Inferencing Human Spatiotemporal Mobility in Greater Maputo via Mobile Phone Big Data Mining
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Call Detail Record (CDR) Data
2.3. Population Data from the High-Resolution Settlement Layer (HRSL)
2.4. OpenStreetMap Road Network Data
2.5. Japan International Cooperation Agency (JICA) Survey Data for Results Validation
3. Methodology
3.1. Voronoi Tessellation of the Study Area
3.2. Home Location Estimation
3.3. Filtering Valid User Days
- A day is valid for a user if he/she has a CDR in at least eight of the 48 half-hour time slots in one day (24 h).
- Weekdays and weekends are treated separately as we presume that trip behavior can vary between them.
3.4. Origin–Destination Extraction
3.4.1. Extraction of Stay Locations
3.4.2. Extraction of Trips
3.5. Estimation of Magnification Factors
3.5.1. User Sample to Population Magnification Factor
3.5.2. Valid User-Days Magnification Factor
3.6. Spatiotemporal Interpolation
4. Results and Validation
4.1. Results
4.2. Validation of Results
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Manyika, J.; Chui, M.; Brown, B.; Bughin, J.; Dobbs, R.; Roxburgh, C.; Byers, A.H. Big data: The next frontier for innovation, competition, and productivity. McKinsey Glob. Inst. 2011, 156. [Google Scholar] [CrossRef]
- GSM Association (GSMA). The Mobile Economy 2018; GSMA; London, United Kingdom, 2018.
- In Much of Sub-Saharan Africa, Mobile Phones Are More Common Than Access to Electricity—Daily Chart. Available online: https://www.economist.com/graphic-detail/2017/11/08/in-much-of-sub-saharan-africa-mobile-phones-are-more-common-than-access-to-electricity (accessed on 31 May 2018).
- Steenbruggen, J.; Tranos, E.; Nijkamp, P. Data from mobile phone operators: A tool for smarter cities? Telecommun. Policy 2015, 39, 335–346. [Google Scholar] [CrossRef] [Green Version]
- Calabrese, F.; Lorenzo, G. Di Estimating Origin-Destination Flows using Mobile phone Location Data. Cell 2011, 10, 36–44. [Google Scholar] [CrossRef]
- Becker, R.A.; Cáceres, R.; Hanson, K.; Isaacman, S.; Loh, J.M.; Martonosi, M.; Rowland, J.; Urbanek, S.; Varshavsky, A.; Volinsky, C. Human mobility characterization from cellular network data. Commun. ACM 2013, 56, 74. [Google Scholar] [CrossRef]
- Ranjan, G.; Zang, H.; Zhang, Z.-L.; Bolot, J. Are call detail records biased for sampling human mobility? ACM Sigmob. Mob. Comput. Commun. Rev. 2012, 16, 33. [Google Scholar] [CrossRef] [Green Version]
- Arai, A.; Witayangkurn, A.; Kanasugi, H.; Horanont, T.; Shao, X.; Shibasaki, R. Understanding User Attributes from Calling Behavior: Exploring Call Detail Records through Field Observations. Adv. Mob. Comput. Multimed. 2014, 95–104. [Google Scholar] [CrossRef]
- Arai, A. Dynamic Census: Estimation of Demographic Structure and Spatiotemporal Distribution of Dynamic Living Population by Analyzing Mobile Phone Call Detail Records; The University of Tokyo: Tokyo, Japan, 2013. [Google Scholar]
- González, M.C.; Hidalgo, C.A.; Barabási, A.L. Understanding individual human mobility patterns. Nature 2008, 453, 779–782. [Google Scholar] [CrossRef] [PubMed]
- Schneider, C.M.; Belik, V.; Couronne, T.; Smoreda, Z.; Gonzalez, M.C. Unravelling daily human mobility motifs. J. R. Soc. Interface 2013, 10, 20130246. [Google Scholar] [CrossRef] [PubMed]
- Louail, T.; Lenormand, M.; Cantu Ros, O.G.; Picornell, M.; Herranz, R.; Frias-Martinez, E.; Ramasco, J.J.; Barthelemy, M. From mobile phone data to the spatial structure of cities. Sci. Rep. 2014, 4, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, P.; Hunter, T.; Bayen, A.M.; Schechtner, K.; González, M.C. Understanding road usage patterns in urban areas. Sci. Rep. 2012, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caceres, N.; Wideberg, J.P.; Benitez, F.G. Deriving origin—Destination data from a mobile phone network. IET Intell. Transp. Syst. 2007, 15–26. [Google Scholar] [CrossRef]
- Iqbal, M.S.; Choudhury, C.F.; Wang, P.; González, M.C. Development of origin-destination matrices using mobile phone call data. Transp. Res. Part C Emerg. Technol. 2014, 40, 63–74. [Google Scholar] [CrossRef]
- Wang, H.; Calabrese, F.; Di Lorenzo, G.; Ratti, C. Transportation Mode Inference from Anonymized and Aggregated Mobile Phone Call Detail Records. In Proceedings of the 13th International IEEE Conference on Intelligent Transportation Systems, Funchal, Portugal, 19–22 September 2010. [Google Scholar]
- Qu, Y.; Gong, H.; Wang, P. Transportation Mode Split with Mobile Phone Data. IEEE Conf. Intell. Transp. Syst. Proc. 2015, 2015, 285–289. [Google Scholar] [CrossRef]
- Zin, T.A.; Lwin, K.K.; Sekimoto, Y. Estimation of Originating-Destination Trips in Yangon by Using Big Data Source. J. Disaster Res. 2018, 13, 6–13. [Google Scholar] [CrossRef]
- Jiang, S.; Ferreira, J.; Gonzalez, M.C. Activity-Based Human Mobility Patterns Inferred from Mobile Phone Data: A Case Study of Singapore. IEEE Trans. Big Data 2017, 3, 208–219. [Google Scholar] [CrossRef]
- Phithakkitnukoon, S.; Horanont, T.; Di Lorenzo, G.; Shibasaki, R.; Ratti, C. Activity-aware map: Identifying human daily activity pattern using mobile phone data. Lect. Notes Comput. Sci. 2010, 6219, 14–25. [Google Scholar] [CrossRef]
- Toole, J.L.; Colak, S.; Sturt, B.; Alexander, L.P.; Evsukoff, A.; González, M.C. The path most traveled: Travel demand estimation using big data resources. Transp. Res. Part C Emerg. Technol. 2015, 58, 162–177. [Google Scholar] [CrossRef]
- De Montjoye, Y.; Quoidbach, J.; Robic, F. Phone-Based Metrics. In Proceedings of the 6th international conference on Social Computing, Behavioral-Cultural Modeling and Prediction, Washington, DC, USA, 2–5 April 2013; pp. 48–55. [Google Scholar] [CrossRef]
- Blumenstock, J.; Cadamuro, G.; On, R. Predicting poverty and wealth from mobile phone metadata. Science 2015, 350, 1073–1076. [Google Scholar] [CrossRef] [PubMed]
- Steele, J.E.; Sundsøy, P.R.; Pezzulo, C.; Alegana, V.A.; Bird, T.J.; Blumenstock, J.; Bjelland, J.; Engø-Monsen, K.; de Montjoye, Y.-A.; Iqbal, A.M.; et al. Mapping poverty using mobile phone and satellite data. J. R. Soc. Interface 2017, 14, 20160690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Japan International Cooperation Agency (JICA). Comprehensive Urban Transport Master Plan for the Greater Maputo 2014; JICA: Tokyo, Japan, 2014. [Google Scholar]
- HRSL; Columbia University: New York, NY, USA, 2016.
- Contributors, O. OpenStreetMap. Available online: www.openstreetmap.org (accessed on 15 January 2018).
- McNally, M.G. The four-step model. In Handbook of Transport Modelling, 2nd ed.; Emerald Group Publishing Limited: Bingley, UK, 2007; pp. 35–53. [Google Scholar]
- Okabe, A.; Boots, B.; Sugihara, K. Spatial Tessellations: Concepts and Applications of Voronoi Diagrams; John Wiley & Sons, Inc.: New York, NY, USA, 1992; ISBN 0-471-93430-5. [Google Scholar]
- Cervero, R.; Murakami, J. Effects of built environments on vehicle miles traveled: Evidence from 370 US urbanized areas. Environ. Plan. A 2010, 42, 400–418. [Google Scholar] [CrossRef]
- Zegras, C. Influence of land use on travel behavior in Santiago, Chile. Transp. Res. Rec. J. Transp. Res. Board 2004, 175–182. [Google Scholar] [CrossRef]
- Alexander, L.; Jiang, S.; Murga, M.; González, M.C. Origin–destination trips by purpose and time of day inferred from mobile phone data. Transp. Res. Part C 2015, 58, 240–250. [Google Scholar] [CrossRef]
- Isaacman, S.; Becker, R.; Cáceres, R.; Kobourov, S.; Martonosi, M.; Rowland, J.; Varshavsky, A. Identifying important places in people’s lives from cellular network data. In Proceedings of the 2011 International Conference on Pervasive Computing, San Francisco, CA, USA, 12–15 June 2011; pp. 133–151. [Google Scholar]
- Sekimoto, Y.; Watanabe, A.; Nakamura, T.; Horanont, T. Digital archiving of people flow by recycling large-scale social survey data of developing cities. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, 39, B2. [Google Scholar] [CrossRef]
- Moeller, C. Osm2po-OpenStreetMap Converter and Routing Engine for Java. Available online: http//osm2po (accessed on 15 January 2018).
Min | Max | Mean | Median |
---|---|---|---|
62 | 45,261 | 10,277 | 6781 |
Zone Level | No. of TAZs | Min (km2) | Max (km2) | Mean (km2) | Median (km2) |
---|---|---|---|---|---|
C TAZ | 170 | 0.03 | 95.20 | 7.10 | 1.08 |
B TAZ | 40 | 0.81 | 305.13 | 30.21 | 9.65 |
A TAZ | 4 | 252.61 | 381.09 | 302.17 | 287.49 |
Zone Source | Number of Towers | Min (km2) | Max (km2) | Mean (km2) | Median (km2) |
---|---|---|---|---|---|
CDR Voronoi | 259 | 0.01 | 241.21 | 8.15 | 1.83 |
Before Filtering | After Filtering | |
---|---|---|
Number of users | 1,279,291 | 797,329 |
Number of user-days | 12,059,561 | 4,385,089 [Weekdays: 3,252,971, Weekends: 1,132,118] |
Number of trips | 27,117,806 | 19,724,307 [Weekdays: 14,744,180, Weekends: 4,965,739] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batran, M.; Mejia, M.G.; Kanasugi, H.; Sekimoto, Y.; Shibasaki, R. Inferencing Human Spatiotemporal Mobility in Greater Maputo via Mobile Phone Big Data Mining. ISPRS Int. J. Geo-Inf. 2018, 7, 259. https://doi.org/10.3390/ijgi7070259
Batran M, Mejia MG, Kanasugi H, Sekimoto Y, Shibasaki R. Inferencing Human Spatiotemporal Mobility in Greater Maputo via Mobile Phone Big Data Mining. ISPRS International Journal of Geo-Information. 2018; 7(7):259. https://doi.org/10.3390/ijgi7070259
Chicago/Turabian StyleBatran, Mohamed, Mariano Gregorio Mejia, Hiroshi Kanasugi, Yoshihide Sekimoto, and Ryosuke Shibasaki. 2018. "Inferencing Human Spatiotemporal Mobility in Greater Maputo via Mobile Phone Big Data Mining" ISPRS International Journal of Geo-Information 7, no. 7: 259. https://doi.org/10.3390/ijgi7070259
APA StyleBatran, M., Mejia, M. G., Kanasugi, H., Sekimoto, Y., & Shibasaki, R. (2018). Inferencing Human Spatiotemporal Mobility in Greater Maputo via Mobile Phone Big Data Mining. ISPRS International Journal of Geo-Information, 7(7), 259. https://doi.org/10.3390/ijgi7070259