A Review of Urban Air Pollution Monitoring and Exposure Assessment Methods
Abstract
:1. Introduction
2. Monitoring Data Acquisition
3. Pollution Assessment Methods
3.1. Spatial Interpolation Approaches
3.1.1. Inverse Distance Weighting
3.1.2. Kriging
3.1.3. Data Driven Spatial Prediction
3.2. Land-Use Regression Models
3.3. Dispersion Models
3.4. Approaches for Mobile Monitoring
3.5. Air Quality Indicators
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Raaschou-Nielsen, O.; Andersen, Z.J.; Beelen, R.; Samoli, E.; Stafoggia, M.; Weinmayr, G.; Hoffmann, B.; Fischer, P.; Nieuwenhuijsen, M.J.; Brunekreef, B.; et al. Air pollution and lung cancer incidence in 17 European cohorts: Prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE). Lancet Oncol. 2013, 14, 813–822. [Google Scholar] [CrossRef]
- European Commission. Materials for Clean Air; European Commission: Brussels, Belgium, 2017. [Google Scholar]
- World Health Organisation. Data and Statistics; World Health Organisation: Geneva, Switzerland, 2017. [Google Scholar]
- Kanaroglou, P.S.; Jerrett, M.; Morrison, J.; Beckerman, B.; Arain, M.A.; Gilbert, N.L.; Brook, J.R. Establishing an air pollution monitoring network for intra-urban population exposure assessment: A location-allocation approach. Atmos. Environ. 2005, 39, 2399–2409. [Google Scholar] [CrossRef]
- Jerrett, M.; Buzzelli, M.; Burnett, R.T.; DeLuca, P.F. Particulate air pollution, social confounders, and mortality in small areas of an industrial city. Soc. Sci. Med. 2005, 60, 2845–2863. [Google Scholar] [CrossRef] [PubMed]
- Semanjski, I.; Bellens, R.; Gautama, S.; Witlox, F. Integrating Big Data into a Sustainable Mobility Policy 2.0 Planning Support System. Sustainability 2016, 8, 1142. [Google Scholar] [CrossRef] [Green Version]
- Semanjski, I.; Lopez Aguirre, A.J.; De Mol, J.; Gautama, S. Policy 2.0 Platform for Mobile Sensing and Incentivized Targeted Shifts in Mobility Behavior. Sensors 2016, 16, 1035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gillis, D.; Semanjski, I.; Lauwers, D. How to Monitor Sustainable Mobility in Cities? Literature Review in the Frame of Creating a Set of Sustainable Mobility Indicators. Sustainability 2016, 8, 29. [Google Scholar] [CrossRef] [Green Version]
- Ostro, B.; Sanchez, J.; Aranda, C.; Eskeland, G. Air pollution and mortality: Results from a study of Santiago, Chile. J. Expo. Anal. Environ. Epidemiol. 1996, 6, 97–114. [Google Scholar] [PubMed]
- Ritz, B.; Wilhelm, M.; Zhao, Y. Air pollution and infant death in southern California, 1989–2000. Pediatrics 2006, 118, 493–502. [Google Scholar] [PubMed]
- Miller, K.A.; Siscovick, D.S.; Sheppard, L.; Shepherd, K.; Sullivan, J.H.; Anderson, G.L.; Kaufman, J.D. Long-term exposure to air pollution and incidence of cardiovascular events in women. N. Engl. J. Med. 2007, 2007, 447–458. [Google Scholar] [CrossRef] [PubMed]
- Brauer, M.; Lencar, C.; Tamburic, L.; Koehoorn, M.; Demers, P.; Karr, C. A cohort study of traffic-related air pollution impacts on birth outcomes. Environ. Health Perspect. 2008, 116, 680. [Google Scholar] [CrossRef] [PubMed]
- Henderson, S.B.; Beckerman, B.; Jerrett, M.; Brauer, M. Application of land use regression to estimate long-term concentrations of traffic-related nitrogen oxides and fine particulate matter. Environ. Sci. Technol. 2007, 41, 2422–2428. [Google Scholar] [CrossRef] [PubMed]
- Beckerman, B.S.; Jerrett, M.; Finkelstein, M.; Kanaroglou, P.; Brook, J.R.; Arain, M.A.; Sears, M.R.; Stieb, D.; Balmes, J.; Chapman, K. The association between chronic exposure to traffic-related air pollution and ischemic heart disease. J. Toxicol. Environ. Health Part A 2012, 75, 402–411. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.; Isakov, V.; Touma, J.; Mukerjee, S.; Özkaynak, H. Evaluation of land-use regression models used to predict air quality concentrations in an urban area. Atmos. Environ. 2010, 44, 3660–3668. [Google Scholar] [CrossRef]
- Clougherty, J.E.; Wright, R.J.; Baxter, L.K.; Levy, J.I. Land use regression modeling of intra-urban residential variability in multiple traffic-related air pollutants. Environ. Health 2008, 7, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brunekreef, B.; Beelen, R.; Hoek, G.; Schouten, L.; Bausch-Goldbohm, S.; Fischer, P.; Armstrong, B.; Hughes, E.; Jerrett, M.; van den Brandt, P. Effects of long-term exposure to traffic-related air pollution on respiratory and cardiovascular mortality in the Netherlands: The NLCS-AIR study. Res. Rep. (Health Eff. Inst.) 2009, 139, 5–71. [Google Scholar]
- Beelen, R.; Hoek, G.; Fischer, P.; van den Brandt, P.A.; Brunekreef, B. Estimated long-term outdoor air pollution concentrations in a cohort study. Atmos. Environ. 2007, 41, 1343–1358. [Google Scholar] [CrossRef]
- Kim, S.Y.; Sheppard, L.; Kim, H. Health effects of long-term air pollution: Influence of exposure prediction methods. Epidemiology 2009, 20, 442–450. [Google Scholar] [CrossRef] [PubMed]
- Sahsuvaroglu, T.; Jerrett, M.; Sears, M.R.; McConnell, R.; Finkelstein, N.; Arain, A.; Newbold, B.; Burnett, R. Spatial analysis of air pollution and childhood asthma in Hamilton, Canada: Comparing exposure methods in sensitive subgroups. Environ. Health 2009, 8, 14. [Google Scholar] [CrossRef] [PubMed]
- Jerrett, M.; Arain, A.; Kanaroglou, P.; Beckerman, B.; Potoglou, D.; Sahsuvaroglu, T.; Morrison, J.; Giovis, C. A review and evaluation of intraurban air pollution exposure models. J. Expo. Anal. Environ. Epidemiol. 2005, 15, 185–204. [Google Scholar] [CrossRef] [PubMed]
- Ryan, P.H.; LeMasters, G.K. A Review of Land-use Regression Models for Characterizing Intraurban Air Pollution Exposure. Inhal. Toxicol. 2007, 19, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Hoek, G.; Beelen, R.; De Hoogh, K.; Vienneau, D.; Gulliver, J.; Fischer, P.; Briggs, D. A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmos. Environ. 2008, 42, 7561–7578. [Google Scholar] [CrossRef]
- Holmes, N.S.; Morawska, L. A review of dispersion modelling and its application to the dispersion of particles: An overview of different dispersion models available. Atmos. Environ. 2006, 40, 5902–5928. [Google Scholar] [CrossRef] [Green Version]
- Wong, D.W.; Yuan, L.; Perlin, S.A. Comparison of spatial interpolation methods for the estimation of air quality data. J. Expo. Sci. Environ. Epidemiol. 2004, 14, 404. [Google Scholar] [CrossRef] [PubMed]
- Conrad, C.C.; Hilchey, K.G. A review of citizen science and community-based environmental monitoring: Issues and opportunities. Environ. Monit. Assess. 2011, 176, 273–291. [Google Scholar] [CrossRef] [PubMed]
- Dutta, P.; Aoki, P.M.; Kumar, N.; Mainwaring, A.; Myers, C.; Willett, W.; Woodruff, A. Common Sense: Participatory Urban Sensing Using a Network of Handheld Air Quality Monitors. In Proceedings of the 7th ACM Conference on Embedded Networked Sensor Systems, Berkeley, CA, USA, 4–6 November 2009; ACM: New York, NY, USA, 2009; pp. 349–350. [Google Scholar]
- Kumar, P.; Morawska, L.; Martani, C.; Biskos, G.; Neophytou, M.; Di Sabatino, S.; Bell, M.; Norford, L.; Britter, R. The rise of low-cost sensing for managing air pollution in cities. Environ. Int. 2015, 75, 199–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farrell, W.J.; Weichenthal, S.; Goldberg, M.; Hatzopoulou, M. Evaluating air pollution exposures across cycling infrastructure types: Implications for facility design. J. Transp. Land Use 2015, 8, 131–149. [Google Scholar] [CrossRef]
- Wallace, J.; Corr, D.; Deluca, P.; Kanaroglou, P.; McCarry, B. Mobile monitoring of air pollution in cities: The case of Hamilton, Ontario, Canada. J. Environ. Monit. 2009, 11, 998–1003. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zhu, T.; Zheng, J.; Zhang, R.; Zhang, S.; Xie, X.; Han, Y.; Li, Y. Use of a mobile laboratory to evaluate changes in on-road air pollutants during the Beijing 2008 Summer Olympics. Atmos. Chem. Phys. 2009, 9, 8247–8263. [Google Scholar] [CrossRef]
- MacNaughton, P.; Melly, S.; Vallarino, J.; Adamkiewicz, G.; Spengler, J.D. Impact of bicycle route type on exposure to traffic-related air pollution. Sci. Total Environ. 2014, 490, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Lau, K.K.L.; Ng, E. Developing street-level PM2.5 and PM10 land use regression models in high-density Hong Kong with urban morphological factors. Environ. Sci. Technol. 2016, 50, 8178–8187. [Google Scholar] [CrossRef] [PubMed]
- Bigazzi, A.Y.; Figliozzi, M.A. Roadway determinants of bicyclist exposure to volatile organic compounds and carbon monoxide. Transp. Res. Part D Transp. Environ. 2015, 41, 13–23. [Google Scholar] [CrossRef]
- Zwack, L.M.; Paciorek, C.J.; Spengler, J.D.; Levy, J.I. Modeling spatial patterns of traffic-related air pollutants in complex urban terrain. Environ. Health Perspect. 2011, 119, 852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kingham, S.; Longley, I.; Salmond, J.; Pattinson, W.; Shrestha, K. Variations in exposure to traffic pollution while travelling by different modes in a low density, less congested city. Environ. Pollut. 2013, 181, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Yeboah, G.; Alvanides, S.; Thompson, E.M. Everyday cycling in urban environments: Understanding behaviors and constraints in space-time. In Computational Approaches for Urban Environments; Helbich, M., Arsanjani, J.J., Leitner, M., Eds.; Springer: Berlin, Germany, 2015; pp. 185–210. [Google Scholar]
- Shirai, Y.; Kishino, Y.; Naya, F.; Yanagisawa, Y. Toward On-Demand Urban Air Quality Monitoring using Public Vehicles. In Proceedings of the 2nd International Workshop on Smart, Trento, Italy, 12–16 December 2016; ACM: New York, NY, USA, 2016; p. 1. [Google Scholar]
- Dong, W.; Guan, G.; Chen, Y.; Guo, K.; Gao, Y. Mosaic: Towards city scale sensing with mobile sensor networks. In Proceedings of the 2015 IEEE 21st International Conference on Parallel and Distributed Systems (ICPADS), Melbourne, VIC, Australia, 14 December 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 29–36. [Google Scholar]
- Gao, Y.; Dong, W.; Guo, K.; Liu, X.; Chen, Y.; Liu, X.; Bu, J.; Chen, C. Mosaic: A low-cost mobile sensing system for urban air quality monitoring. In Proceedings of the IEEE INFOCOM 2016—The 35th Annual IEEE International Conference on Computer Communications, San Francisco, CA, USA, 10–14 April 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–9. [Google Scholar]
- Hasenfratz, D.; Saukh, O.; Walser, C.; Hueglin, C.; Fierz, M.; Thiele, L. Pushing the spatio-temporal resolution limit of urban air pollution maps. In Proceedings of the 2014 IEEE International Conference on Pervasive Computing and Communications (PerCom), Budapest, Hungary, 24–28 March 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 69–77. [Google Scholar]
- Cai, Z.; van Veldhoven, R.H.; Falepin, A.; Suy, H.; Sterckx, E.; Bitterlich, C.; Makinwa, K.A.; Pertijs, M.A. A Ratiometric Readout Circuit for Thermal-Conductivity-Based Resistive CO2 Sensors. IEEE J. Solid-State Circuits 2016, 51, 2463–2474. [Google Scholar] [CrossRef]
- Kinney, P.; Aggarwal, M.; Nikiforov, S.; Nadas, A. Methods development for epidemiologic investigations of the health effects of prolonged ozone exposure. Part III. An approach to retrospective estimation of lifetime ozone exposure using a questionnaire and ambient monitoring data (US sites). Res. Rep. (Health Eff. Inst.) 1998, 81, 79–108. [Google Scholar]
- Schwartz, J. Lung function and chronic exposure to air pollution: A cross-sectional analysis of NHANES II. Environ. Res. 1989, 50, 309–321. [Google Scholar] [CrossRef]
- Chestnut, L.G.; Schwartz, J.; Savitz, D.A.; Burchfiel, C.M. Pulmonary function and ambient particulate matter: Epidemiological evidence from NHANES I. Arch. Environ. Health Int. J. 1991, 46, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, J. Air pollution and hospital admissions for the elderly in Birmingham, Alabama. Am. J. Epidemiol. 1994, 139, 589–598. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, J.; Zeger, S. Passive smoking, air pollution, and acute respiratory symptoms in a diary study of student nurses. Am. Rev. Respir. Dis. 1990, 141, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Deligiorgi, D.; Philippopoulos, K. Spatial interpolation methodologies in urban air pollution modeling: Application for the greater area of metropolitan Athens, Greece. In Advanced Air Pollution; Nejadkoorki, F., Ed.; InTech: Rijeka, Croatia, 2011. [Google Scholar]
- Bell, M.L. The use of ambient air quality modeling to estimate individual and population exposure for human health research: A case study of ozone in the Northern Georgia Region of the United States. Environ. Int. 2006, 32, 586–593. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Winer, A.M.; Delfino, R.J. Exposure assessment of particulate matter air pollution before, during, and after the 2003 Southern California wildfires. Atmos. Environ. 2006, 40, 3333–3348. [Google Scholar] [CrossRef]
- Son, J.Y.; Bell, M.L.; Lee, J.T. Individual exposure to air pollution and lung function in Korea: spatial analysis using multiple exposure approaches. Environ. Res. 2010, 110, 739–749. [Google Scholar] [CrossRef] [PubMed]
- Deligiannis, N.; Mota, J.F.C.; Zimos, E.; Rodrigues, M.R.D. Heterogeneous Networked Data Recovery from Compressive Measurements Using a Copula Prior. IEEE Trans. Commun. 2017, PP, 1. [Google Scholar] [CrossRef]
- Zimos, E.; Mota, J.F.; Rodrigues, M.R.; Deligiannis, N. Internet-of-Things Data Aggregation Using Compressed Sensing with Side Information. In Proceedings of the 2016 33rd International Conference on Telecommunication (ICT), Thessaloniki, Greece, 16–18 May 2016; IEEE: Piscataway, NJ, USA, 2016. [Google Scholar]
- Schwartz, J. Air pollution and blood markers of cardiovascular risk. Environ. Health Perspect. 2001, 109, 405. [Google Scholar] [CrossRef] [PubMed]
- Hoek, G.; Brunekreef, B.; Goldbohm, S.; Fischer, P.; van den Brandt, P.A. Association between mortality and indicators of traffic-related air pollution in the Netherlands: A cohort study. Lancet 2002, 360, 1203–1209. [Google Scholar] [CrossRef]
- Jerrett, M.; Burnett, R.T.; Beckerman, B.S.; Turner, M.C.; Krewski, D.; Thurston, G.; Martin, R.V.; van Donkelaar, A.; Hughes, E.; Shi, Y.; et al. Spatial analysis of air pollution and mortality in California. Am. J. Respir. Crit. Care Med. 2013, 188, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Hubbell, B.J.; Hallberg, A.; McCubbin, D.R.; Post, E. Health-related benefits of attaining the 8-hr ozone standard. Environ. Health Perspect. 2005, 113, 73. [Google Scholar] [CrossRef] [PubMed]
- Salam, M.T.; Millstein, J.; Li, Y.F.; Lurmann, F.W.; Margolis, H.G.; Gilliland, F.D. Birth outcomes and prenatal exposure to ozone, carbon monoxide, and particulate matter: Results from the Children’s Health Study. Environ. Health Perspect. 2005, 113, 1638. [Google Scholar] [CrossRef] [PubMed]
- Marshall, J.D.; Nethery, E.; Brauer, M. Within-urban variability in ambient air pollution: Comparison of estimation methods. Atmos. Environ. 2008, 42, 1359–1369. [Google Scholar] [CrossRef]
- Oliver, M.A.; Webster, R. Kriging: A method of interpolation for geographical information systems. Int. J. Geogr. Inf. Syst. 1990, 4, 313–332. [Google Scholar] [CrossRef]
- Stein, M.L. Interpolation of Spatial Data: Some Theory for Kriging; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Mulholland, J.A.; Butler, A.J.; Wilkinson, J.G.; Russell, A.G.; Tolbert, P.E. Temporal and spatial distributions of ozone in Atlanta: Regulatory and epidemiologic implications. J. Air Waste Manag. Assoc. 1998, 48, 418–426. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.J.S.; Rossini, A. Use of kriging models to predict 12-hour mean ozone concentrations in metropolitan Toronto—a pilot study. Environ. Int. 1996, 22, 677–692. [Google Scholar] [CrossRef]
- Ferreira, F.; Tente, H.; Torres, P.; Cardoso, S.; Palma-Oliveira, J.M. Air quality monitoring and management in Lisbon. Environ. Monit. Assess. 2000, 65, 443–450. [Google Scholar] [CrossRef]
- Janssen, S.; Dumont, G.; Fierens, F.; Mensink, C. Spatial interpolation of air pollution measurements using CORINE land cover data. Atmos. Environ. 2008, 42, 4884–4903. [Google Scholar] [CrossRef]
- Künzli, N.; Jerrett, M.; Mack, W.J.; Beckerman, B.; LaBree, L.; Gilliland, F.; Thomas, D.; Peters, J.; Hodis, H.N. Ambient air pollution and atherosclerosis in Los Angeles. Environ. Health Perspect. 2005, 113, 201. [Google Scholar] [CrossRef] [PubMed]
- Finkelstein, M.M.; Jerrett, M.; Sears, M.R. Environmental inequality and circulatory disease mortality gradients. J. Epidemiol. Community Health 2005, 59, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Jerrett, M.; Burnett, R.T.; Kanaroglou, P.; Eyles, J.; Finkelstein, N.; Giovis, C.; Brook, J.R. A GIS–environmental justice analysis of particulate air pollution in Hamilton, Canada. Environ. Plan. A 2001, 33, 955–973. [Google Scholar] [CrossRef]
- Whitworth, K.W.; Symanski, E.; Lai, D.; Coker, A.L. Kriged and modeled ambient air levels of benzene in an urban environment: An exposure assessment study. Environ. Health 2011, 10, 21. [Google Scholar] [CrossRef] [PubMed]
- Bland, J.M.; Altman, D. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 327, 307–310. [Google Scholar] [CrossRef]
- Zheng, Y.; Yi, X.; Li, M.; Li, R.; Shan, Z.; Chang, E.; Li, T. Forecasting Fine-Grained Air Quality Based on Big Data. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney, NSW, Australia, 10–13 August 2015; ACM: New York, NY, USA, 2015; pp. 2267–2276. [Google Scholar]
- Donoho, D. Compressed Sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
- Candès, E.; Romberg, J.; Tao, T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 2006, 52, 489–509. [Google Scholar] [CrossRef]
- Chen, S.; Donoho, D.; Saunders, M. Atomic Decomposition by Basis Pursuit. SIAM J. Sci. Comput. 1999, 20, 33–61. [Google Scholar] [CrossRef]
- Baron, D.; Sarvotham, S.; Baraniuk, R.G. Bayesian Compressive Sensing Via Belief Propagation. IEEE Trans. Signal Process. 2010, 58, 269–280. [Google Scholar] [CrossRef]
- Mota, J.F.C.; Deligiannis, N.; Rodrigues, M.R.D. Compressed sensing with prior information: Strategies, geometry, and bounds. IEEE Trans. Inf. Theory 2017, 63, 4472–4496. [Google Scholar] [CrossRef]
- Sahsuvaroglu, T.; Arain, A.; Kanaroglou, P.; Finkelstein, N.; Newbold, B.; Jerrett, M.; Beckerman, B.; Brook, J.; Finkelstein, M.; Gilbert, N.L. A land use regression model for predicting ambient concentrations of nitrogen dioxide in Hamilton, Ontario, Canada. J. Air Waste Manag. Assoc. 2006, 56, 1059–1069. [Google Scholar] [CrossRef] [PubMed]
- Briggs, D.J.; Collins, S.; Elliott, P.; Fischer, P.; Kingham, S.; Lebret, E.; Pryl, K.; Van Reeuwijk, H.; Smallbone, K.; Van Der Veen, A. Mapping urban air pollution using GIS: A regression-based approach. Int. J. Geogr. Inf. Sci. 1997, 11, 699–718. [Google Scholar] [CrossRef]
- Gilbert, N.L.; Goldberg, M.S.; Beckerman, B.; Brook, J.R.; Jerrett, M. Assessing spatial variability of ambient nitrogen dioxide in Montreal, Canada, with a land-use regression model. J. Air Waste Manag. Assoc. 2005, 55, 1059–1063. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Henderson, S.B.; Sbihi, H.; Allen, R.W.; Brauer, M. Temporal stability of land use regression models for traffic-related air pollution. Atmos. Environ. 2013, 64, 312–319. [Google Scholar] [CrossRef]
- Beelen, R.; Hoek, G.; Vienneau, D.; Eeftens, M.; Dimakopoulou, K.; Pedeli, X.; Tsai, M.Y.; Künzli, N.; Schikowski, T.; Marcon, A.; et al. Development of NO2 and NOx land use regression models for estimating air pollution exposure in 36 study areas in Europe–the ESCAPE project. Atmos. Environ. 2013, 72, 10–23. [Google Scholar] [CrossRef]
- Kashima, S.; Yorifuji, T.; Tsuda, T.; Doi, H. Application of land use regression to regulatory air quality data in Japan. Sci. Total Environ. 2009, 407, 3055–3062. [Google Scholar] [CrossRef] [PubMed]
- Moore, D.; Jerrett, M.; Mack, W.; Künzli, N. A land use regression model for predicting ambient fine particulate matter across Los Angeles, CA. J. Environ. Monit. 2007, 9, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Slama, R.; Morgenstern, V.; Cyrys, J.; Zutavern, A.; Herbarth, O.; Wichmann, H.E.; Heinrich, J.; LISA Study Group. Traffic-related atmospheric pollutants levels during pregnancy and offspring’s term birth weight: A study relying on a land-use regression exposure model. Environ. Health Perspect. 2007, 115, 1283. [Google Scholar] [CrossRef] [PubMed]
- Ross, Z.; English, P.B.; Scalf, R.; Gunier, R.; Smorodinsky, S.; Wall, S.; Jerrett, M. Nitrogen dioxide prediction in Southern California using land use regression modeling: Potential for environmental health analyses. J. Expo. Sci. Environ. Epidemiol. 2006, 16, 106. [Google Scholar] [CrossRef] [PubMed]
- Gulliver, J.; de Hoogh, K.; Fecht, D.; Vienneau, D.; Briggs, D. Comparative assessment of GIS-based methods and metrics for estimating long-term exposures to air pollution. Atmos. Environ. 2011, 45, 7072–7080. [Google Scholar] [CrossRef]
- Chen, L.; Bai, Z.; Kong, S.; Han, B.; You, Y.; Ding, X.; Du, S.; Liu, A. A land use regression for predicting NO2 and PM10 concentrations in different seasons in Tianjin region, China. J. Environ. Sci. 2010, 22, 1364–1373. [Google Scholar] [CrossRef]
- Beckerman, B.S.; Jerrett, M.; Martin, R.V.; van Donkelaar, A.; Ross, Z.; Burnett, R.T. Application of the deletion/substitution/addition algorithm to selecting land use regression models for interpolating air pollution measurements in California. Atmos. Environ. 2013, 77, 172–177. [Google Scholar] [CrossRef]
- Adam-Poupart, A.; Brand, A.; Fournier, M.; Jerrett, M.; Smargiassi, A. Spatiotemporal modeling of ozone levels in Quebec (Canada): A comparison of kriging, land-use regression (LUR), and combined Bayesian maximum entropy–LUR approaches. Environ. Health Perspect. 2014, 122, 970. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Wu, C.F.; Hoek, G.; de Hoogh, K.; Beelen, R.; Brunekreef, B.; Chan, C.C. Land use regression models for estimating individual NOx and NO2 exposures in a metropolis with a high density of traffic roads and population. Sci. Total Environ. 2014, 472, 1163–1171. [Google Scholar] [CrossRef] [PubMed]
- Kerckhoffs, J.; Wang, M.; Meliefste, K.; Malmqvist, E.; Fischer, P.; Janssen, N.A.; Beelen, R.; Hoek, G. A national fine spatial scale land-use regression model for ozone. Environ. Res. 2015, 140, 440–448. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Chen, L.; Cai, J.; Zou, B.; Wu, C.F.; Fu, Q.; Zhang, Y.; Liu, Y.; Kan, H. A land use regression model for estimating the NO2 concentration in shanghai, China. Environ. Res. 2015, 137, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Marcon, A.; de Hoogh, K.; Gulliver, J.; Beelen, R.; Hansell, A.L. Development and transferability of a nitrogen dioxide land use regression model within the Veneto region of Italy. Atmos. Environ. 2015, 122, 696–704. [Google Scholar] [CrossRef]
- Liu, W.; Li, X.; Chen, Z.; Zeng, G.; León, T.; Liang, J.; Huang, G.; Gao, Z.; Jiao, S.; He, X.; et al. Land use regression models coupled with meteorology to model spatial and temporal variability of NO2 and PM10 in Changsha, China. Atmos. Environ. 2015, 116, 272–280. [Google Scholar] [CrossRef]
- Wolf, K.; Cyrys, J.; Harciníková, T.; Gu, J.; Kusch, T.; Hampel, R.; Schneider, A.; Peters, A. Land use regression modeling of ultrafine particles, ozone, nitrogen oxides and markers of particulate matter pollution in Augsburg, Germany. Sci. Total Environ. 2017, 579, 1531–1540. [Google Scholar] [CrossRef] [PubMed]
- Mercer, L.D.; Szpiro, A.A.; Sheppard, L.; Lindström, J.; Adar, S.D.; Allen, R.W.; Avol, E.L.; Oron, A.P.; Larson, T.; Liu, L.J.S.; et al. Comparing universal kriging and land-use regression for predicting concentrations of gaseous oxides of nitrogen (NOx) for the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air). Atmos. Environ. 2011, 45, 4412–4420. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wu, J.; Wilhelm, M.; Ritz, B. Use of generalized additive models and cokriging of spatial residuals to improve land-use regression estimates of nitrogen oxides in Southern California. Atmos. Environ. 2012, 55, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Kanaroglou, P.S.; Adams, M.D.; De Luca, P.F.; Corr, D.; Sohel, N. Estimation of sulfur dioxide air pollution concentrations with a spatial autoregressive model. Atmos. Environ. 2013, 79, 421–427. [Google Scholar] [CrossRef]
- Moran, P.A. Notes on continuous stochastic phenomena. Biometrika 1950, 37, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Vardoulakis, S.; Fisher, B.E.; Pericleous, K.; Gonzalez-Flesca, N. Modelling air quality in street canyons: A review. Atmos. Environ. 2003, 37, 155–182. [Google Scholar] [CrossRef]
- Sivacoumar, R.; Thanasekaran, K. Comparison and performance evaluation of models used for vehicular pollution prediction. J. Environ. Eng. 2001, 127, 524–530. [Google Scholar] [CrossRef]
- Lagzi, I.; Meszaros, R.; Gelybo, G.; Leelossy, A. Atmospheric Chemistry; Eotvos Lorand University: Budapest, Hungary, 2014. [Google Scholar]
- Chock, D.P. A simple line-source model for dispersion near roadways. Atmos. Environ. 1978, 12, 823–829. [Google Scholar] [CrossRef]
- Benson, P.E. CALINE3-A Versatile Dispersion Model for Predicting Air Pollutant Levels Near Highways and Arterial Streets. Interim Report; Technical Report; California State Department of Transportation: Sacramento, CA, USA, 1979.
- Benson, P.E. Caline4-a Dispersion Model for Predicting Air Pollutant Concentrations Near Roadways. Final Report; Technical Report; California State Department of Transportation: Sacramento, CA, USA, 1984.
- McConnell, R.; Islam, T.; Shankardass, K.; Jerrett, M.; Lurmann, F.; Gilliland, F.; Gauderman, J.; Avol, E.; Künzli, N.; Yao, L.; et al. Childhood incident asthma and traffic-related air pollution at home and school. Environ. Health Perspect. 2010, 118, 1021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cimorelli, A.J.; Perry, S.G.; Venkatram, A.; Weil, J.C.; Paine, R.J.; Wilson, R.B.; Lee, R.F.; Peters, W.D.; Brode, R.W. AERMOD: A dispersion model for industrial source applications. Part I: General model formulation and boundary layer characterization. J. Appl. Meteorol. 2005, 44, 682–693. [Google Scholar] [CrossRef]
- Venkatram, A.; Klewicki, J. Validation of Concentrations Estimated From Air Dispersion Modeling for Source-Receptor Distances of Less Than 100 Meters; California Environmental Protection Agency: Sacramento, CA, USA, 2003.
- Carruthers, D.; Holroyd, R.; Hunt, J.; Weng, W.; Robins, A.; Apsley, D.; Thompson, D.; Smith, F. UK-ADMS: A new approach to modelling dispersion in the earth’s atmospheric boundary layer. J. Wind Eng. Ind. Aerodyn. 1994, 52, 139–153. [Google Scholar] [CrossRef]
- Härkönen, J.; Valkonen, E.; Kukkonen, J.; Rantakrans, E.; Lahtinen, K.; Karppinen, A.; Jalkanen, L. A Model for the Dispersion of Pollution from a Road Network; Finnish Meteorological Institute: Helsinki, Finland, 1996. [Google Scholar]
- Green, N.J.; Bullin, J.A.; Polasek, J.C. Dispersion of carbon monoxide from roadways at low wind speeds. J. Air Pollut. Control Assoc. 1979, 29, 1057–1061. [Google Scholar] [CrossRef]
- Venkatram, A. On estimating emissions through horizontal fluxes. Atmos. Environ. 2004, 38, 1337–1344. [Google Scholar] [CrossRef]
- Venkatram, A.; Isakov, V.; Thoma, E.; Baldauf, R. Analysis of air quality data near roadways using a dispersion model. Atmos. Environ. 2007, 41, 9481–9497. [Google Scholar] [CrossRef]
- Levitin, J.; Härkönen, J.; Kukkonen, J.; Nikmo, J. Evaluation of the CALINE4 and CAR-FMI models against measurements near a major road. Atmos. Environ. 2005, 39, 4439–4452. [Google Scholar] [CrossRef]
- Mensink, C.; Colles, A.; Janssen, L.; Cornelis, J. Integrated air quality modelling for the assessment of air quality in streets against the council directives. Atmos. Environ. 2003, 37, 5177–5184. [Google Scholar] [CrossRef]
- Walker, E.; Slørdal, L.H.; Guerreiro, C.; Gram, F.; Grønskei, K.E. Air pollution exposure monitoring and estimation. Part II. Model evaluation and population exposure. J. Environ. Monit. 1999, 1, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Oftedal, B.; Brunekreef, B.; Nystad, W.; Madsen, C.; Walker, S.E.; Nafstad, P. Residential outdoor air pollution and lung function in schoolchildren. Epidemiology 2008, 19, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Oettl, D.; Kukkonen, J.; Almbauer, R.A.; Sturm, P.J.; Pohjola, M.; Härkönen, J. Evaluation of a Gaussian and a Lagrangian model against a roadside data set, with emphasis on low wind speed conditions. Atmos. Environ. 2001, 35, 2123–2132. [Google Scholar] [CrossRef]
- Minet, L.; Gehr, R.; Hatzopoulou, M. Capturing the sensitivity of land-use regression models to short-term mobile monitoring campaigns using air pollution micro-sensors. Environ. Pollut. 2017, 230, 280–290. [Google Scholar] [CrossRef] [PubMed]
- Hatzopoulou, M.; Valois, M.F.; Levy, I.; Mihele, C.; Lu, G.; Bagg, S.; Minet, L.; Brook, J. Robustness of Land-Use Regression Models Developed from Mobile Air Pollutant Measurements. Environ. Sci. Technol. 2017, 51, 3938–3947. [Google Scholar] [CrossRef] [PubMed]
- Hasenfratz, D.; Saukh, O.; Walser, C.; Hueglin, C.; Fierz, M.; Arn, T.; Beutel, J.; Thiele, L. Deriving high-resolution urban air pollution maps using mobile sensor nodes. Pervasive Mob. Comput. 2015, 16, 268–285. [Google Scholar] [CrossRef]
- Klompmaker, J.O.; Montagne, D.R.; Meliefste, K.; Hoek, G.; Brunekreef, B. Spatial variation of ultrafine particles and black carbon in two cities: Results from a short-term measurement campaign. Sci. Total Environ. 2015, 508, 266–275. [Google Scholar] [CrossRef] [PubMed]
- Peters, J.; Van den Bossche, J.; Reggente, M.; Van Poppel, M.; De Baets, B.; Theunis, J. Cyclist exposure to UFP and BC on urban routes in Antwerp, Belgium. Atmos. Environ. 2014, 92, 31–43. [Google Scholar] [CrossRef]
- Van den Bossche, J.; Peters, J.; Verwaeren, J.; Botteldooren, D.; Theunis, J.; De Baets, B. Mobile monitoring for mapping spatial variation in urban air quality: Development and validation of a methodology based on an extensive dataset. Atmos. Environ. 2015, 105, 148–161. [Google Scholar] [CrossRef]
- Hankey, S.; Marshall, J.D. Land use regression models of on-road particulate air pollution (particle number, black carbon, PM2.5, particle size) using mobile monitoring. Environ. Sci. Technol. 2015, 49, 9194–9202. [Google Scholar] [CrossRef] [PubMed]
- Adams, M.D.; Kanaroglou, P.S. Mapping real-time air pollution health risk for environmental management: Combining mobile and stationary air pollution monitoring with neural network models. J. Environ. Manag. 2016, 168, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Clean Air Asia. Accessing Asia: Air Pollution and Greenhouse Gas Emissions Indicators for Road Transport and Electricity; Clean Air Asia: Pasig, Philippines, 2012. [Google Scholar]
- Gwilliam, K.; Kojima, M.; Johnson, T. Reducing Air Pollution from Urban Transport; World Bank: Washington, DC, USA, 2004. [Google Scholar]
- Cefic and ECTA. Guidelines for Measuring and Managing CO2 Emission from Freight Transport Operations; Cefic and ECTA: Brussels, Belgium, 2011. [Google Scholar]
- Victoria Transport Policy Institute. Transportation Cost and Benefit Analysis II—Air Pollution Costs; Victoria Transport Policy Institute: Victoria, BC, Canada, 2011. [Google Scholar]
- Milieurapport Vlaanderen MIRA. Achtergrond Rapport Transport (Environmental Report Flanders—Background Report on Transport); Technical Report; Milieurapport Vlaanderen MIRA: Mechelen, Belgium, 2010. [Google Scholar]
- Worldbank. Emission; Worldbank: Washington, DC, USA, 2013. [Google Scholar]
- Organisation for Economic Co-operation and Development (OECD). Reducing Transport Greenhouse Gas Emissions: Trends & Data; OECD: Paris, France, 2010. [Google Scholar]
- Environmental Protection Agency. Guide to Sustainability Transportation Performance Measures; Environmental Protection Agency: Washington, DC, USA, 2011.
- United Nations Economic and Social affairs. Indicators of Sustainable Development: Guidelines and Methodologies, 3rd ed.; United Nations: New York, NY, USA, 2007. [Google Scholar]
- European Environment Agency. Exceedance of Air Quality Limit Values in Urban Areas; European Environment Agency: Copenhagen, Denmark, 2013. [Google Scholar]
- European Commission; Ambient Italia. European Common Indicators; European Commission: Brussels, Belgium, 2003. [Google Scholar]
Method | Reference | Pollutants | Study Area | MS Number | Sampling Period | Health Effects Assessment |
---|---|---|---|---|---|---|
IDW | Beckerman et al. [14] | PM2.5, O3 | Toronto, ON, Canada | 14 (PM2.5), 16 (O3) | 2002, 2004 | respiratory disease |
Beelen et al. [18] | BS, NO, NO2, SO2 | Netherlands | 40 | 1976–1996 | mortality | |
Hoek et al. [55] | BS, NO2 | Netherlands | – | 1987–1990 | chronic respiratory disease | |
Jerrett et al. [56] | O3 | Los Angeles, CA; New York, NY, United States | 262 | 1988–2002 | ischemic heart disease | |
Hubbell et al. [57] | O3 | United States | – | 2000-2002 | premature mortality, respiratory disease | |
Salam et al. [58] | CO, NO2, PM10, O3 | CA, United States | – | 1975–1987 | reduced birth weight | |
Kriging | Jerrett et al. [5] | PM | Hamilton, ON, Canada | 23 | 1985–1994 | cardio-respiratory, cancer |
Brunekreef et al. [17] | BS, NO2, PM2.5 | Netherlands | – | 1976–1996 | respiratory, cardiovascular, lung cancer | |
Kim et al. [19] | PM2.5 | Los Angeles, CA, United States | 22 | 2002 | cardiovascular disease | |
Sahsuvaroglu et al. [20] | NO2 | Hamilton, ON, Canada | 100 | 1994–1995 | childhood asthma | |
Wong et al. [25] | PM10, O3 | United States | 732 (PM10), 739 (O3) | 1990 | – | |
Bell [49] | O3 | Northern Georgia, United States | 15 | 15–18 August 1995 | – | |
Wu et al. [50] | PM, PM2.5, PM10 | Southern California, United States | 37 | 2003 | ||
Son et al. [51] | NO2, PM10, O3, SO2, CO | Ulsan, Korea | 13 | 2003–2007 | – | |
Liu and Rossini [63] | O3 | Toronto, ON, Canada | 19 | June–August 1992 | – | |
Ferreira et al. [64] | CO, NO, NO2 | Lisbon, Portugal | 9 | January–March 1997 | – | |
Janssen et al. [65] | NO2, PM10, O3 | Belgium | 50 | 2006 | – | |
Künzli et al. [66] | PM2.5 | Los Angeles, CA, United States | 23 | 2000 | atherosclerosis | |
Finkelstein et al. [67] | PM, SO2 | Redlands, AB, Canada | 29 (PM), 19 (SO2) | 1993–1995 (PM), 1992 –1994 (SO2) | circulatory disease | |
Whitworth et al. [69] | benzene | Harris County, TX, United States | 17 | 1998–2000 | – |
Reference | Pollutants | Study Area | MS Number | Sampling Period | Predictor Variables |
---|---|---|---|---|---|
Henderson et al. [13] | NO, NO2 | Vancouver, BC, Canada | 116 | 2006 | land cover, population density |
Beckerman et al. [14] | NO2 | Toronto, ON, Canada | 143 | 2002, 2004 | road length, traffic intensity, land cover, physical geography, population |
Clougherty et al. [16] | NO2, PM2.5 | Boston, MA, United States | 44 | 2003–2005 | traffic count, road length, distance to the nearest major road |
Brunekreef et al. [17] | BS , NO2, PM2.5 | Netherlands | – | 1976–1996 | traffic intensity, land cover |
Beelen et al. [18] | BS, NO, NO2, SO2 | Netherlands | 40 | 1976–1996 | region, population, land cover, traffic intensity |
Jerrett et al. [56] | NO2, PM2.5 | Los Angeles, CA; New York, NY, United States | 262 | 1988–2002 | land cover |
Marshall et al. [59] | CO, NO, NO2, O3 | Vancouver, BC, Canada | 13, 14, 14, 15 | 2000 | traffic intensity, land cover, altitude, elevation, population |
Sahsuvaroglu et al. [77] | NO2 | Hamilton, ON; Toronto, ON; Montreal, QC, Canada | >100 | October 2002, May 2004 | land cover, road type, population density, distance to lake, wind intensity, traffic density |
Briggs et al. [78] | NO2 | Amsterdam, Netherlands; Huddersfield, United Kingdom; Prague, Czech Republic | 80 per area | 8 weeks in 1993, 1994 | traffic intensity, land cover, altitude, road network |
Gilbert et al. [79] | NO2 | Montreal, QC, Canada | 67 | 14 days in 2003 | distance from the nearest highway, traffic count, land cover, major road length, population |
Wang et al. [80] | NO, NO2 | Vancouver, BC, Canada | 73 | 2003, 2010 | elevation, distance to the nearest highway, road length, land cover, population density, traffic density |
Beelen et al. [81] | NO2, NOx | 36 areas in Europe | 40–80 per area | October 2008–April 2011 | land cover, road length, distance to the nearest road, population density, altitude |
Kashima et al. [82] | NO2 | Shizuoka, Japan | 67 | April 2000–March 2006 | road type, traffic intensity, land use, physical component |
Slama et al. [84] | NO2, PM2.5 | Munich, Germany | 40 | March 1999–July 2000 | road traffic, road type, road length, land cover |
Ross et al. [85] | NO2 | San Diego, CA, United States | 39 | 2003 | traffic density, road length, distance to the Pacific coast |
Gulliver et al. [86] | PM10 | London, United Kingdom | 52 | 1997–2005 | traffic intensity, land cover, altitude |
Chen et al. [87] | NO2, PM10 | Tianjin, China | 30 | 2006 | land cover, road length, wind index, temperature, humidity, wind speed |
Lee et al. [90] | NO2, NOx | Taipei | 40 | October 2009–September 2010 | land use, road length, distance to the major road, number of inhabitants, number of households |
Kerckhoffs et al. [91] | O3 | Netherlands | 90 | 2012 | traffic density, major road length, land use |
Meng et al. [92] | NO2 | Shanghai, China | 38 | 2008–2011 | major road length, number of industrial sources, land use, population |
Marcon et al. [93] | NO2 | Veneto, Italy | 47 | 2010 | road length, altitude, land use, distance to motorways |
Liu et al. [94] | NO2, PM10 | Changsha, China | 74, 36 | 2010, April 2013–April 2014 | road length, land use and nine meteorological variables |
Wolf et al. [95] | NOX, PM10, PM2.5, O3, UFP | Augsburg, Germany | 20 | 2014–2015 | land use, traffic density, population, altitude, building density |
Mercer et al. [96] | NOx | Los Angeles, CA, United States | 150 | 2006–2007 | population, land use, distance to industrial source, distance to primary highways and roads |
Li et al. [97] | NO2, NOx | Los Angeles and Orange county, CA, United States | 240 | 2008 | land surface temperature, traffic flow, truck flow, atmospheric stability, land use, distances to major freeways and local streets, road length |
Kanaroglou et al. [98] | SO2 | Hamilton, ON, Canada | 29 | 2005–2010 | land use, road length, elevation, distance to major industrial area |
Reference | Pollutants | Sampling Period | Study Area | Sensor Carrier | Methods |
---|---|---|---|---|---|
Wallace et al. [30] | NO2, PM2.5 | 2005–2013 | Hamilton, ON, Canada | an enclosed van | LUR models |
Wang et al. [31] | BC, PM | August 2008 | Beijing, China | a van | – |
MacNaughton et al. [32] | BC, CO, CO2, NO2, O3 | – | Boston, MA, United States | a bicycle | – |
Shi et al. [33] | PM2.5, PM10 | 2014–2015 | Hongkong, China | a Toyota HiAce vehicle | LUR models |
Bigazzi and Figliozzi [34] | CO, VOC | 9 days, 2013 | Portland, OR, United States | bicycles | regression models |
Zwack et al. [35] | PM2.5, UFP | June 2007 | Williamsburg, NY, United States | six pedestrians | LUR models, dispersion models |
Kingham et al. [36] | CO, PM, UFP | – | Christchurch, New Zealand | bus, car, bicycle | – |
Shirai et al. [38] | CO, NO2, O3, PM2.5, ultraviolet, dust, pollen, two types of air contaminants | January 2015–2016 | Fujisawa, Japan | garbage trucks | – |
Dong et al. [39], Gao et al. [40] | PM2.5 | 24 February–3 April 2015 (Hangzhou), | Hangzhou, Ningbo, China | buses (Hangzhou), cleaning vehicles (Ningbo) | – |
13 December 2014–2016 (Ningbo) | |||||
Minet et al. [119] | NO2 | 2015 | Montreal, QC, Canada | pedestrians | LUR models |
Hatzopoulou et al. [120] | NO2, UFP | 2009 | Montreal, QC, Canada | a car | LUR models |
Hasenfratz et al. [41,121] | UFP | 2012–2015 | Zurich, Switzerland | ten public trams | nonlinear LUR models |
Klompmaker et al. [122] | BC, UFP | 2013 | Amsterdam, Rotterdam, Netherlands | a car | LUR models |
Peters et al. [123] | BC, UFP | February–March 2012 | Antwerp, Belgium | a bicycle | linear |
Van den Bossche et al. [124] | regression models | ||||
Hankey and Marshall [125] | BC, PM2.5 | rush hour | Minneapolis, MN, United States | a bicycle | LUR models |
Adams and Kanaroglou [126] | NO2, PM2.5 | 2005-2013 | Hamilton, ON, Canada | an enclosed van | NN models |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, X.; Semanjski, I.; Gautama, S.; Tsiligianni, E.; Deligiannis, N.; Rajan, R.T.; Pasveer, F.; Philips, W. A Review of Urban Air Pollution Monitoring and Exposure Assessment Methods. ISPRS Int. J. Geo-Inf. 2017, 6, 389. https://doi.org/10.3390/ijgi6120389
Xie X, Semanjski I, Gautama S, Tsiligianni E, Deligiannis N, Rajan RT, Pasveer F, Philips W. A Review of Urban Air Pollution Monitoring and Exposure Assessment Methods. ISPRS International Journal of Geo-Information. 2017; 6(12):389. https://doi.org/10.3390/ijgi6120389
Chicago/Turabian StyleXie, Xingzhe, Ivana Semanjski, Sidharta Gautama, Evaggelia Tsiligianni, Nikos Deligiannis, Raj Thilak Rajan, Frank Pasveer, and Wilfried Philips. 2017. "A Review of Urban Air Pollution Monitoring and Exposure Assessment Methods" ISPRS International Journal of Geo-Information 6, no. 12: 389. https://doi.org/10.3390/ijgi6120389
APA StyleXie, X., Semanjski, I., Gautama, S., Tsiligianni, E., Deligiannis, N., Rajan, R. T., Pasveer, F., & Philips, W. (2017). A Review of Urban Air Pollution Monitoring and Exposure Assessment Methods. ISPRS International Journal of Geo-Information, 6(12), 389. https://doi.org/10.3390/ijgi6120389