Saddle Position-Based Method for Extraction of Depressions in Fengcong Areas by Using Digital Elevation Models
Abstract
:1. Introduction
2. Case Area and Method
2.1. Case Area
2.2. Methods
2.2.1. Extraction Saddles from Intersection of Ridge and Valley Lines
2.2.2. Fengcong Depression Extraction Analysis
3. Results
3.1. Extracted Saddles
3.2. Fengcong Depressions
4. Discussion
4.1. Comparison with Hydrologic Analysis Methods
4.2. Implication of Landform Development
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zhu, X. Discussions on fenglin karst in China. Carsologica Sin. 2009, 28, 155–168. [Google Scholar]
- Zhu, D. Evolution of peak cluster-depression in Guilin area and morphometric measurement. Carsologica Sin. 1982, 2, 127–134. [Google Scholar]
- Yuan, D. About Fenglin karst. Geol. Guangxi. 1984, 1, 79–84. [Google Scholar]
- Sweeting, M.M. Karst in China: Its Geomorphology and Environment; Springer: Berlin, Germany, 1995. [Google Scholar]
- Tang, T.; Day, M.J. Field survey and analysis of hillslopes on tower karst in Guilin, southern China. Earth Surface Process. Landf. 2000, 25, 1221–1235. [Google Scholar] [CrossRef]
- Zhou, C. A Dictionary of Geomorphology; China WaterPower Press: Beijing, China, 2006. [Google Scholar]
- Waltham, T. Fengcong, fenglin, cone karst and tower karst. Cave Karst Sci. 2008, 35, 77–88. [Google Scholar]
- Day, M. The morphology and hydrology of some Jamaican karst depressions. Earth Surface Process. Landf. 1976, 1, 111–129. [Google Scholar] [CrossRef]
- Gutiérrez, F.; Cooper, A.H.; Johnson, K.S. Identification, prediction, and mitigation of sinkhole hazards in evaporite karst areas. Environ. Geol. 2008, 53, 1007–1022. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez, F.; Galve, J.P.; Lucha, P.; Castañeda, C.; Bonachea, J.; Guerrero, J. Integrating geomorphological mapping, trenching, InSAR and GPR for the identification and characterization of sinkholes: A review and application in the mantled evaporite karst of the Ebro Valley (NE Spain). Geomorphology. 2011, 134, 144–156. [Google Scholar] [CrossRef] [Green Version]
- Tüfekçi, K.; Şener, M. Evaluating of karstification in the Menteşe Region of southwest Turkey with GIS and remote sensing applications. Zeitschrift Für Geomorphologie 2007, 51, 45–61. [Google Scholar] [CrossRef]
- Obu, J.; Podobnikar, T. Algorithm for karst depression recognition using digital terrain models. Geodetski Vestnik. 2013, 57, 260–270. [Google Scholar] [CrossRef]
- Tang, G. Progress of DEM and digital terrain analysis in China. Acta Geogr. Sin. 2014, 69, 1305–1325. [Google Scholar]
- Kobal, M.; Bertoncelj, I.; Pirotti, F.; Kutnar, L. Lidar Processing for Defining Sinkhole Characteristics under Dense Forest Cover: A Case Study in the Dinaric Mountains. ISPRS-International Archives of the Photogrammetry. Remote Sens. Spat. Inf. Sci. 2014, XL-7, 113–118. [Google Scholar]
- Narayana, A.C.; Yadava, M.G.; Dar, F.A.; Ramesh, R. The Spectacular Belum and Borra Caves of Eastern India. In Landscapes and Landforms of India; Springer: Dordrecht, The Netherlands, 2014. [Google Scholar]
- Liang, F.; Xu, B. Discrimination of tower-, cockpit-, and non-karst landforms in Guilin, southern china, based on morphometric characteristics. Geomorphology 2014, 204, 42–48. [Google Scholar] [CrossRef]
- Liang, F.; Du, Y.; Ge, Y.; Li, C. A quantitative morphometric comparison of cockpit and doline karst landforms. J. Geogr. Sci. 2014, 24, 1069–1082. [Google Scholar] [CrossRef]
- Wu, Q.; Deng, C.; Chen, Z. Automated delineation of karst sinkholes from LiDAR-derived digital elevation models. Geomorphology 2016, 266, 1–10. [Google Scholar] [CrossRef]
- Zhu, J.; Pierskalla, W.P. Applying a weighted random forests method to extract karst sinkholes from LiDAR data. J. Hydrol. 2016, 533, 343–352. [Google Scholar] [CrossRef]
- Song, L.; Deng, Z. Fractal and geometry of karst depressions in South China. Geogr. Res. 1995, 14, 8–16. [Google Scholar]
- Wang, D.; Xu, M.; Qi, J.; Zang, Q. Analysis on morphologic features of the peak-cluster depression in Qiubei, Southeast Yunnan. Carsologica Sin. 2010, 29, 239–245. [Google Scholar]
- Xu, M. Study on morphological characteristics of karst landform based on the fractal theory. J. Chengdu Univ. Technol. 2011, 38, 328–333. [Google Scholar]
- Yi, Z.; Tang, G.; Xin, Y.; Xiao, C.; Zhang, Y.; Luo, M. Positive and negative terrains on northern Shaanxi Loess Plateau. J. Geogr. Sci. 2010, 20, 64–76. [Google Scholar]
- Xiong, L.; Tang, G.; Yan, S.; Zhu, S.; Sun, Y. Landform-oriented flow-routing algorithm for the dual-structure loess terrain based on digital elevation models. Hydrol. Process. 2013, 28, 1756–1766. [Google Scholar] [CrossRef]
- Zhu, X. Guilin Karst; Shanghai Scientific and Technical Publishers: Shanghai, China, 1988. [Google Scholar]
- Xiong, K. Hydrodynamic genetics of cone karst and tower karst—With special reference to the middle Guizhou. Carsologica Sin. 1994, 3, 237–246. [Google Scholar]
- Yang, M.; Liang, H. The processes of evolution dynamic of cone karst and the exploitation of the water resource. Carsologica Sin. 2000, 1, 44–51. [Google Scholar]
- Yuan, D. Modern karstification; Science Press: Beijing, China, 2016. [Google Scholar]
- Yang, M.; Zhang, Y.; Smart, P.; Waltham, T. Karst geomorphology of western Guizhou, China. Carsologica Sin. 1987, 6, 345–352. [Google Scholar]
- Jiang, Z. An analysis on formation of the karst Fengcong depressions in China. Carsologica Sin. 1996, 15, 83–90. [Google Scholar]
- Lyew-Ayee, P.; Viles, H.A.; Tucker, G.E. The use of GIS-based digital morphometric techniques in the study of cockpit karst. Earth Surface Process. Landf. 2007, 32, 165–179. [Google Scholar] [CrossRef]
- Rahimi, M.; Alexander, E. Locating Sinkholes in Lidar Coverage of a Glacio-Fluvial Karst, Winona County, MN; University of South Florida: Tampa, FL, USA, 2013. [Google Scholar]
- Zhu, J.; Taylor, T.P.; Currens, J.C.; Crawford, M.M. Improved karst sinkhole mapping in Kentucky using LIDAR techniques: A pilot study in Floyds Fork watershed. J. Cave Karst Stud. 2014, 76, 207–216. [Google Scholar] [CrossRef]
- Yang, M.; He, C. Developmental Characteristics of Cone-shaped Karst in China. In Proceedings of Danxia Mountain; The Geographical Society of China: Garmin Taiwan, 2004. [Google Scholar]
- Thrailkill, J. Karst Geomorphology and Hydrology. Derek Ford, Paul Williams Geomorphology and Hydrology of Karst Terrains. William B. White. J. Geol. 1991, 98, 797–798. [Google Scholar]
- Deng, Z.; Lin, Y.; Zhang, M.; Liu, G.; Wei, Z. Karst and Geological Structure in Guilin; Chongqing Publishing House: Chongqing, China, 1988. (In Chinese) [Google Scholar]
- Yuan, D.; Drogue, C.; Aide, D.; Wenke, L.; Wutian, C.; Bidaux, P.; Razack, M. Hydrology of the karst aquifer at the experimental site of Guilin in southern China. J. Hydrol. 1990, 115, 285–296. [Google Scholar]
- Day, M.J. The role of valley systems in the evolution of tropical karstlands. In Evolution of Karst: From Prekarst to Cessation; Gabrovsek, F., Ed.; Zalozba ZRC: Ljublana, Slovenia, 2002; pp. 235–241. [Google Scholar]
- Aumann, G.; Ebner, H.; Tang, L. Automatic derivation of skeleton lines from digitized contours. ISPRS J. Photogramm. Remote Sens. 1991, 46, 259–268. [Google Scholar] [CrossRef]
- Dayasagar, B.S.; Murthy, M.B.R.; Baburao, C.; Baldev, R. Morphological approach to extract ridge and valley connectivity networks from Digital Elevation Models. Int. J. Remote Sens. 2003, 24, 573–581. [Google Scholar]
- Koka, S.; Anada, K.; Nomaki, K.; Sugita, K.; Tsuchida, K.; Yaku, T. Ridge detection with the steepest ascent method. Procedia Comput. Sci. 2011, 4, 216–221. [Google Scholar] [CrossRef]
- Lv, G.; Xiong, L.; Chen, M.; Tang, G.; Sheng, Y.; Liu, X.; Song, Z.; Lu, Y.; Yu, Z.; Zhang, K.; et al. Chinese progress in geomorphometry. J. Geogr. Sci. 2017, 27, 1389–1412. [Google Scholar] [CrossRef]
- Hutchinson, M.F.; Dowling, T.I. A continental hydrological assessment of a new grid-based digital elevation model of Australia. Hydrol. Process. 1991, 5, 45–58. [Google Scholar] [CrossRef]
- Hutchinson, M.F. Optimising the degree of data smoothing for locally adpative fintie element bivariate smoothing splines. Anziam J. 2000, 42, C774. [Google Scholar] [CrossRef]
- Hutchinson, M.F.; Xu, T.; Stein, J.A. Recent Progress in the ANUDEM Elevation Gridding Procedure. In Proceedings of the Geomorphometry 2011, Redlands, CA, USA, 7–9 September 2011. [Google Scholar]
- Wahba, G. Spline Models for Observational Data; Society for industrial and applied mathematics: Philadelphia, PA, USA, 1990. [Google Scholar]
- Tarboton, D.G.; Bras, R.L.; Rodriguez-Iturbe, I. On the extraction of channel networks from digital elevation data. Hydrol. Process. 1991, 5, 81–100. [Google Scholar] [CrossRef]
- Wilson, J.P.; Gallant, J.C.; Hutchinson, M.F. Future directions for terrain analysis. In Terrain Analysis: Principles and Applications; John Wiley: Hoboken, NJ, USA, 2000. [Google Scholar]
- Burrough, P.A.; McDonnell, R.A.; Lloyd, C.D. Principles of Geographical Information Systems; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Mukherjee, A. GIS analysis of sinkhole distribution in Nixa, Missouri. In Proceedings of the GSA Annual Meeting in Charlotte, Seattle, WA, USA, 22–25 October 2012. [Google Scholar]
- Carvalho, O.A.D.; Guimarães, R.F.; Montgomery, D.R.; Gillespie, A.R.; Gomes, R.A.T.; Martins, É.D.S.; Silva, N.C. Karst depression detection using ASTER, ALOS/PRISM and SRTM-Derived digital elevation models in the Bambuí group, Brazil. Remote Sens. 2013, 6, 330–351. [Google Scholar] [CrossRef] [Green Version]
- Miao, X.; Qiu, X.; Wu, S.S.; Luo, J.; Gouzie, D.R.; Xie, H. Developing efficient procedures for automated sinkhole extraction from Lidar DEMs. Photogramm. Eng. Remote Sens. 2013, 79, 545–554. [Google Scholar] [CrossRef]
- Ford, D.; Williams, P.W. Karst Hydrogeology and Geomorphology; Wiley: Hoboken, NJ, USA, 2007. [Google Scholar]
- Smith, D.I. Process, Land-forms and Climate in Limestone Regions. In Geomorphology and Climate; Wiley: London, UK, 1976. [Google Scholar]
Total | Missing | False | True | Accuracy |
---|---|---|---|---|
708 | 28 | 42 | 638 | 90.11% |
Maximum elevation | Minimum elevation | Average elevation | Median elevation | Standard deviation |
513.8 m | 187.1 m | 368 m | 369.5 m | 59.8 m |
Depressions | Maximum | Minimum | Mean | Standard Deviation |
---|---|---|---|---|
Area (km2) | 0.98 | 0.01 | 0.14 | 0.16 |
Surface elevation (m) | 463 | 215 | 340 | 51 |
Bottom elevation (m) | 450 | 192 | 316 | 54 |
Depth (m) | 114 | 3 | 42 | 28 |
Length/Width | 3.37 | 1.05 | 1.69 | 0.43 |
Method | Number | Area (km2) | |||
---|---|---|---|---|---|
Maximum | Minimum | Mean | Total Area | ||
hydrologic method | 82 | 0.84 | 0.00015 | 0.074 | 6.08 |
saddle position method | 188 | 0.98 | 0.01 | 0.14 | 25.6 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Tang, G.; Meng, X.; Xiong, L. Saddle Position-Based Method for Extraction of Depressions in Fengcong Areas by Using Digital Elevation Models. ISPRS Int. J. Geo-Inf. 2018, 7, 136. https://doi.org/10.3390/ijgi7040136
Yang X, Tang G, Meng X, Xiong L. Saddle Position-Based Method for Extraction of Depressions in Fengcong Areas by Using Digital Elevation Models. ISPRS International Journal of Geo-Information. 2018; 7(4):136. https://doi.org/10.3390/ijgi7040136
Chicago/Turabian StyleYang, Xianwu, Guoan Tang, Xin Meng, and Liyang Xiong. 2018. "Saddle Position-Based Method for Extraction of Depressions in Fengcong Areas by Using Digital Elevation Models" ISPRS International Journal of Geo-Information 7, no. 4: 136. https://doi.org/10.3390/ijgi7040136
APA StyleYang, X., Tang, G., Meng, X., & Xiong, L. (2018). Saddle Position-Based Method for Extraction of Depressions in Fengcong Areas by Using Digital Elevation Models. ISPRS International Journal of Geo-Information, 7(4), 136. https://doi.org/10.3390/ijgi7040136