Trends and Opportunities of BIM-GIS Integration in the Architecture, Engineering and Construction Industry: A Review from a Spatio-Temporal Statistical Perspective
Abstract
:1. Introduction
2. Current Applications of BIM-GIS Integration
2.1. Methodology of Review
2.2. Literature Analysis
3. Evolution Progress of BIM-GIS Integration
3.1. Application Evolution in AEC Industry
3.2. History from the Perspective of Surveying and Mapping
3.3. Comparison of Evolution Processes of GIS, BIM and Integrated BIM-GIS
4. Future Trends of BIM-GIS Integration in AEC Industry
4.1. The Technology (Loose Integration) Hypothesis
- This is an easy integration model. There will not be too many changes of future integration methods compared with current ones.
- Concepts, methods, systems, and theories of BIM and GIS will not be changed.
- It is flexible for users. They can choose the integration methods, extracting data from one system to another or using a third-party platform, based on their specific problems to address.
4.2. The Science (Tight Integration) Hypothesis
4.3. The Data Source Hypothesis
4.4. BIM-GIS Integration for Project Life Cycles
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global change and the ecology of cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [PubMed]
- Satterthwaite, D. The implications of population growth and urbanization for climate change. Environ. Urban. 2009, 21, 545–567. [Google Scholar] [CrossRef]
- McDonald, R.I.; Green, P.; Balk, D.; Fekete, B.M.; Revenga, C.; Todd, M.; Montgomery, M. Urban growth, climate change, and freshwater availability. Proc. Natl. Acad. Sci. USA 2011, 108, 6312–6317. [Google Scholar] [CrossRef] [PubMed]
- Höjer, M.; Wangel, J. Smart sustainable cities: Definition and challenges. In ICT Innovations for Sustainability; Springer: Cham, Switzerland, 2015; pp. 333–349. [Google Scholar]
- Kramers, A.; Höjer, M.; Lövehagen, N.; Wangel, J. Smart sustainable cities—Exploring ICT solutions for reduced energy use in cities. Environ. Model. Softw. 2014, 56, 52–62. [Google Scholar] [CrossRef]
- Bibri, S.E.; Krogstie, J. Smart sustainable cities of the future: An extensive interdisciplinary literature review. Sustain. Cities Soc. 2017, 31, 183–212. [Google Scholar] [CrossRef]
- Griffinger, K.; Gertner, C.; Kramar, H.; Kalasek, R.; Pichler-Milanovic, N.; Meijers, E. Smart Cities: Ranking of European Medium-Sized Cities; Vienna University of Technology: Wien, Austria, 2007. [Google Scholar]
- Ma, Z.; Ren, Y. Integrated Application of BIM and GIS: An Overview. Procedia Eng. 2017, 196, 1072–1079. [Google Scholar] [CrossRef]
- Fosu, R.; Suprabhas, K.; Rathore, Z.; Cory, C. Integration of Building Information Modeling (BIM) and Geographic Information Systems (GIS)—A literature review and future needs. In Proceedings of the 32nd CIB W78 Conference, Eindhoven, The Netherlands, 27–29 October 2015. [Google Scholar]
- Yamamura, S.; Fan, L.; Suzuki, Y. Assessment of Urban Energy Performance through Integration of BIM and GIS for Smart City Planning. In International High-Performance Built Environment Conference—A Sustainable Built Environment Conference 2016 Series (SBE16), IHBE 2016; Ding, L., Fiorito, F., Osmond, P., Eds.; Procedia Engeenering; Elsevier Science BV: Amsterdam, The Netherlands, 2017; Volume 180, pp. 1462–1472. [Google Scholar]
- Volk, R.; Stengel, J.; Schultmann, F. Building Information Modeling (BIM) for existing buildings—Literature review and future needs. Autom. Constr. 2014, 38, 109–127. [Google Scholar] [CrossRef]
- Berry, J. GIS evolution and future trends. In Beyond Mapping III, Compilation of Beyond Mapping Columns Appearing in GeoWorld Magazine; BASIS Press: Quincy, MA, USA, 1996. [Google Scholar]
- Liu, X.; Wang, X.Y.; Wright, G.; Cheng, J.C.P.; Li, X.; Liu, R. A State-of-the-Art Review on the Integration of Building Information Modeling (BIM) and Geographic Information System (GIS). ISPRS Int. J. Geo-Inf. 2017, 6, 53. [Google Scholar] [CrossRef]
- Pauwels, P.; Zhang, S.; Lee, Y.-C. Semantic web technologies in AEC industry: A literature overview. Autom. Constr. 2017, 73, 145–165. [Google Scholar] [CrossRef]
- Irizarry, J.; Karan, E.P.; Jalaei, F. Integrating BIM and GIS to improve the visual monitoring of construction supply chain management. Autom. Constr. 2013, 31, 241–254. [Google Scholar] [CrossRef]
- Teo, T.A.; Cho, K.H. BIM-oriented indoor network model for indoor and outdoor combined route planning. Adv. Eng. Inform. 2016, 30, 268–282. [Google Scholar] [CrossRef]
- Xu, M.; Hijazi, I.; Mebarki, A.; Meouche, R.E.; Abune’meh, M. Indoor guided evacuation: TIN for graph generation and crowd evacuation. Geomat. Nat. Hazards Risk 2016, 7, 47–56. [Google Scholar] [CrossRef]
- Wu, B.; Zhang, S. Integration of GIS and BIM for Indoor Geovisual Analytics. In XXIII ISPRS Congress, Commission II; Halounova, L., Li, S., Šafář, V., Tomková, M., Rapant, P., Brázdil, K., Shi, W., Anton, F., Liu, Y., Stein, A., Eds.; Copernicus Gesellschaft MBH: Gottingen, Germany, 2016; Volume 41, pp. 455–458. [Google Scholar]
- Salimzadeh, N.; Sharif, S.A.; Hammad, A. Visualizing and Analyzing Urban Energy Consumption: A Critical Review and Case Study. In Construction Research Congress 2016: Old And New Construction Technologies Converge in Historic San Juan; Perdomo-Rivera, J., Gonzáles-Quevedo, A., Del Puerto, C.L., Maldonado-Fortunet, F., Molina-Bas, O.I., Eds.; United Engineering Center, American Society of Civil Engineers: New York, NY, USA, 2016; pp. 1323–1331. [Google Scholar]
- Romero, A.; Izkara, J.L.; Mediavilla, A.; Prieto, I.; Perez, J. Multiscale building modelling and energy simulation support tools. In Ework and Ebusiness in Architecture, Engineering and Construction; Christodoulou, S., Scherer, R., Eds.; CRC Press—Taylor & Francis Group: Boca Raton, FL, USA, 2016; pp. 315–322. [Google Scholar]
- Costa, G.; Sicilia, A.; Lilis, G.N.; Rovas, D.V.; Izkara, J. A comprehensive ontologies-based framework to support the retrofitting design of energy-efficient districts. In Ework and Ebusiness in Architecture, Engineering and Construction; Christodoulou, S., Scherer, R., Eds.; CRC Press—Taylor & Francis Group: Boca Raton, FL, USA, 2016; pp. 673–681. [Google Scholar]
- Yang, X.; Koehl, M.; Grussenmeyer, P.; Macher, H. Complementarity of historic building information modelling and geographic information systems. In XXIII ISPRS Congress, Commission V; Halounova, L., Li, S., Šafář, V., Tomková, M., Rapant, P., Brázdil, K., Shi, W., Anton, F., Liu, Y., Stein, A., Eds.; Copernicus Gesellschaft MBH: Gottingen, Germany, 2016; Volume 41, pp. 437–443. [Google Scholar]
- Bento, R.; Falcao, A.P.; Catulo, R.; Milosevic, J. Seismic Assessment of Pombalino Buildings. In Historical Earthquake-Resistant Timber Framing in the Mediterranean Area; Cruz, H., Machado, J.S., Costa, A.C., Candeias, P.X., Ruggieri, N., Catarino, J.M., Eds.; Springer: Cham, Switzerland, 2016; Volume 1, pp. 171–181. [Google Scholar]
- Hjelseth, E.; Thiis, T.K. Use of BIM and GIS to enable climatic adaptations of buildings. In Ework and Ebusiness in Architecture, Engineering and Construction; Christodoulou, S., Scherer, R., Eds.; CRC Press—Taylor & Francis Group: Boca Raton, FL, USA, 2009; pp. 409–417. [Google Scholar]
- Zhou, H.; Castro-Lacouture, D. Integrated Ecological Assessment of Engineering Projects Based on Emergy Analysis. In CUE 2015—Applied Energy Symposium and Summit 2015: Low Carbon Cities and Urban Energy Systems; Yan, J., Chen, B., Yang, J., Eds.; Elsevier Science BV: Amsterdam, The Netherlands, 2016; Volume 88, pp. 160–167. [Google Scholar]
- Gröger, G.; Plümer, L. CityGML—Interoperable semantic 3D city models. ISPRS J. Photogramm. Remote Sens. 2012, 71, 12–33. [Google Scholar] [CrossRef]
- Deng, Y.; Cheng, J.C.P.; Anumba, C. Mapping between BIM and 3D GIS in different levels of detail using schema mediation and instance comparison. Autom. Constr. 2016, 67, 1–21. [Google Scholar] [CrossRef]
- Hijazi, I.; Ehlers, M.; Zlatanova, S.; Becker, T.; van Berlo, L. Initial investigations for modeling interior utilities within 3D GEO context: Transforming IFC-interior utility to citygml/utilitynetworkade. In 5th International Conference On 3D Geoinformation; Kolbe, T., König, G., Nagel, C., Eds.; Copernicus Gesellschaft MBH: Gottingen, Germany, 2010; p. 186. [Google Scholar]
- Yuan, Z.; Shen, G.Q.P. Using IFC Standard to Integrate BIM Models and GIS. In Proceedings of 2010 International Conference on Construction and Real Estate Management, Vols 1–3; Wang, Y.W., Yang, J., Wong, J., Shen, G.Q.P., Eds.; China Architecture and Building Press: Beijing, China, 2010; pp. 224–229. [Google Scholar]
- El-Mekawy, M.; Östman, A.; Hijazi, I. A unified building model for 3D urban GIS. ISPRS Int. J. Geo-Inf. 2012, 1, 120–145. [Google Scholar] [CrossRef]
- Bailey, T.C. A review of statistical spatial analysis in geographical information systems. In Spati Anal. and GIS; CRC Press: Boca Raton, FL, USA, 1994; pp. 13–44. [Google Scholar]
- Marshall, R.J. A review of methods for the statistical analysis of spatial patterns of disease. J. R. Stat. Soc. Ser. A (Stat. Soc.) 1991, 154, 421–441. [Google Scholar] [CrossRef]
- Dormann, C.; McPherson, J.; Araújo, M.; Bivand, R.; Bolliger, J.; Carl, G.; Davies, R.; Hirzel, A.; Jetz, W.; Kissling, W.D. Methods to account for spatial autocorrelation in the analysis of species distributional data: A review. Ecography 2007, 30, 609–628. [Google Scholar] [CrossRef]
- Wang, J.-F.; Zhang, T.-L.; Fu, B.-J. A measure of spatial stratified heterogeneity. Ecol. Indic. 2016, 67, 250–256. [Google Scholar] [CrossRef]
- Wang, J.-F.; Stein, A.; Gao, B.-B.; Ge, Y. A review of spatial sampling. Spat. Stat. 2012, 2, 1–14. [Google Scholar] [CrossRef]
- Fischer, M.M.; Wang, J. Spatial Data Analysis: Models, Methods and Techniques; Springer: Springer-Verlag Berlin Heidelberg, Germany, 2011. [Google Scholar]
- Páez, A.; Scott, D.M. Spat. Stat. for urban analysis: A review of techniques with examples. GeoJournal 2005, 61, 53–67. [Google Scholar] [CrossRef]
- Chun, B.; Guldmann, J.-M. Spatial statistical analysis and simulation of the urban heat island in high-density central cities. Landsc. Urban Plan. 2014, 125, 76–88. [Google Scholar] [CrossRef]
- Cai, J.; Huang, B.; Song, Y. Using multi-source geospatial big data to identify the structure of polycentric cities. Remote Sens. Environ. 2017. [Google Scholar] [CrossRef]
- Wang, J.F.; Li, X.H.; Christakos, G.; Liao, Y.L.; Zhang, T.; Gu, X.; Zheng, X.Y. Geographical Detectors-Based Health Risk Assessment and its Application in the Neural Tube Defects Study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Yang, D.; Xu, C.; Wang, J.; Zhao, Y. Spatiotemporal epidemic characteristics and risk factor analysis of malaria in Yunnan Province, China. BMC Public Health 2017, 17, 66. [Google Scholar] [CrossRef] [PubMed]
- Ge, Y.; Yuan, Y.; Hu, S.; Ren, Z.; Wu, Y. Space–time variability analysis of poverty alleviation performance in China’s poverty-stricken areas. Spat. Stat. 2017, 21, 460–474. [Google Scholar] [CrossRef]
- Ren, Z.; Ge, Y.; Wang, J.; Mao, J.; Zhang, Q. Understanding the inconsistent relationships between socioeconomic factors and poverty incidence across contiguous poverty-stricken regions in China: Multilevel modelling. Spat. Stat. 2017, 21, 406–420. [Google Scholar] [CrossRef]
- Chen, Y.; Ge, Y. Spatial Point Pattern Analysis on the Villages in China’s Poverty-stricken Areas. Procedia Environ. Sci. 2015, 27, 98–105. [Google Scholar] [CrossRef]
- Liao, Y.; Wang, J.; Du, W.; Gao, B.; Liu, X.; Chen, G.; Song, X.; Zheng, X. Using spatial analysis to understand the spatial heterogeneity of disability employment in China. Trans. GIS 2017, 21, 647–660. [Google Scholar] [CrossRef]
- Döllner, J.; Hagedorn, B. Integrating urban GIS, CAD, and BIM data by servicebased virtual 3D city models. In Urban and Regional Data Management-Annual; Taylor & Francis Group: London, UK, 2007; pp. 157–160. [Google Scholar]
- Van Berlo, L.; de Laat, R. Integration of bim and gis: The development of the citygml geobim extension. In 5th International Conference on 3D Geoinformation; Kolbe, T., König, G., Nagel, C., Eds.; Copernicus Gesellschaft MBH: Gottingen, Germany, 2010; p. 193. [Google Scholar]
- Liu, H.; Shi, R.; Zhu, L.; Jing, C. Conversion of model file information from IFC to GML. In Proceedings of the 2014 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Quebec City, QC, Canada, 13–18 July 2014; IEEE: New York, NY, USA, 2014. [Google Scholar] [CrossRef]
- Li, L.; Luo, F.; Zhu, H.; Ying, S.; Zhao, Z. A two-level topological model for 3D features in CityGML. Comput. Environ. Urban Syst. 2016, 59, 11–24. [Google Scholar] [CrossRef]
- Dominguez, B.; Garcia, A.L.; Feito, F.R. Semiautomatic detection of floor topology from CAD architectural drawings. Comput. Aided Des. 2012, 44, 367–378. [Google Scholar] [CrossRef]
- Karan, E.P.; Irizarry, J.; Haymaker, J. BIM and GIS Integration and Interoperability Based on Semantic Web Technology. J. Comput. Civ. Eng. 2016, 30. [Google Scholar] [CrossRef]
- De Farias, T.M.; Roxin, A.-M.; Nicolle, C. Semantic web technologies for implementing cost-effective and interoperable building information modeling. In Proceedings of the 14th International Conference on Informatics in Economy (IE 2015): Education, Research and Business Technologies; Boja, C., Doinea, M., Ciurea, C., Pocatilu, P., Batagan, L., Velicanu, A., Popescu, M.E., Manafi, I., Zamfiroiu, A., Zurini, M., Eds.; Bucharest University Economic Studies-ASE: Bucharest, Romania, 2015; pp. 322–328. [Google Scholar]
- Mignard, C.; Gesquiere, G.; Nicolle, C. Interoperability between GIS and BIM a Semantic-based Multi-representation Approach. In KMIS 2011: Proceedings of the International Conference on Knowledge Management and Information Sharing; Filipe, J., Liu, K., Eds.; INSTICC—Institute for Systems and Technologies of Information, Control and Communication: Setubal, Portugal, 2011; pp. 359–362. [Google Scholar]
- Hwang, J.-R.; Hong, C.-H.; Choi, H.-S. Implementation of Prototype for Interoperability between BIM and GIS. In Proceedings of the 2013 IEEE Seventh International Conference on Research Challenges in Information Science (RCIS), Paris, France, 29–31 May 2013; IEEE: New York, NY, USA, 2013. [Google Scholar]
- Hor, A.-H.; Jadidi, A.; Sohn, G. BIM-GIS integrated geospatial information model using semantic web and RDF graphs. In XXIII ISPRS CONGRESS, COMMISSION IV; Halounova, L., Li, S., Šafář, V., Tomková, M., Rapant, P., Brázdil, K., Shi, W., Anton, F., Liu, Y., Stein, A., Eds.; Copernicus Gesellschaft MBH: Gottingen, Germany, 2016; Volume 3, pp. 73–79. [Google Scholar]
- Geiger, A.; Benner, J.; Haefele, K.H. Generalization of 3D IFC Building Models. In 3D Geoinformation Science, 3D Geoinfo 2014; Breunig, M., Al-Doori, M., Butwilowski, E., Kuper, P.V., Benner, J., Haefele, K.H., Eds.; Springer: Berlin, Germany, 2015; pp. 9–35. [Google Scholar]
- Ryu, J.; Choo, S. A development direction of a new archi-urban integration model for utilizing spatial information. In Proceedings of the 20th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2015): Emerging Experiences in the Past, Present and Future of Digital Architecture; Ikeda, Y., Herr, C.M., Holzer, D., Kaijima, S., Kim, M.J., Schnabel, M.A., Eds.; CAADRIA—Association for Computer-Aided Architectural Design Research in Asia: Hong Kong, China, 2015; pp. 795–805. [Google Scholar]
- Musliman, I.A.; Abdul-Rahman, A.; Coors, V. Incorporating 3D Spatial Operator with Building Information Models in Construction Management Using Geo-DBMS. In 5th International Conference on 3D Geoinformation; Kolbe, T., König, G., Nagel, C., Eds.; Copernicus Gesellschaft MBH: Gottingen, Germany, 2010; pp. 147–154. [Google Scholar]
- Borrmann, A. From GIS to BIM and back again—A spatial query language for 3D building models. In 5th International Conference on 3D Geoinformation; Kolbe, T., König, G., Nagel, C., Eds.; Copernicus Gesellschaft MBH: Gottingen, Germany, 2010; pp. 19–26. [Google Scholar]
- Isikdag, U.; Zlatanova, S.; Underwood, J. An opportunity analysis on the future role of BIMs in urban data management. In Urban and Regional Data Management; Zlatanova, S., Ledoux, H., Fendel, E., Rumor, M., Eds.; CRC Press—Taylor & Francis Group: Boca Raton, FL, USA, 2012; pp. 25–36. [Google Scholar]
- Zlatanova, S.; Stoterand, J.; Isikdag, U. Standards for Exchange and Storage of 3D Information: Challenges and Opportunities for Emergency Response. In 4th International Conference on Cartography and GIS, Vol. 2; Bandrova, T., Konecny, M., Zhelezov, G., Eds.; Bulgarian Cartographic Association: Sofia, Bulgaria, 2012; pp. 17–28. [Google Scholar]
- Sergi, D.M.; Li, J. Applications of GIS-Enhanced Networks of Engineering Information. In Advances in Computational Modeling and Simulation, Pts 1 and 2; Ran, G., Yun, Z., Jianming, Z., Yang, Y., Ze, L., Tao, G., Eds.; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2014; Volume 444–445, pp. 1672–1679. [Google Scholar]
- Ryzynski, G.; Nalecz, T. Engineering-Geological Data Model—The First Step to Build National Polish Standard for Multilevel Information Management. In World Multidisciplinary Earth Sciences Symposium (WMESS 2016), Pts 1–4; IOP Publishing Ltd.: England, UK, 2016; Volume 44. [Google Scholar]
- Delgado, F.; Martinez, R.; Puche, J.; Finat, J. Towards a client-oriented integration of construction processes and building GIS systems. Comput. Ind. 2015, 73, 51–68. [Google Scholar] [CrossRef]
- Isikdag, U. BIM and IoT: A Synopsis from GIS Perspective. In ISPRS Joint International Geoinformation Conference 2015; Rahman, A., Isikdag, U., Castro, F.A., Karas, I.R., Eds.; Copernicus Gesellschaft MBH: Gottingen, Germany, 2015; pp. 33–38. [Google Scholar]
- Park, S.-H.; Kim, E. Middleware for Translating Urban GIS Information for Building a Design Society via General BIM Tools. J. Asian Archit. Build. Eng. 2016, 15, 447–454. [Google Scholar] [CrossRef]
- Kunchev, I. Internet GIS for central balkan national park. In 6th International Conference on Cartography and GIS, Vols 1 and 2; Bandrova, T., Konecny, M., Eds.; Bulgarian Cartographic Association: Sofia, Bulgaria, 2016; pp. 758–768. [Google Scholar]
- Cengiz, A.E.; Guney, Y. Comparison of 3D construction visualization methods to provide visual support in GIS environment for the construction projects. In GIS Ostrava 2013–Geoinformatics for City Transformation; Ivan, I., Longley, P., Fritsch, D., Horak, J., Cheshire, J., Inspektor, T., Eds.; VSB—Technical University of Ostrava: Ostrava, Czech Republic, 2013; pp. 25–31. [Google Scholar]
- El Meouche, R.; Rezoug, M.; Hijazi, I. Integrating and managing BIM in GIS, software review. In ISPRS 8th 3D Geoinfo Conference & WG II/2 Workshop; Isikdag, U., Ed.; Copernicus Gesellschaft MBH: Gottingen, Germany, 2013; pp. 31–34. [Google Scholar]
- Jia, G.; Liao, K. 3D Modeling Based on CityEngine. In Advances in Materials, Machinery, Electronics I; Liu, L., Ke, J., Eds.; American Institute of Physics: Melville, NY, USA, 2017; Volume 1820. [Google Scholar]
- Mijic, N.; Sestic, M.; Koljancic, M. CAD-GIS BIM Integration-Case Study of Banja Luka City Center. In Advanced Technologies, Systems, and Applications; Hadzikadic, M., Avdaković, S., Eds.; Springer: Cham, Switzerland, 2017; Volume 3, pp. 267–281. [Google Scholar]
- Isikdag, U.; Underwood, J.; Aouad, G. An investigation into the applicability of building information models in geospatial environment in support of site selection and fire response management processes. Adv. Eng. Inform. 2008, 22, 504–519. [Google Scholar] [CrossRef]
- Lapierre, A.; Cote, P. Using Open Web Services for urban data management: A testbed resulting from an OGC initiative for offering standard CAD/GIS/BIM services. In Urban and Regional Data Management; Coors, V., Rumor, M., Fendel, E., Zlatanova, S., Eds.; Taylor & Francis Ltd.: London, UK, 2008; pp. 381–393. [Google Scholar]
- Chen, L.C.; Wu, C.H.; Shen, T.S.; Chou, C.C. The application of geometric network models and building information models in geospatial environments for fire-fighting simulations. Comput. Environ. Urban Syst. 2014, 45, 1–12. [Google Scholar] [CrossRef]
- Tashakkori, H.; Rajabifard, A.; Kalantari, M. A new 3D indoor/outdoor spatial model for indoor emergency response facilitation. Build. Environ. 2015, 89, 170–182. [Google Scholar] [CrossRef]
- Amirebrahimi, S.; Rajabifard, A.; Mendis, P.; Ngo, T. A framework for a microscale flood damage assessment and visualization for a building using BIM–GIS integration. Int. J. Digit. Earth 2016, 9, 363–386. [Google Scholar] [CrossRef]
- Lyu, H.-M.; Wang, G.-F.; Shen, J.S.; Lu, L.-H.; Wang, G.-Q. Analysis and GIS Mapping of Flooding Hazards on 10 May 2016, Guangzhou, China. Water 2016, 8, 477. [Google Scholar] [CrossRef]
- Amirebrahimi, S.; Rajabifard, A.; Mendis, P.; Ngo, T. A BIM-GIS integration method in support of the assessment and 3D visualisation of flood damage to a building. J. Spat. Sci. 2016, 61, 317–350. [Google Scholar] [CrossRef]
- Ebrahim, M.A.-B.; Mosly, I.; Abed-Elhafez, I.Y. Building Construction Information System Using GIS. Arab. J. Sci. Eng. 2016, 41, 3827–3840. [Google Scholar] [CrossRef]
- Hu, K.; Chen, M.; Duan, S.-X.; Teng, Y.; Peng, Y.-B. Research on Management System of Disaster Prevention and Relief Based on Building Information Modeling. In Proceedings of the 2016 International Conference on Information System and Artificial Intelligence (ISAI 2016), Hong Kong, China, 24–26 June 2016; IEEE: New York, NY, USA, 2016; pp. 232–235. [Google Scholar]
- Ferrari, F.; Sasso, D.F. Three-dimensional integrated survey and BIM/GIS management platform in the case study of House for War Wounded in Fori. In World Heritage and Degradation: Smart Design, Planning and Technologies; Corniello, L., Ed.; Scuola Pitagora Editrice: Napoli, Italy, 2016; pp. 622–630. [Google Scholar]
- Choi, H.-J.; Kwon, M.-J.; Kim, J.-H.; Kim, J.-J. Bim-Based Program Information Management Systems for Urban Renewal Mega Projects Planning. In Proceedings of the First International Conference on Sustainable Urbanization (ICSU 2010); Teng, J., Ed.; Hong Kong Polytechnic University, Faculty of Construction and Environment: Kowloon, Hong Kong, China, 2010; pp. 294–304. [Google Scholar]
- Godager, B. Analysis of the information needs for existing buildings for integration in modern bim-based building information management. In Environmental Engineering, Vols 1–3; Cygas, D., Froehner, K.D., Eds.; Vilnius Gediminas Technical University Press, Technika: Vilnius, Lithuania, 2011; pp. 886–892. [Google Scholar]
- Andrey, V.; Luiza, S. Programming applications of computer aided design and layout of the complex solar panels. In Information Technology Applications in Industry II, Pts 1–4; Yarlagadda, P., Yang, S.F., Lee, K.M., Eds.; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2013; Volume 411–414, pp. 1840–1843. [Google Scholar]
- Bansal, V.K. Application of geographic information systems in construction safety planning. Int. J. Proj. Manag. 2011, 29, 66–77. [Google Scholar] [CrossRef]
- Karan, E.P.; Irizarry, J. Extending BIM interoperability to preconstruction operations using geospatial analyses and semantic web services. Autom. Constr. 2015, 53, 1–12. [Google Scholar] [CrossRef]
- Gocer, O.; Hua, Y.; Gocer, K. Completing the missing link in building design process: Enhancing post-occupancy evaluation method for effective feedback for building performance. Build. Environ. 2015, 89, 14–27. [Google Scholar] [CrossRef]
- Kari, S.; Lellei, L.; Gyulai, A.; Sik, A.; Riedel, M.M. BIM to GIS and GIS to BIM. In Caadence in Architecture: Back to Command; Szoboszlai, M., Ed.; Budapest University of Technology and Economics Faculty of Architecture: Budapest, Hungary, 2016; pp. 67–72. [Google Scholar] [CrossRef]
- Niu, S.; Pan, W.; Zhao, Y. A BIM-GIS Integrated Web-based Visualization System for Low Energy Building Design. In 9th International Symposium on Heating, Ventilation and Air Conditioning (ISHVAC) Joint with the 3rd International Conference on Building Energy and Environment (COBEE); Sun, Y., Pei, J., Eds.; Elsevier Science BV: Amsterdam, The Netherlands, 2015; Volume 121, pp. 2184–2192. [Google Scholar]
- Iadanza, E.; Turillazzi, B.; Terzaghi, F.; Marzi, L.; Giuntini, A.; Sebastian, R. The STREAMER European Project. Case Study: Careggi Hospital in Florence. In 6th European Conference of the International Federation for Medical and Biological Engineering; Lackovic, I., Vasic, D., Eds.; Springer: Berlin, Germany, 2015; Volume 45, pp. 649–652. [Google Scholar]
- Tan, Y.; Song, Y.; Liu, X.; Wang, X.; Cheng, J.C.P. A BIM-based framework for lift planning in topsides disassembly of offshore oil and gas platforms. Autom. Constr. 2017, 79, 19–30. [Google Scholar] [CrossRef]
- Isikdag, U.; Zlatanova, S.; Underwood, J. A BIM-Oriented Model for supporting indoor navigation requirements. Comput. Environ. Urban Syst. 2013, 41, 112–123. [Google Scholar] [CrossRef]
- Bianco, I.; Del Giudice, M.; Zerbinatti, M. A database for the architectural heritage recovery between Italy and Switzerland. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2013, 40, 103–108. [Google Scholar] [CrossRef]
- Mezzino, D. The digitalization of Cultural Heritage’s tangible and intangible dimensions. In Best Practices in Heritage Conservation and Management: From the World to Pompeii; Piscitelli, M., Ed.; Scuola Pitagora Editrice: Napoli, Italy, 2014; pp. 115–122. [Google Scholar]
- Baik, A.; Yaagoubi, R.; Boehm, J. Integration of jeddah historical bim and 3D GIS for documentation and restoration of historical monument. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2015, 40, 29–34. [Google Scholar] [CrossRef]
- He, J.; Liu, J.; Xu, S.; Wu, C.; Zhang, J. A GIS-based cultural heritage study framework on continuous scales: A case study on 19th century military industrial heritage. In 25th International CIPA Symposium 2015; Yen, Y., Cheng, H.M., Eds.; Copernicus Gesellschaft MBH: Gottingen, Germany, 2015; Volume 45, pp. 215–222. [Google Scholar]
- Wang, T.-K.; Zhang, Q.; Chong, H.-Y.; Wang, X. Integrated supplier selection framework in a resilient construction supply chain: An approach via analytic hierarchy process (AHP) and grey relational analysis (GRA). Sustainability 2017, 9, 289. [Google Scholar] [CrossRef]
- Forsythe, P.J. In pursuit of value on large public projects using “spatially related value-metrics” and “virtually integrated precinct information modeling”. In Selected Papers from the 27th IPMA (International Project Management Association); Radujkovic, M., Vukomanović, M., Wagner, R., Eds.; Elsevier Science BV: Amsterdam, The Netherlands, 2014; Volume 119, pp. 124–133. [Google Scholar]
- Doellner, J.; Hagedorn, B. Integrating urban GIS, CAD, and BIM data by service-based virtual 3D city models. In Urban and Regional Data Management; Coors, V., Rumor, M., Fendel, E., Zlatanova, S., Eds.; Taylor & Francis Ltd.: London, UK, 2008; pp. 157–170. [Google Scholar]
- Rua, H.; Falcao, A.P.; Roxo, A.F. Digital Models—Proposal for the Interactive Representation of Urban Centres The downtown Lisbon City Engine model. In Ecaade 2013: Computation and Performance, Vol 1; Stouffs, R., Sariyildiz, S., Eds.; Ecaade-Education and Research Computer Aided Architectural Design Europe: Brussels, Belgium, 2013; pp. 265–273. [Google Scholar]
- Stojanovski, T. City information modeling (CIM) and urbanism: Blocks, connections, territories, people and situations. In Symposium on Simulation for Architecture and Urban Design (Simaud 2013)—2013 Spring Simulation Multi-Conference (Springsim’ 13); O’Brien, L., Gunay, B., Eds.; Society for Modeling and Simulation International—SCS: San Diego, CA, USA, 2013; Volume 45, pp. 86–93. [Google Scholar]
- Hijazi, I.; Ehlers, M.; Zlatanova, S. BIM for geo-analysis (BIM4GEOA): Set up of 3D information system with open source software and open specification (OS). In 5th International Conference on 3D Geoinformation; Kolbe, T., König, G., Nagel, C., Eds.; Copernicus Gesellschaft MBH: Gottingen, Germany, 2010; Volume 38–4, pp. 45–49. [Google Scholar]
- Chambelland, J.-C.; Gesquiere, G. Complex Virtual Urban Environment Modeling from CityGML Data and OGC web services: Application to the SIMFOR Project. In Three-Dimensional Image Processing (3DIP) and Applications II; Baskurt, A., Sitnik, R., Eds.; SPIE—International Society for Optical Engineering: Bellingham, WA, USA, 2012; Volume 8290. [Google Scholar]
- Wang, J.; Hou, L.; Chong, H.-Y.; Liu, X.; Wang, X.; Guo, J. A cooperative system of GIS and BIM for traffic planning: A high-rise building case study. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Australasian Joint Research Centre for Building Information Modelling, Curtin University: Perth, Australia, 2014; Volume 8683, pp. 143–150. [Google Scholar]
- Deng, Y.; Cheng, J.C.P.; Anumba, C. A framework for 3D traffic noise mapping using data from BIM and GIS integration. Struct. Infrastruct. Eng. 2016, 12, 1267–1280. [Google Scholar] [CrossRef]
- Kim, J.I.; Koo, B.; Suh, S.; Suh, W. Integration of BIM and GIS for formal representation of walkability for safe routes to school programs. KSCE J. Civ. Eng. 2016, 20, 1669–1675. [Google Scholar] [CrossRef]
- Ronzino, A.; Osello, A.; Patti, E.; Bottaccioli, L.; Danna, C.; Lingua, A.; Acquaviva, A.; Macii, E.; Grosso, M.; Messina, G.; et al. The energy efficiency management at urban scale by means of integrated modelling. In Sustainability in Energy and Buildings: Proceedings of the 7th International Conference SEB-15; Howlett, R., Ed.; Elsevier Science BV: Amsterdam, The Netherlands, 2015; Volume 83, pp. 258–268. [Google Scholar]
- Redmond, A.; Fies, B.; Zarli, A. Developing an integrated cloud platform for enabling ‘holistic energy management’ in urban areas. In Ework and Ebusiness in Architecture, Engineering and Construction 2014; Christodoulou, S., Scherer, R., Eds.; CRC Press—Taylor & Francis Group: Boca Raton, FL, USA, 2015; pp. 409–416. [Google Scholar]
- De Hoogh, S.; Di Giulio, R.; Quentin, C.; Turillazzi, B.; Sebastian, R. Hospital campus design related with EeB challenges. In Ework and Ebusiness in Architecture, Engineering and Construction 2014; Christodoulou, S., Scherer, R., Eds.; CRC Press—Taylor & Francis Group: Boca Raton, FL, USA, 2015; pp. 907–913. [Google Scholar]
- Kim, D.-H.; Ahn, B.-J.; Kim, J.-H.; Kim, J.-J. The Strategic Approach Using SWOT Analysis to Develop an Intelligent Program Management Information System(iPMIS) for Urban Renewal Projects. In ICCIT: 2009 Fourth International Conference on Computer Sciences and Convergence Information Technology, Vols 1 And 2; Sohn, S., Kwack, K.D., Um, K., Lee, G.Y., Ko, F., Eds.; IEEE: New York, NY, USA, 2009; pp. 320–324. [Google Scholar]
- Monobe, K.; Kubota, S. A proposal of 3D product data model and its application system for civil infrastructure. In Proceedings of the First International Conference on Sustainable Urbanization (ICSU 2010); Teng, J., Ed.; Hong Kong Polytechnic University, Faculty of Construction and Environment: Kowloon, Hong Kong, China, 2010; pp. 208–212. [Google Scholar]
- Gil, J.; Beirao, J.; Montenegro, N.; Duarte, J. Assessing Computational Tools for Urban Design Towards a “city information model”. In Ecaade 2010: Future Cities; Schmitt, G., Hovestad, L., Van Gool, L., Bosche, F., Burkhard, R., Coleman, S., Halatsch, J., Hansmeyer, M., Konsorski-Lang, S., Kunze, A., et al., Eds.; Ecaade-Education and Research Computer Aided Architectural Design Europe: Brussels, Belgium, 2010; pp. 361–369. [Google Scholar]
- Bansal, V.K. Use of GIS and Topology in the Identification and Resolution of Space Conflicts. J. Comput. Civ. Eng. 2011, 25, 159–171. [Google Scholar] [CrossRef]
- Elbeltagi, E.; Dawood, M. Integrated visualized time control system for repetitive construction projects. Autom. Constr. 2011, 20, 940–953. [Google Scholar] [CrossRef]
- Fu, Q.; Zhang, L.W.; Xie, M.W.; He, X.D. Development and application of BIM-based highway construction management platform. In Rock Mechanics: Achievements And Ambitions; Cai, M., Ed.; CRC Press—Taylor & Francis Group: Boca Raton, FL, USA, 2012; pp. 875–878. [Google Scholar]
- Porkka, J.; Jung, N.; Paivanen, J.; Javaja, P.; Suwal, S. Role of social media in the development of land use and building projects. In Ework and Ebusiness in Architecture, Engineering and Construction; Christodoulou, S., Scherer, R., Eds.; CRC Press—Taylor & Francis Group: Boca Raton, FL, USA, 2012; pp. 847–854. [Google Scholar]
- Mignard, C.; Nicolle, C. Merging BIM and GIS using ontologies application to urban facility management in ACTIVe3D. Comput. Ind. 2014, 65, 1276–1290. [Google Scholar] [CrossRef]
- Kang, T.W.; Hong, C.H. A study on software architecture for effective BIM/GIS-based facility management data integration. Autom. Constr. 2015, 54, 25–38. [Google Scholar] [CrossRef]
- Liu, Z.; Osniani, M.; Demian, P.; Baldwin, A. A BIM-aided construction waste minimisation framework. Autom. Constr. 2015, 59, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Borrmann, A.; Kolbe, T.H.; Donaubauer, A.; Steuer, H.; Jubierre, J.R.; Flurl, M. Multi-Scale Geometric-Semantic Modeling of Shield Tunnels for GIS and BIM Applications. Comput. Aided Civ. Infrastruct. Eng. 2014, 30, 263–281. [Google Scholar] [CrossRef]
- Del Giudice, M.; Osello, A.; Patti, E. BIM and GIS for district modeling. In Ework and Ebusiness in Architecture, Engineering and Construction 2014; Christodoulou, S., Scherer, R., Eds.; CRC Press—Taylor & Francis Group: Boca Raton, FL, USA, 2015; pp. 851–854. [Google Scholar]
- Gocer, O.; Hua, Y.; Gocer, K. A BIM-GIS integrated pre-retrofit model for building data mapping. Build. Simul. 2016, 9, 513–527. [Google Scholar] [CrossRef]
- Li, S.; Cai, H.; Kamat, V.R. Integrating Natural Language Processing and Spatial Reasoning for Utility Compliance Checking. J. Constr. Eng. Manag. 2016, 142. [Google Scholar] [CrossRef]
- Atazadeh, B.; Rajabifard, A.; Kalantari, M. Assessing performance of three BIM-based views of buildings for communication and management of vertically stratified legal interests. ISPRS Int. J. Geo-Inf. 2017, 6, 198. [Google Scholar] [CrossRef]
- Chang, K.T. Geographic Information System; Wiley Online Library: Hoboken, NJ, USA, 2006. [Google Scholar]
- Eastman, C.M.; Eastman, C.; Teicholz, P.; Sacks, R. BIM Handbook: A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers and Contractors; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Wang, J.; Sun, W.; Shou, W.; Wang, X.; Wu, C.; Chong, H.-Y.; Liu, Y.; Sun, C. Integrating BIM and LiDAR for real-time construction quality control. J. Intell. Robot. Syst. 2015, 79, 417. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, X.; Shou, W.; Wang, X.; Xu, B.; Kim, M.J.; Wu, P. A BIM-based approach for automated tower crane layout planning. Autom. Constr. 2015, 59, 168–178. [Google Scholar] [CrossRef]
- Peng, W.; Pheng, L.S. Lean production, value chain and sustainability in precast concrete factory—A case study in Singapore. Lean Constr. J. 2011, 2010, 92–109. [Google Scholar]
- Wu, P.; Feng, Y. Using lean practices to improve current carbon labelling schemes for construction materials—A general framework. J. Green Build. 2012, 7, 173–191. [Google Scholar] [CrossRef]
- Peng, W.; Pheng, L.S. Lean and green: Emerging issues in the construction industry—A case study. In Proceedings of the EPPM, Singapore, 20–21 September 2011; pp. 85–96. [Google Scholar]
- Peng, W. Reducing carbon emissions in precast concrete production through the lean production philosophy. In Proceedings of the 5th International Conference on Responsive Manufacturing—Green Manufacturing (ICRM 2010), Ningbo, China, 11–13 January 2010. [Google Scholar]
- Wu, P.; Xia, B.; Wang, X. The contribution of ISO 14067 to the evolution of global greenhouse gas standards—A review. Renew. Sustain. Energy Rev. 2015, 47, 142–150. [Google Scholar] [CrossRef]
- Wu, P.; Mao, C.; Wang, J.; Song, Y.; Wang, X. A decade review of the credits obtained by LEED v2. 2 certified green building projects. Build. Environ. 2016, 102, 167–178. [Google Scholar] [CrossRef]
- Wu, P.; Feng, Y.; Pienaar, J.; Xia, B. A review of benchmarking in carbon labelling schemes for building materials. J. Clean. Prod. 2015, 109, 108–117. [Google Scholar] [CrossRef]
- Wu, P.; Low, S.P.; Xia, B.; Zuo, J. Achieving transparency in carbon labelling for construction materials—Lessons from current assessment standards and carbon labels. Environ. Sci. Policy 2014, 44, 11–25. [Google Scholar] [CrossRef]
- Wu, P.; Song, Y.; Shou, W.; Chi, H.; Chong, H.-Y.; Sutrisna, M. A comprehensive analysis of the credits obtained by LEED 2009 certified green buildings. Renew. Sustain. Energy Rev. 2017, 68, 370–379. [Google Scholar] [CrossRef]
- Xia, B.; Skitmore, M.; Wu, P.; Chen, Q. How public owners communicate the sustainability requirements of green design-build projects. J. Constr. Eng. Manag. 2014, 140. [Google Scholar] [CrossRef]
- Wang, J.; Wang, X.; Shou, W.; Chong, H.-Y.; Guo, J. Building information modeling-based integration of MEP layout designs and constructability. Autom. Constr. 2016, 61, 134–146. [Google Scholar] [CrossRef]
- Rezaeian, M.; Pocock, L. What do new advances in geographical sciences and technologies offer global family medicine? World Fam. Med. J. Inc. Middle East J. Fam. Med. 2012, 10, 28–32. [Google Scholar]
- Jangra, P.; Thakral, S.; Pachar, S.; Kumar, D. Geographic Information System (GIS). Int. J. Sci. Eng. Comput. Technol. 2013, 3, 152. [Google Scholar]
- Foster, K. Geodesign education takes flight. In Arcnews Fall 2013; ESRI Press: Redlands, CA, USA, 2013. [Google Scholar]
- RF, T. A geographic information system for regional planning. J. Geogr. 1969, 78, 45–48. [Google Scholar]
- Drummond, W.J.; French, S.P. The future of GIS in planning: Converging technologies and diverging interests. J. Am. Plan. Assoc. 2008, 74, 161–174. [Google Scholar] [CrossRef]
- Ezekwem, K.C. Environmental Information Modeling: An Integration of Building Information Modeling and Geographic Information Systems for Lean and Green Developments. Ph.D. Thesis, North Dakota State University, Fargo, ND, USA, 2016. [Google Scholar]
- Griffith, C. Geographic information systems and environmental impact assessment. Environ. Manag. 1980, 4, 21–25. [Google Scholar] [CrossRef]
- Fisher, T. An Overview of the Canada Geographic Information System (CGIS); Lands Directorate Environment Canada: Ottawa, Canada, 1980.
- Johnston, K.; Ver Hoef, J.M.; Krivoruchko, K.; Lucas, N. Using ArcGIS Geostatistical Analyst; Esri: Redlands, CA, USA, 2001; Volume 380. [Google Scholar]
- Wang, J.; Ge, Y.; Li, L.; Meng, B.; Wu, J.; Bo, Y.; Du, S.; Liao, Y.; Hu, M.; Xu, C. Spatiotemporal data analysis in geography. Acta Geogr. Sin. 2014, 69, 1326–1345. [Google Scholar]
- MacEachren, A.M.; Wachowicz, M.; Edsall, R.; Haug, D.; Masters, R. Constructing knowledge from multivariate spatiotemporal data: Integrating geographical visualization with knowledge discovery in database methods. Int. J. Geogr. Inf. Sci. 1999, 13, 311–334. [Google Scholar] [CrossRef]
- Kulldorff, M. A spatial scan statistic. Commun. Stat. Theory Methods 1997, 26, 1481–1496. [Google Scholar] [CrossRef]
- Kohonen, T. The self-organizing map. Proc. IEEE 1990, 78, 1464–1480. [Google Scholar] [CrossRef]
- Cressie, N.; Wikle, C.K. Statistics for Spatio-Temporal Data; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Christakos, G. Modern Spatiotemporal Geostatistics; Oxford University Press: Oxford, UK, 2000; Volume 6. [Google Scholar]
- Haining, R.P. Spatial Data Analysis: Theory and Practice; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Huang, B.; Wu, B.; Barry, M. Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices. Int. J. Geogr. Inf. Sci. 2010, 24, 383–401. [Google Scholar] [CrossRef]
- Wood, S.N. Generalized Additive Models: An Introduction with R; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Li, X.; Liu, X. Case-based cellular automaton for simulating urban development in a large complex region. Acta Geogr. Sin.Chin. Ed. 2007, 62, 1097. [Google Scholar]
- Lin, H.; Gong, J. Exploring virtual geographic environments. Geogr. Inf. Sci. 2001, 7, 1–7. [Google Scholar] [CrossRef]
- Yong, Z.; Jinfeng, W. CGE Model and Its Application in Economics Analysis; China Economic Publishing House: Beijing, Chian, 2008. [Google Scholar]
- Van Orshoven, J.M.; Kint, V.; Wijffels, A.; Estrella, R.; Bencsik, G.; Vanegas, P.; Muys, B.; Cattrysse, D.; Dondeyne, S. Upgrading geographic information systems to spatio-temporal decision support systems. Math. Comput. For. Nat. Resour. Sci. 2011, 3, 36. [Google Scholar]
- Mollalo, A.; Khodabandehloo, E. Zoonotic cutaneous leishmaniasis in northeastern Iran: A GIS-based spatio-temporal multi-criteria decision-making approach. Epidemiol. Infect. 2016, 144, 2217–2229. [Google Scholar] [CrossRef] [PubMed]
- Eastman, C.; Fisher, D.; Lafue, G.; Lividini, J.; Stoker, D.; Yessios, C. An Outline of the Building Description System; Research Report No. 50; Institute of Physical Planning, Carnegie-Mellon University: Pittsburgh, PA, USA, 1974. [Google Scholar]
- Van Nederveen, G.; Tolman, F. Modelling multiple views on buildings. Autom. Constr. 1992, 1, 215–224. [Google Scholar] [CrossRef]
- Autodesk, B. Building Information Modelling; White Paper; Autodesk Inc.: San Rafael, CA, USA, 2002. [Google Scholar]
- Laiserin, J. The BIM Page. The Laiserin Letter, 2003. [Google Scholar]
- Fai, S.; Rafeiro, J. Establishing an appropriate level of detail (LoD) for a building information model (BIM)-West Block, Parliament Hill, Ottawa, Canada. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, 2, 123. [Google Scholar] [CrossRef]
- AIA. Document E202 Building Information Modeling Protocol Exhibit; American Institute of Architects: Washington, DC, USA, 2008. [Google Scholar]
- Bedrick, J. A Level of Development Specification for BIM Processes. AECbytes Viewp. Available online: http://www.aecbytes.com/viewpoint/2013/issue_68.html (accessed on 28 September 2017).
- Singh, V.; Gu, N.; Wang, X. A theoretical framework of a BIM-based multi-disciplinary collaboration platform. Autom. Constr. 2011, 20, 134–144. [Google Scholar] [CrossRef]
- Pavan, A.; Daniotti, B.; Re Cecconi, F.; Maltese, S.; Spagnolo, S.L.; Caffi, V.; Chiozzi, M.; Pasini, D. INNOVance: Italian BIM database for construction process management. In Computing in Civil and Building Engineering (2014); ASCE Library: Reston, VA, USA, 2014; pp. 641–648. [Google Scholar]
- Gilligan, B.; Kunz, J. VDC Use in 2007: Significant Value, Dramatic Growth, and Apparent Business Opportunity; TR171; Stanford University: Stanford, CA, USA, 2007. [Google Scholar]
- Khanzode, A.; Fischer, M.; Reed, D. Benefits and lessons learned of implementing building virtual design and construction (VDC) technologies for coordination of mechanical, electrical, and plumbing (MEP) systems on a large healthcare project. J. Inf. Technol. Constr. 2008, 13, 324–342. [Google Scholar]
- Smith, P. BIM & the 5D project cost manager. Procedia-Soc. Behav. Sci. 2014, 119, 475–484. [Google Scholar]
- Ikerd, W. Who’s Using BIM, Trends and Drivers Affecting Structural Engineers. Structural Engineering and Design. April 2010. Available online: https://csengineermag.com/article/who-s-using-bim/ (accessed on 1 September 2017).
- Ding, L.; Zhou, Y.; Akinci, B. Building Information Modeling (BIM) application framework: The process of expanding from 3D to computable nD. Autom. Constr. 2014, 46, 82–93. [Google Scholar] [CrossRef]
- Aouad, G.; Lee, A.; Wu, S. From 3D to nD modelling. J. Inf. Technol. Constr. 2005, 10, 15–16. [Google Scholar]
- Lee, A.; Wu, S.; Marshall-Ponting, A.; Aouad, G.; Cooper, R.; Tah, J.; Abbott, C.; Barrett, P. nD Modelling Road Map: A Vision for nD-Enabled Construction; University of Salford: Salford, UK, 2005. [Google Scholar]
- Succar, B. Building information modelling framework: A research and delivery foundation for industry stakeholders. Autom. Constr. 2009, 18, 357–375. [Google Scholar] [CrossRef]
- Goodchild, M.F. Twenty years of progress: GIScience in 2010. J. Spat. Inf. Sci. 2010, 2010, 3–20. [Google Scholar] [CrossRef]
- Lella, A.; Lipsman, A.; Martin, B. The 2015 US Mobile App Report. ComScore. E-Kirja. Saatavissa Yritykseltä. 2015. Available online: https://www.comscore.com/Insights/Presentations-and-Whitepapers/2015/The-2015-US-Mobile-App-Report (accessed on 1 August 2017).
- Chai, J.; Wu, C.; Zhao, C.; Chi, H.-L.; Wang, X.; Ling, B.W.-K.; Teo, K.L. Reference tag supported RFID tracking using robust support vector regression and Kalman filter. Adv. Eng. Inform. 2017, 32, 1–10. [Google Scholar] [CrossRef]
- Bryde, D.; Broquetas, M.; Volm, J.M. The project benefits of building information modelling (BIM). Int. J. Proj. Manag. 2013, 31, 971–980. [Google Scholar] [CrossRef]
- Chen, L.; Luo, H. A BIM-based construction quality management model and its applications. Autom. Constr. 2014, 46, 64–73. [Google Scholar] [CrossRef]
- Olatunji, O.A. Views on building information modelling, procurement and contract management. Proc. Inst. Civ. Eng. Manag. Procure. Law 2014, 167, 117–126. [Google Scholar] [CrossRef]
- He, B.-Z.; Zhang, Z.-Q. The Development for Contract Management System of BIM Technology in China. J. Eng. Manag. 2016, 1, 008. [Google Scholar]
- Wetzel, E.M.; Thabet, W.Y. The use of a BIM-based framework to support safe facility management processes. Autom. Constr. 2015, 60, 12–24. [Google Scholar] [CrossRef]
- Riaz, Z.; Arslan, M.; Kiani, A.K.; Azhar, S. CoSMoS: A BIM and wireless sensor based integrated solution for worker safety in confined spaces. Autom. Constr. 2014, 45, 96–106. [Google Scholar] [CrossRef]
- Zhang, S.; Teizer, J.; Lee, J.-K.; Eastman, C.M.; Venugopal, M. Building information modeling (BIM) and safety: Automatic safety checking of construction models and schedules. Autom. Constr. 2013, 29, 183–195. [Google Scholar] [CrossRef]
- Riaz, Z.; Edwards, D.J.; Parn, E.A.; Shen, C.; Pena-Mora, F. BIM and sensor-based data management system for construction safety monitoring. J. Eng. Des. Technol. 2017. [Google Scholar] [CrossRef]
- Aibinu, A.; Papadonikolaki, E. A comparative case study of coordination mechanisms in Design and Build BIM-based projects in the Netherlands. In eWork and eBusiness in Architecture, Engineering and Construction, Proceedings of the 11th European Conference on Product and Process Modelling (ECPPM 2016), Limassol, Cyprus, 7–9 September 2016; CRC Press: Boca Raton, FL, USA, 2017; p. 435. [Google Scholar]
- Tommelein, I.D.; Gholami, S. Root causes of clashes in building information models. In Proceedings of the 20th Annual Conference of the International Group for Lean Construction, San Diego, CA, USA, 18–20 July 2012. [Google Scholar]
- Karimi, H.A. Advanced Location-Based Technologies and Services; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Ge, Y.; Song, Y.; Wang, J.; Liu, W.; Ren, Z.; Peng, J.; Lu, B. Geographically weighted regression-based determinants of malaria incidences in northern China. Trans. GIS 2016, 21, 934–953. [Google Scholar] [CrossRef]
- Zhou, F.; Guo, H.-C.; Ho, Y.-S.; Wu, C.-Z. Scientometric analysis of geostatistics using multivariate methods. Scientometrics 2007, 73, 265–279. [Google Scholar] [CrossRef]
- Nature Earth. Available online: http://www.naturalearthdata.com/ (accessed on 1 August 2017).
- ArcGIS Hub. Available online: https://hub.arcgis.com/ (accessed on 1 August 2017).
- Center for International Earth Science Information Network (CIESIN)—Columbia University; Information Technology Outreach Services (ITOS)—University of Georgia. Global Roads Open Access Data Set, Version 1 (gROADSv1); NASA Socioeconomic Data and Applications Center (SEDAC): Palisades, NY, USA, 2013. [Google Scholar]
- Kassebaum, N.J.; Barber, R.M.; Bhutta, Z.A.; Dandona, L.; Gething, P.W.; Hay, S.I.; Kinfu, Y.; Larson, H.J.; Liang, X.; Lim, S.S. Global, regional, and national levels of maternal mortality, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1775. [Google Scholar] [CrossRef]
- Cai, X.; Wu, Z.; Cheng, J. Using kernel density estimation to assess the spatial pattern of road density and its impact on landscape fragmentation. Int. J. Geogr. Inf. Sci. 2013, 27, 222–230. [Google Scholar] [CrossRef]
- Laurance, W.F.; Clements, G.R.; Sloan, S.; O’connell, C.S.; Mueller, N.D.; Goosem, M.; Venter, O.; Edwards, D.P.; Phalan, B.; Balmford, A. A global strategy for road building. Nature 2014, 513, 229–232. [Google Scholar] [CrossRef] [PubMed]
- Tachikawa, T.; Hato, M.; Kaku, M.; Iwasaki, A. Characteristics of ASTER GDEM version 2. In Proceedings of the 2011 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Vancouver, BC, Canada, 24–29 July 2011; pp. 3657–3660. [Google Scholar]
- Moss, R.H.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.R.; Rose, S.K.; Van Vuuren, D.P.; Carter, T.R.; Emori, S.; Kainuma, M.; Kram, T. The next generation of scenarios for climate change research and assessment. Nature 2010, 463, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Moss, R.; Babiker, W.; Brinkman, S.; Calvo, E.; Carter, T.; Edmonds, J.; Elgizouli, I.; Emori, S.; Erda, L.; Hibbard, K. Towards New Scenarios for the Analysis of Emissions: Climate Change, Impacts and Response Strategies; Intergovernmental Panel on Climate Change Secretariat (IPCC): Geneva, Switzerland, 2008. [Google Scholar]
- Nakicenovic, N.; Alcamo, J.; Grubler, A.; Riahi, K.; Roehrl, R.; Rogner, H.-H.; Victor, N. Special Report on Emissions Scenarios (SRES), A Special Report of Working Group III of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Rexer, M.; Hirt, C. Comparison of free high resolution digital elevation data sets (ASTER GDEM2, SRTM v2. 1/v4. 1) and validation against accurate heights from the Australian National Gravity Database. Aust. J. Earth Sci. 2014, 61, 213–226. [Google Scholar] [CrossRef]
- Song, Y.; Ge, Y.; Wang, J.; Ren, Z.; Liao, Y.; Peng, J. Spatial distribution estimation of malaria in northern China and its scenarios in 2020, 2030, 2040 and 2050. Malar. J. 2016, 15, 345. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Bryan, B.A. Finding pathways to national-scale land-sector sustainability. Nature 2017, 544, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Ge, Y.; Liang, Y.; Wang, J.; Zhao, Q.; Liu, S. Upscaling sensible heat fluxes with area-to-area regression kriging. IEEE Geosci. Remote Sens. Lett. 2015, 12, 656–660. [Google Scholar]
- Ge, Y.; Wang, J.; Heuvelink, G.; Jin, R.; Li, X.; Wang, J. Sampling design optimization of a wireless sensor network for monitoring ecohydrological processes in the Babao River basin, China. Int. J. Geogr. Inf. Sci. 2015, 29, 92–110. [Google Scholar] [CrossRef]
- Kang, J.; Li, X.; Jin, R.; Ge, Y.; Wang, J.; Wang, J. Hybrid optimal design of the eco-hydrological wireless sensor network in the middle reach of the Heihe River Basin, China. Sensors 2014, 14, 19095–19114. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ge, Y.; Song, Y.; Li, X. A geostatistical approach to upscale soil moisture with unequal precision observations. IEEE Geosci. Remote Sens. Lett. 2014, 11, 2125–2129. [Google Scholar] [CrossRef]
- Ministry of Environmental Protection of the People’s Republic of China. Availabe online: http://datacenter.mep.gov.cn/index (accessed on 1 August 2017).
- Environmental Protection Agency, United States. Availabe online: https://aqsdr1.epa.gov/aqsweb/aqstmp/airdata/download_files.html (accessed on 1 August 2017).
- Song, Y.-Z.; Yang, H.-L.; Peng, J.-H.; Song, Y.-R.; Sun, Q.; Li, Y. Estimating PM2. 5 Concentrations in Xi’an City Using a Generalized Additive Model with Multi-Source Monitoring Data. PLoS ONE 2015, 10, e0142149. [Google Scholar] [CrossRef] [PubMed]
- Zou, B.; Luo, Y.; Wan, N.; Zheng, Z.; Sternberg, T.; Liao, Y. Performance comparison of LUR and OK in PM2. 5 concentration mapping: A multidimensional perspective. Sci. Rep. 2015, 5, 8698. [Google Scholar] [CrossRef] [PubMed]
- Australian Bureau of Statitics ABS. Census of Population and Housing: Nature and Content, Australia, 2016. Available online: http://www.abs.gov.au/AUSSTATS/[email protected]/DetailsPage/2008.02016?OpenDocument (accessed on 1 August 2017).
- Australian Bureau of Statitics ABS. Key Economic Indicators, 2017. Available online: http://www.abs.gov.au/AUSSTATS/[email protected]/mf/1345.0?opendocument (accessed on 1 September 2017).
- Zhang, Q.; He, C.; Liu, Z. Studying urban development and change in the contiguous United States using two scaled measures derived from nighttime lights data and population census. GISci. Remote Sens. 2014, 51, 63–82. [Google Scholar] [CrossRef]
- Ebenstein, A.; Zhao, Y. Tracking rural-to-urban migration in China: Lessons from the 2005 inter-census population survey. Popul. Stud. 2015, 69, 337–353. [Google Scholar] [CrossRef] [PubMed]
- Noulas, A.; Scellato, S.; Mascolo, C.; Pontil, M. An empirical study of geographic user activity patterns in foursquare. ICwSM 2011, 11, 70–573. [Google Scholar]
- Andrienko, G.; Andrienko, N.; Bosch, H.; Ertl, T.; Fuchs, G.; Jankowski, P.; Thom, D. Thematic patterns in georeferenced tweets through space-time visual analytics. Comput. Sci. Eng. 2013, 15, 72–82. [Google Scholar] [CrossRef]
- Wu, W.; Wang, J.; Dai, T. The geography of cultural ties and human mobility: Big data in urban contexts. Ann. Am. Assoc. Geogr. 2016, 106, 612–630. [Google Scholar] [CrossRef]
- Feldt, T.; Schlecht, E. Analysis of GPS trajectories to assess spatio-temporal differences in grazing patterns and land use preferences of domestic livestock in southwestern Madagascar. Pastoralism 2016, 6, 5. [Google Scholar] [CrossRef]
- Siła-Nowicka, K.; Vandrol, J.; Oshan, T.; Long, J.A.; Demšar, U.; Fotheringham, A.S. Analysis of human mobility patterns from GPS trajectories and contextual information. Int. J. Geogr. Inf. Sci. 2016, 30, 881–906. [Google Scholar] [CrossRef]
- Wu, T.; Ge, Y.; Wang, J.; Stein, A.; Song, Y.; Du, Y.; Ma, J. A WTLS-based method for remote sensing imagery registration. IEEE Trans. Geosci. Remote Sens. 2015, 53, 102–116. [Google Scholar]
- Ge, Y.; Wei, Y.; Song, Y.; Wu, T.; Stein, A.; Guo, X.; Zhou, C.; Ma, J. A WTLS-based rational function model for orthorectification of remote-sensing imagery. Int. J. Remote Sens. 2017, 38, 7281–7301. [Google Scholar] [CrossRef]
- Barnolas, M.; Atencia, A.; Llasat, M.; Rigo, T. Characterization of a Mediterranean flash flood event using rain gauges, radar, GIS and lightning data. Adv. Geosci. 2008, 17, 35–41. [Google Scholar] [CrossRef]
- Abdulwahid, W.M.; Pradhan, B. Landslide vulnerability and risk assessment for multi-hazard scenarios using airborne laser scanning data (LiDAR). Landslides 2017, 14, 1057–1076. [Google Scholar] [CrossRef]
- Palenzuela, J.; Marsella, M.; Nardinocchi, C.; Pérez, J.; Fernández, T.; Chacón, J.; Irigaray, C. Landslide detection and inventory by integrating LiDAR data in a GIS environment. Landslides 2015, 12, 1035–1050. [Google Scholar] [CrossRef]
- Jebur, M.N.; Pradhan, B.; Tehrany, M.S. Optimization of landslide conditioning factors using very high-resolution airborne laser scanning (LiDAR) data at catchment scale. Remote Sens. Environ. 2014, 152, 150–165. [Google Scholar] [CrossRef]
- Kıncal, C.; Li, Z.; Drummond, J.; Liu, P.; Hoey, T.; Muller, J.-P. Landslide Susceptibility Mapping Using GIS-based Vector Grid File (VGF) Validating with InSAR Techniques: Three Gorges, Yangtze River (China). AIMS Geosci. 2017, 3, 116–141. [Google Scholar] [CrossRef]
- Yang, H.-L.; Peng, J.-H.; Wang, B.-C.; Song, Y.-Z.; Zhang, D.-X.; Li, L. Ground deformation monitoring of Zhengzhou city from 2012 to 2013 using an improved IPTA. Nat. Hazards 2016, 80, 1–17. [Google Scholar] [CrossRef]
- Chen, B.; Gong, H.; Li, X.; Lei, K.; Duan, G.; Xie, J. Spatial-temporal evolution characterization of land subsidence by multi-temporal InSAR method and GIS technology. Guang Pu Xue Yu Guang Pu Fen Xi 2014, 34, 1017–1025. [Google Scholar] [PubMed]
- Zheng, M.; Fukuyama, K.; Sanga-Ngoie, K. Application of InSAR and GIS techniques to ground subsidence assessment in the Nobi Plain, Central Japan. Sensors 2013, 14, 492–509. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-F.; Gong, H.-L.; Chen, B.-B.; Liu, K.-S.; Gao, M.; Zhou, C.-F. Spatiotemporal evolution of land subsidence around a subway using InSAR time-series and the entropy method. GISci. Remote Sens. 2017, 54, 78–94. [Google Scholar] [CrossRef]
- NASA. Global Space Flight Center MODIS Level 1 and Atmosphere Archive and Distribution System Web (LAADS Web). Available online: http://ladsweb.nascom.nasa.gov (accessed on 1 September 2017).
- The Earth Observation Group (EOG) at the National Oceanic Atmospheric Administration’s National Geophysical Data Center (NOAA/NGDC). Available online: https://ngdc.noaa.gov/eog/index.html (accessed on 1 September 2017).
- Marzolff, I.; Poesen, J. The potential of 3D gully monitoring with GIS using high-resolution aerial photography and a digital photogrammetry system. Geomorphology 2009, 111, 48–60. [Google Scholar] [CrossRef]
- Miyasaka, T.; Okuro, T.; Zhao, X.; Takeuchi, K. Classification of land use on sand-dune topography by object-based analysis, digital photogrammetry, and GIS analysis in the Horqin Sandy Land, China. Environments 2016, 3, 17. [Google Scholar] [CrossRef]
- Gruen, A.; Huang, X.; Qin, R.; Du, T.; Fang, W.; Boavida, J.; Oliveira, A. Joint Processing of UAV Imagery and Terrestrial MMS Data for very high Resolution 3D City Modeling. GIS. Science 2014, 27, 10–20. [Google Scholar]
- Hong, S.-E. Boundary Line Extraction of Forest Land for Cadastral Resurvey Using UAV and GIS. Indian J. Sci. Technol. 2016, 9. [Google Scholar] [CrossRef]
- Lu, Q.; Won, J.; Cheng, J.C. A financial decision making framework for construction projects based on 5D Building Information Modeling (BIM). Int. J. Proj. Manag. 2016, 34, 3–21. [Google Scholar] [CrossRef]
- Cheng, J.C.; Lu, Q.; Deng, Y. Analytical review and evaluation of civil information modeling. Autom. Constr. 2016, 67, 31–47. [Google Scholar] [CrossRef]
- Lin, Y.-H.; Liu, Y.-S.; Gao, G.; Han, X.-G.; Lai, C.-Y.; Gu, M. The IFC-based path planning for 3D indoor spaces. Adv. Eng. Inform. 2013, 27, 189–205. [Google Scholar] [CrossRef]
- Cheng, J.C.; Tan, Y.; Song, Y.; Liu, X.; Wang, X. A semi-automated approach to generate 4D/5D BIM models for evaluating different offshore oil and gas platform decommissioning options. Vis. Eng. 2017, 5, 12. [Google Scholar] [CrossRef]
- Ham, N.-H.; Min, K.-M.; Kim, J.-H.; Lee, Y.-S.; Kim, J.-J. A study on application of bim (building information modeling) to pre-design in construction project. In Proceedings of the Third International Conference on Convergence and Hybrid Information Technology (ICCIT’08), Busan, Korea, 11–13 November 2008; pp. 42–49. [Google Scholar]
- Cheung, F.K.T.; Rihan, J.; Tah, J.; Duce, D.; Kurul, E. Early stage multi-level cost estimation for schematic BIM models. Autom. Constr. 2012, 27, 67–77. [Google Scholar] [CrossRef]
- Kumar, S.S.; Cheng, J.C.P. A BIM-based automated site layout planning framework for congested construction sites. Autom. Constr. 2015, 59, 24–37. [Google Scholar] [CrossRef]
- Abunemeh, M.; El Meouche, R.; Hijaze, I.; Mebarki, A.; Shahrour, I. Optimal construction site layout based on risk spatial variability. Autom. Constr. 2016, 70, 167–177. [Google Scholar] [CrossRef]
- Zhou, Y.; Ding, L.Y.; Chen, L.J. Application of 4D visualization technology for safety management in metro construction. Autom. Constr. 2013, 34, 25–36. [Google Scholar] [CrossRef]
- Zhang, S.; Sulankivi, K.; Kiviniemi, M.; Romo, I.; Eastman, C.M.; Teizer, J. BIM-based fall hazard identification and prevention in construction safety planning. Saf. Sci. 2015, 72, 31–45. [Google Scholar] [CrossRef]
- Hamidi, B.; Bulbul, T.; Pearce, A.; Thabet, W. Potential application of BIM in cost-benefit analysis of demolition waste management. Proceeedings of the Construction Research Congress 2014, Atlanta, GA, USA, 19–21 May 2014; pp. 279–288. [Google Scholar]
- Cheng, J.C.P.; Ma, L.Y.H. A BIM-based system for demolition and renovation waste estimation and planning. Waste Manag. 2013, 33, 1539–1551. [Google Scholar] [CrossRef] [PubMed]
Research Areas 1 | Number of All Papers | Number of Journal Papers |
---|---|---|
Engineering | 41 | 23 |
Computer Science | 30 | 13 |
Remote Sensing | 24 | 5 |
Construction Building Technology | 23 | 14 |
Physical Geography | 19 | 5 |
Imaging Science Photographic Technology | 13 | |
Architecture | 9 | |
Environmental Sciences Ecology | 8 | 4 |
Geography | 5 | 3 |
Business Economics | 5 | |
Urban Studies | 4 | |
Geology | 4 | |
Science Technology Other Topics | 3 | |
Operations Research Management Science | 3 | 3 |
AEC Industry | Geosciences | |||
---|---|---|---|---|
Source Title | # | Source Title | # | |
Journal 1 | Automation in Construction | 8 | ISPRS International Journal of Geo-Information | 3 |
Journal of Computing in Civil Engineering | 2 | Computers Environment and Urban Systems | 3 | |
Computers in Industry | 2 | |||
Building and Environment | 2 | |||
Advanced Engineering Informatics | 2 | |||
Conference 1 | eWork and eBusiness in Architecture Engineering and Construction | 7 | ISPRS Archives | 13 |
Proceedings of The First International Conference on Sustainable Urbanization ICSU 2010 | 2 | International Conference on 3D Geoinformation | 5 | |
Proceedings and Monographs in Engineering Water and Earth Sciences | 2 | XXIII ISPRS Congress Commission | 3 | |
Procedia Engineering | 2 | Urban and Regional Data Management | 3 | |
Fabbrica Della Conoscenza | 2 | International Conference on Cartography and GIS | 3 | |
Energy Procedia | 2 | International CIPA Symposium | 3 | |
eCAADe | 2 | |||
Applied Mechanics and Materials | 2 |
Application Object | Building | City | ||||
---|---|---|---|---|---|---|
Construction Phase | Planning and Design | Construction | Operation and Maintenance | Demolition | ||
Year | 2008 | Site selection [72]. | Fire response [72]; Web service [73]; Disaster scenarios [73]. | 3D city [99]. | ||
2009 | Climate adaptation [24]. | Urban renewal projects [110]. | ||||
2010 | Urban renewal projects [82]. | Urban facility management [28,102] (e.g., road maintenance [111]); urban design [112]. | ||||
2011 | Construction safety planning [85]; construction space planning [113]. | Visualization of construction time control [114]. | Existing buildings maintenance [83]. | |||
2012 | Highway construction management [115]. | Emergency response [61]. | Urban crisis response [103]; human activity and land use [116]. | |||
2013 | Site selection of solar panels [84]. | Visualization of construction supply chain management (CSCM) [15]. | Indoor navigation [92]; heritage protection [93]. | Urban representation [100,101]. | ||
2014 | Fire simulation and response [74]; heritage protection [94]; large building operation [98]. | Urban facility management [117] (e.g., traffic planning [104]). | ||||
2015 | Building design and preconstruction operations [86,87]; building energy design [89,90]. | Facility management [118]; indoor emergency response [75]; heritage protection [95,96]. | Construction waste processing [119]. | Tunnel modelling [120]; energy assessment and management [107,108,109]; district modelling [121]. | ||
2016 | Building design [88]. | Urban renewal projects [122]. | Flood damage assessment and visualization [76,77,78]; indoor emergency response and route planning [16,17,18]; hazard identification and prevention [79,80,81]; heritage protection [22,23]; ecological assessment [25]. | Traffic noise analysis [105]; walkability evaluation of urban routes [106]; energy assessment and management [19,20,21]; utility compliance checking [123]. | ||
2017 | Lift planning of disassembling offshore oil and gas platform [91]. | Resilient construction supply chain management (CSCM) [97]. | Management of property interests [124]. | Energy assessment and management [10]. |
Research and Application Objectives | Theories and Methods of Spatio-Temporal Data Analysis [149] | Exemplar Models |
---|---|---|
Description of spatio-temporal characteristics. | ||
Exploration of potential factors and spatio-temporal prediction. | Spatio-temporal regression. | |
Modelling and simulation of spatio-temporal process. |
| |
Spatio-temporal decision making. | Spatio-temporal decision-making model. | Spatio-temporal multi-criteria decision making (MCDM) [161,162]. |
Hypothesis | Content |
---|---|
The technology (loose integration) hypothesis | BIM and GIS are independent systems and areas, and they are partially utilized together to address specific problems. |
The science (tight integration) hypothesis | BIM will be developed as building information science for the AEC industry, and then a broader field of geo-information science will cover BIM, GIS and other location-based technologies, services and sciences. |
The data source hypothesis | BIM is considered as a data source in the AEC industry for GIS and spatio-temporal statistical analysis. |
User Requirements of AEC Industry | Benefits of BIM | Benefits of BIM-GIS Integration (the Technology Hypothesis) |
---|---|---|
Quality management |
|
|
Progress and time management |
| Construction works could be simulated spatially and temporally for more accurate progress management and time reduction. |
Cost management | Cost reduction and control are the most common benefit from BIM in construction projects [183]. | Cost is controlled not only seen from the result of construction projects during each stage, but also by the dynamically monitored and analyzed spatio-temporal results. |
Contract management | BIM enhances contract relationships, and optimizes construction procurement and contract management due to the improvement of execution efficiency of contracts [185,186]. | Execution and management of contracts are based on the dynamic and predictive decision making. |
Health, safety and environment (HSE) management |
|
|
Information management | Effective generation, collection, distribution, storage, retrieval, and disposition of component and project information [183]. |
|
Coordination of various sectors | BIM affects project coordination mechanisms in its specific ways and depending on the served purposes, such as a centralized-decentralized structure and a hierarchical-participative decision-making process [191,192]. | Coordination mechanisms are driven by the sense and knowledge sourced from data, information, and their analysis products, which are characterized as spatial and temporal varied, real-time, dynamic, interactive, accurate and practical. |
Data Source | Data Examples | General Formats | Characteristics | Application Examples | |
---|---|---|---|---|---|
Vector products |
| .shp |
|
| |
Raster products |
| .tif/.img/Various formats |
|
| |
Surveying data |
| Table/Various formats |
|
| |
Statistical data | Table |
| |||
Web data | Location-based social media data | Text/Various formats |
|
| |
Global positioning system (GPS) data |
| ASCII/Binary/Text |
|
| |
Active remote sensing (RS) data | Radar | Meteorological radar | Various formats |
|
|
Light detection and ranging (LiDAR) | Point cloud (ground, vehicle, satellite-based, or airborne) | ASCII/LAS/Various formats |
|
| |
Interferometric synthetic aperture radar (InSAR) |
| Various formats |
|
| |
Passive remote sensing (RS) data | Satellite RS images | .tif/.hdf/ASCII/Various formats |
| Vast applications.
| |
Aerial photogrammetry data |
| .tif/Various formats |
| ||
Unmanned Aerial Vehicle (UAV) measurements |
| .jpg/Various formats |
| ||
Building information modelling (BIM) data |
| .ifc/Various formats |
|
|
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Wang, X.; Tan, Y.; Wu, P.; Sutrisna, M.; Cheng, J.C.P.; Hampson, K. Trends and Opportunities of BIM-GIS Integration in the Architecture, Engineering and Construction Industry: A Review from a Spatio-Temporal Statistical Perspective. ISPRS Int. J. Geo-Inf. 2017, 6, 397. https://doi.org/10.3390/ijgi6120397
Song Y, Wang X, Tan Y, Wu P, Sutrisna M, Cheng JCP, Hampson K. Trends and Opportunities of BIM-GIS Integration in the Architecture, Engineering and Construction Industry: A Review from a Spatio-Temporal Statistical Perspective. ISPRS International Journal of Geo-Information. 2017; 6(12):397. https://doi.org/10.3390/ijgi6120397
Chicago/Turabian StyleSong, Yongze, Xiangyu Wang, Yi Tan, Peng Wu, Monty Sutrisna, Jack C. P. Cheng, and Keith Hampson. 2017. "Trends and Opportunities of BIM-GIS Integration in the Architecture, Engineering and Construction Industry: A Review from a Spatio-Temporal Statistical Perspective" ISPRS International Journal of Geo-Information 6, no. 12: 397. https://doi.org/10.3390/ijgi6120397
APA StyleSong, Y., Wang, X., Tan, Y., Wu, P., Sutrisna, M., Cheng, J. C. P., & Hampson, K. (2017). Trends and Opportunities of BIM-GIS Integration in the Architecture, Engineering and Construction Industry: A Review from a Spatio-Temporal Statistical Perspective. ISPRS International Journal of Geo-Information, 6(12), 397. https://doi.org/10.3390/ijgi6120397