Sudhir, K.; Kiran, D.V.; Fyzee, M.A.; Ravisankar, T.; Dadhwal, V.K. Spatial assessment of soil organic carbon density through random forests based imputation. J. Indian Soc. Remote Sens. 2014, 42, 577–587. [Google Scholar] [CrossRef]
- Bellon-Maurel, V.; McBratney, A. Near-infrared (NIR) and mid-infrared (MIR) spectroscopic techniques for assessing the amount of carbon stock in soils—Critical review and research perspectives. Soil Biol. Biochem. 2011, 43, 1398–1410. [Google Scholar] [CrossRef]
- Le Guillou, F.; Wetterlind, W.; Rossel, R.V.; Hicks, W.; Grundy, M.; Tuomi, S. How does grinding affect the mid-infrared spectra of soil and their multivariate calibrations to texture and organic carbon? Soil Res. 2015, 53, 913–921. [Google Scholar] [CrossRef]
- Stenberg, B. Effects of soil sample pretreatments and standardised rewetting as interacted with sand classes on VIS-NIR predictions of clay and soil organic carbon. Geoderma 2010, 158, 15–22. [Google Scholar] [CrossRef]
- Shi, T.; Chen, Y.; Liu, Y.; Wu, G. Visible and near-infrared reflectance spectroscopy—An alternative for monitoring soil contamination by heavy metals. J. Hazard. Mater. 2014, 265, 166–176. [Google Scholar] [CrossRef] [PubMed]
- Araujo, S.R.; Wetterlind, J.; Dematte, J.A.M.; Stenberg, B. Improving the prediction performance of a large tropical VIS-NIR spectroscopic soil library from brazil by clustering into smaller subsets or use of data mining calibration techniques. Eur. J. Soil Sci. 2014, 65, 718–729. [Google Scholar] [CrossRef]
- Ge, Y.; Thomasson, J.A.; Morgan, C.L.; Searcy, S.W. VNIR diffuse reflectance spectroscopy for agricultural soil property determination based on regression-kriging. Trans. ASABE 2007, 50, 1081–1092. [Google Scholar] [CrossRef]
- Wang, J.; Yang, R.; Bai, Z. Spatial variability and sampling optimization of soil organic carbon and total nitrogen for minesoils of the loess plateau using geostatistics. Ecol. Eng. 2015, 82, 159–164. [Google Scholar] [CrossRef]
- Javed, I.; Thomasson John, A.; Jenkins Johnie, N.; Owens Phillip, R.; Whisler Frank, D. Spatial variability analysis of soil physical properties of alluvial soils. Soil Sci. Soc. Am. J. 2005, 69, 1338–1350. [Google Scholar]
- Viscarra Rossel, R.A.V.; Rizzo, R.; Demattê, J.A.M.; Behrens, T. Spatial modeling of a soil fertility index using visible-near-infrared spectra and terrain attributes. Soil Sci. Soc. Am. J. 2010, 74, 1293–1300. [Google Scholar] [CrossRef]
- Guerrero, C.; Wetterlind, J.; Stenberg, B.; Mouazen, A.M.; Gabarrón-Galeote, M.A.; Ruiz-Sinoga, J.D.; Zornoza, R.; Rossel, R.A.V. Do we really need large spectral libraries for local scale soc assessment with nir spectroscopy? Soil Tillage Res. 2016, 155, 501–509. [Google Scholar] [CrossRef]
- Conforti, M.; Castrignano, A.; Robustelli, G.; Scarciglia, F.; Stelluti, M.; Buttafuoco, G. Laboratory-based VIS-NIR spectroscopy and partial least square regression with spatially correlated errors for predicting spatial variation of soil organic matter content. Catena 2015, 124, 60–67. [Google Scholar] [CrossRef]
- Guo, L.; Zhao, C.; Zhang, H.; Chen, Y.; Linderman, M.; Zhang, Q.; Liu, Y. Comparisons of spatial and non-spatial models for predicting soil carbon content based on visible and near-infrared spectral technology. Geoderma 2017, 285, 280–292. [Google Scholar] [CrossRef]
- Gasch, C.K.; Huzurbazar, S.V.; Stahl, P.D. Small-scale spatial heterogeneity of soil properties in undisturbed and reclaimed sagebrush steppe. Soil Tillage Res. 2015, 153, 42–47. [Google Scholar] [CrossRef]
- Brunsdon, C.; Fotheringham, S.; Charlton, M. Geographically weighted regression. J. R. Stat. Soc. Ser. D 1998, 47, 431–443. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships; Wiley: Hoboken, NJ, USA, 2003. [Google Scholar]
- Kumar, S.; Lal, R.; Liu, D. A geographically weighted regression kriging approach for mapping soil organic carbon stock. Geoderma 2012, 189, 627–634. [Google Scholar] [CrossRef]
- Sun, W.; Zhu, Y.Q.; Huang, S.L.; Guo, C.X. Mapping the mean annual precipitation of China using local interpolation techniques. Theor. Appl. Climatol. 2015, 119, 171–180. [Google Scholar] [CrossRef]
- Song, X.-D.; Brus, D.J.; Liu, F.; Li, D.-C.; Zhao, Y.-G.; Yang, J.-L.; Zhang, G.-L. Mapping soil organic carbon content by geographically weighted regression: A case study in the Heihe river basin, China. Geoderma 2016, 261, 11–22. [Google Scholar] [CrossRef]
- Lado, L.R.; Hengl, T.; Reuter, H.I. Heavy metals in european soils: A geostatistical analysis of the foregs geochemical database. Geoderma 2008, 148, 189–199. [Google Scholar] [CrossRef]
- Gong, Z. Chinese Soil Taxonomy; Science Press: Beijing, China, 2001. [Google Scholar]
- Food and Agriculture Organization of the United Nations. World Reference Base for Soil Resources; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998. [Google Scholar]
- Le zhi, W.U.; Cai, Z.C. The relationship between the spatial scale and the variation of soil organic matter in China. Adv. Earth Sci. 2006, 21, 965–972. [Google Scholar]
- Nelson, D.W.; Sommers, L.E.; Sparks, D.L.; Page, A.L.; Helmke, P.A.; Loeppert, R.H.; Soltanpour, P.N.; Tabatabai, M.A.; Johnston, C.T.; Sumner, M.E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis Part—Chemical Methods; American Society of Agronomy, Soil Science Society of America: Madison, WI, USA, 1982; pp. 961–1010. [Google Scholar]
- Ivezić, V.; Kraljević, D.; Lončarić, Z.; Engler, M.; Kerovec, D.; Zebec, V.; Jović, J. Organic Matter Determined by Loss on Ignition and Potassium Dichromate Method. In Proceedings of the 51st Croatian and 11th International Symposium on Agriculture, Opatija, Croatia, 15–18 February 2016. [Google Scholar]
- McKenzie, N.; Jacquier, D.; Ashton, L.; Cresswell, H. Estimation of soil properties using the atlas of Australian soils. CSIRO Land Water Tech. Rep. 2000, 11, 1–12. [Google Scholar]
- Calhoun, F.G.; Smeck, N.E.; Slater, B.L.; Bigham, J.M.; Hall, G.F. Predicting bulk density of ohio soils from morphology, genetic principles, and laboratory characterization data. Soil Sci. Soc. Am. J. 2001, 65, 811–819. [Google Scholar] [CrossRef]
- Thompson, J.A.; Kolka, R.K. Soil carbon storage estimation in a forested watershed using quantitative soil-landscape modeling. Soil Sci. Soc. Am. J. 2005, 69, 1086–1093. [Google Scholar] [CrossRef]
- Shi, T.Z.; Chen, Y.Y.; Liu, H.Z.; Wang, J.J.; Wu, G.F. Soil organic carbon content estimation with laboratory-based visible-near-infrared reflectance spectroscopy: Feature selection. Appl. Spectrosc. 2014, 68, 831–837. [Google Scholar] [CrossRef] [PubMed]
- Viscarra Rossel, R.A.V.; Behrens, T. Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma 2010, 158, 46–54. [Google Scholar] [CrossRef]
- Geladi, P.; Kowalski, B.R. Partial least-squares regression: A tutorial. Anal. Chim. Acta 1986, 185, 1–17. [Google Scholar] [CrossRef]
- Harald, M.; Paul, G. Multivariate calibration. Technometrics 1991, 1158, 61. [Google Scholar]
- Charlton, M.; Fotheringham, S.; Brunsdon, C. Geographically weighted regression. In White Paper: National Centre for Geocomputation; National University of Ireland Maynooth: Maynooth, Ireland, 2009. [Google Scholar]
- Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Geographically Weighted Regression; Wiley: New York, NY, USA, 2002. [Google Scholar]
- Hurvich, C.M.; Simonoff, J.S.; Tsai, C.L. Smoothing parameter selection in nonparametric regression using an improved akaike information criterion. J. R. Stat. Soc. Ser. B Stat. Methodol. 1998, 60, 271–293. [Google Scholar] [CrossRef]
- Gogé, F.; Gomez, C.; Jolivet, C.; Joffre, R. Which strategy is best to predict soil properties of a local site from a national VIS–NIR database? Geoderma 2014, 213, 1–9. [Google Scholar] [CrossRef]
- Galvão, R.K.H.; Araujo, M.C.U.; José, G.E.; Pontes, M.J.C.; Silva, E.C.; Saldanha, T.C.B. A method for calibration and validation subset partitioning. Talanta 2005, 67, 736–740. [Google Scholar] [CrossRef] [PubMed]
- Buchmann, N. Biotic and abiotic factors controlling soil respiration rates in Picea abies stands. Soil Biol. Biochem. 2000, 32, 1625–1635. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.; Cattle, S.; Ortega, A.; Fouad, Y. In situ measurements of soil colour, mineral composition and clay content by VIS–NIR spectroscopy. Geoderma 2009, 150, 253–266. [Google Scholar] [CrossRef]
- Peng, X.; Shi, T.; Song, A.; Chen, Y.; Gao, W. Estimating soil organic carbon using VIS/NIR spectroscopy with SVMR and SPA methods. Remote Sens. 2014, 6, 2699–2717. [Google Scholar] [CrossRef]
- Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Bartlett, M.S. Notes on continuous stochastic phenomena. Biometrika 1950, 37, 17. [Google Scholar]
- Cliff, A.D.; Ord, J.K. Spatial Processes: Models & Applications; Pion: London, UK, 1981. [Google Scholar]
- Chang, C.-W.; Laird, D.A.; Mausbach, M.J.; Hurburgh, C.R. Near-infrared reflectance spectroscopy–principal components regression analyses of soil properties. Soil Sci. Soc. Am. J. 2001, 65, 480–490. [Google Scholar] [CrossRef]
- Yoon, T.K.; Noh, N.J.; Han, S.; Kwak, H.; Lee, W.K.; Son, Y. Small-scale spatial variability of soil properties in a Korean swamp. Landsc. Ecol. Eng. 2015, 11, 303–312. [Google Scholar] [CrossRef]
- Anselin, L. Local indicators of spatial association—Lisa. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Warner, T.A.; Shank, M.C. Spatial autocorrelation analysis of hyperspectral imagery for feature selection. Remote Sens. Environ. 1997, 60, 58–70. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, L.; Jiang, Q.; Zhang, H.; Chen, Y. Comparing geospatial techniques to predict SOC stocks. Soil Tillage Res. 2015, 148, 46–58. [Google Scholar] [CrossRef]
- Kumar, S.; Lal, R.; Liu, D.S.; Rafiq, R. Estimating the spatial distribution of organic carbon density for the soils of Ohio, USA. J. Geogr. Sci. 2013, 23, 280–296. [Google Scholar] [CrossRef]
- Bilgili, A.V.; Akbas, F.; van Es, H.M. Combined use of hyperspectral VNIR reflectance spectroscopy and kriging to predict soil variables spatially. Precis. Agric. 2011, 12, 395–420. [Google Scholar] [CrossRef]
Number | Range | Min | Max | Mean | SD | CV (%) | CS | CK | |
---|---|---|---|---|---|---|---|---|---|
Calibration dataset (kg·m−2) | 161 | 9.84 | 0.33 | 10.16 | 5.37 | 1.96 | 36.53% | 0.12 | −0.41 |
Validation dataset (kg·m−2) | 70 | 5.80 | 2.47 | 8.27 | 4.81 | 1.62 | 33.65% | 0.48 | −0.79 |
Entire dataset (kg·m−2) | 231 | 9.84 | 0.33 | 10.16 | 5.20 | 1.88 | 36.12% | 0.25 | −0.45 |
Soil moisture | 231 | 1.70 | 0.07 | 1.77 | 0.38 | 0.02 | 4.26% | 1.76 | 3.76 |
Soil Organic Carbon (g kg−1) | 231 | 43.98 | 0.83 | 44.82 | 15.70 | 7.20 | 2.76% | 0.81 | 0.65 |
The Percentages of Variance | Range | Min | Max | Mean | SD | |
---|---|---|---|---|---|---|
PC1 | 58.65% | 39.69 | −19.32 | 20.37 | 0 | 8.43 |
PC2 | 7.14% | 17.54 | −11.21 | 6.32 | 0 | 2.94 |
PC3 | 3.69% | 10.18 | −5.03 | 5.14 | 0 | 2.12 |
PC4 | 8.95% | 16.81 | −9.8 | 7.01 | 0 | 3.29 |
PC5 | 2.14% | 9.74 | −5.52 | 4.22 | 0 | 1.61 |
Global Coefficients (PLSR) | Local Coefficients (GWR) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Variables | Coefficients | SCs | t-Values | p-Values | Range | Min | Max | Mean | Mean of SCs | Std |
Intercept | 5.368 | 74.95 | 0 | 0.110 | 5.315 | 5.425 | 5.366 | 0.026 | ||
PC1 | 0.089 | 0.384 | 10.469 | 0 | 0.010 | 0.084 | 0.094 | 0.089 | 0.383 | 0.002 |
PC2 | 0.415 | 0.623 | 17.003 | 0 | 0.042 | 0.393 | 0.435 | 0.413 | 0.620 | 0.014 |
PC3 | 0.339 | 0.366 | 9.99 | 0 | 0.015 | 0.34 | 0.355 | 0.345 | 0.373 | 0.003 |
PC4 | 0.125 | 0.210 | 5.724 | 0 | 0.037 | 0.09 | 0.127 | 0.112 | 0.188 | 0.009 |
PC5 | 0.342 | 0.280 | 7.665 | 0 | 0.093 | 0.27 | 0.363 | 0.323 | 0.265 | 0.030 |
Model | RMSEC (kg·m−2) | RMSEP (kg·m−2) | R2C | R2P | RPD |
---|---|---|---|---|---|
PLSR | 0.892 | 0.985 | 0.791 | 0.631 | 1.646 |
GWR | 0.875 | 0.950 | 0.800 | 0.654 | 1.702 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, L.; Chen, Y.; Shi, T.; Zhao, C.; Liu, Y.; Wang, S.; Zhang, H. Exploring the Role of the Spatial Characteristics of Visible and Near-Infrared Reflectance in Predicting Soil Organic Carbon Density. ISPRS Int. J. Geo-Inf. 2017, 6, 308. https://doi.org/10.3390/ijgi6100308
Guo L, Chen Y, Shi T, Zhao C, Liu Y, Wang S, Zhang H. Exploring the Role of the Spatial Characteristics of Visible and Near-Infrared Reflectance in Predicting Soil Organic Carbon Density. ISPRS International Journal of Geo-Information. 2017; 6(10):308. https://doi.org/10.3390/ijgi6100308
Chicago/Turabian StyleGuo, Long, Yiyun Chen, Tiezhu Shi, Chang Zhao, Yaolin Liu, Shanqin Wang, and Haitao Zhang. 2017. "Exploring the Role of the Spatial Characteristics of Visible and Near-Infrared Reflectance in Predicting Soil Organic Carbon Density" ISPRS International Journal of Geo-Information 6, no. 10: 308. https://doi.org/10.3390/ijgi6100308
APA StyleGuo, L., Chen, Y., Shi, T., Zhao, C., Liu, Y., Wang, S., & Zhang, H. (2017). Exploring the Role of the Spatial Characteristics of Visible and Near-Infrared Reflectance in Predicting Soil Organic Carbon Density. ISPRS International Journal of Geo-Information, 6(10), 308. https://doi.org/10.3390/ijgi6100308