Towards Modelling Future Trends of Quebec’s Boreal Birds’ Species Distribution under Climate Change
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area, Species Abundance, and Predictors Data
2.2. Methods
2.2.1. Statistical Analyses
2.2.2. Bioclimatic-Based Species Distribution Models
3. Results
3.1. Variable Selection
3.2. Variation Partitioning
3.3. Bioclimatic Modelling
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Latin Name | English Name |
Setophaga ruticilla | American Redstard |
Setophaga castanea | Bay-breasted Warbler |
Poecile atricapillus | Black-capped Chickadee |
Poecile hudsonicus | Boreal Chickadee |
Melanitta americana | Black Scoter |
Mniotilta varia | Black-and-white Warbler |
Corvus corax | Common Raven |
Acanthis flammea | Common Redpoll |
Junco hyemalis | Dark-eyed Junco |
Hesperiphona vespertina | Evening Grosbeak |
Passerella iliaca | Fox Sparrow |
Regulus satrapa | Golden-crowned Kinglet |
Perisoreus canadensis | Gray Jay |
Melospiza lincolnii | Lincoln’s Sparrow |
Lanius excubitor | Northern Shrike |
Contopus cooperi | Olive-sided Flycatcher |
Haemorhous purpureus | Purple Finch |
Pinicola enucleator | Pine Grosbeak |
Setophaga pinus | Pine Warbler |
Euphagus carolinus | Rusty Blackbird |
Sitta canadensis | Red-breasted Nuthatch |
Regulus calendula | Ruby-crowned Kinglet |
Loxia curvirostra | Red Crossbill |
Vireo olivaceus | Red-eyed Vireo |
Bonasa umbellus | Ruffed Grouse |
Falcipennis canadensis | Spruce Grouse |
Tringa solitaria | Solitary Sandpiper |
Actitis macularius | Spotted Sandpiper |
Melanitta perspicillata | Surf Scoter |
Melospiza georgiana | Swamp Sparrow |
Catharus ustulatus | Swainson’s Thrush |
Catharus fuscescens | Veery |
Zonotrichia leucophrys | White-crowned Sparrow |
Numenius phaeopus | Whimbrel |
Loxia leucoptera | White-winged Crossbill |
Melanitta deglandi | White-winged Scoter |
Empidonax flaviventris | Yellow-bellied Flycatcher |
References
- Virkkala, R.; Heikkinen, R.K.; Leikola, N.; Luoto, M. Projected large-scale range reductions of northern-boreal land bird species due to climate change. Biol. Conserv. 2008, 141, 1343–1353. [Google Scholar] [CrossRef]
- Lawler, J.J.; Shafer, S.L.; White, D.; Kareiva, P.; Maurer, E.P.; Blaustein, A.R.; Bartlein, P.J.; Ecology, S.; Mar, N.; Lawler, J.; et al. Projected Climate-Induced Faunal Change in the Western Hemisphere. Ecology 2009, 90, 588–597. [Google Scholar] [CrossRef] [PubMed]
- Parmesan, C. Ecological and Evolutionary Responses to Recent Climate Change. Annu. Ecol. Evol. Syst. 2006, 37, 637–669. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Summary for Policymakers. In Climate Change 2013: The Physical Science Basis; Stocker, T.F., Qin, D.G.-K., Plattner, M., Tignor, S.K., Allen, J., Boschung, A., Nauels, Y., Xia, V.B., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2013; p. 33. ISBN 110705799X. [Google Scholar]
- Walther, G.; Post, E.; Convey, P.; Menzel, A.; Parmesan, C.; Beebee, T.J.; Fromentin, J.M.; Hoegh-Guldberg, O.; Bairlein, F. Ecological responses to recent climate change. Nature 2002, 416, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Forister, M.L.; McCall, A.C.; Sanders, N.J.; Fordyce, J.A.; Thorne, J.H.; O’Brien, J.; Waetjen, D.P.; Shapiro, A.M. Compounded effects of climate change and habitat alteration shift patterns of butterfly diversity. Proc. Natl. Acad. Sci. USA 2010, 107, 2088–2092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hurlbert, A.H.; Liang, Z. Spatiotemporal Variation in Avian Migration Phenology: Citizen Science Reveals Effects of Climate Change. PLoS ONE 2012, 7, e31662. [Google Scholar] [CrossRef] [PubMed]
- Butler, C.J. The disproportionate effect of global warming on the arrival dates of short-distance migratory birds in North America. Ibis 2003, 145, 484–495. [Google Scholar] [CrossRef]
- Swanson, D.L.; Palmer, J.S. Spring migration phenology of birds in the Northern Prairie region is correlated with local climate change. J. Field Ornithol. 2009, 80, 351–363. [Google Scholar] [CrossRef]
- Virkkala, R.; Marmion, M.; Heikkinen, R.K.; Thuiller, W.; Luoto, M. Predicting range shifts of northern bird species: Influence of modelling technique and topography. Acta Oecol. 2010, 36, 269–281. [Google Scholar] [CrossRef]
- Thompson, S.D.; Nelson, T.A.; Coops, N.C.; Wulder, M.A.; Lantz, T.C. Global Spatial–Temporal Variability in Terrestrial Productivity and Phenology Regimes between 2000 and 2012. Ann. Am. Assoc. Geogr. 2017, 4452, 1–19. [Google Scholar] [CrossRef]
- Perez, L.; Nelson, T.; Coops, N.C.; Fontana, F.; Drever, C.R. Characterization of spatial relationships between three remotely sensed indirect indicators of biodiversity and climate: A 21 years’ data series review across the Canadian boreal forest. Int. J. Digit. Earth 2016, 9, 676–696. [Google Scholar] [CrossRef]
- Nelson, T.; Coops, N.; Wulder, M.; Perez, L.; Fitterer, J.; Powers, R.; Fontana, F. Predicting Climate Change Impacts to the Canadian Boreal Forest. Diversity 2014, 6, 133–157. [Google Scholar] [CrossRef] [Green Version]
- Stralberg, D.; Bayne, E.M.; Cumming, S.G.; Solymos, P.; Song, S.J.; Schmiegelow, F.K.A. Conservation of future boreal forest bird communities considering lags in vegetation response to climate change: A modified refugia approach. Divers. Distrib. 2015, 21, 1112–1128. [Google Scholar] [CrossRef]
- Pothier, D. Portrait de la forêt boréale québécoise. Le Nat. Can. 2001, 125, 5–9. [Google Scholar]
- MERN. Vegetation Zones and Bioclimatic Domains in Québec. Available online: http://mern.gouv.qc.ca/english/publications/forest/publications/zone-a.pdf (accessed on 1 April 2017).
- MERN. Bref Portrait de La Forêt Boréale Au Québec. Available online: http://www.mern.gouv.qc.ca/presse/feux-grands.jsp (accessed on 20 July 2005).
- ESRI ArcGIS Desktop, version 10.1; ESRI: Redlands, CA, USA, 2014.
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2014. [Google Scholar]
- eBird: An online Database of Bird Distribution and Abundance [Web Application]. Available online: http://www.ebird.org (accessed on 20 May 2002).
- The Boreal Songbird Initiative Borel Birds. Available online: http://www.borealbirds.org/comprehensive-boreal-bird-guide (accessed on 4 May 2016).
- Royston, J.P. An Extension of Shapiro and Wilk’s W Test for Normality to Large Samples. Appl. Stat. 1982, 31, 115–124. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef] [Green Version]
- Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.-F.; et al. The representative concentration pathways: An overview. Clim. Chang. 2011, 109, 5–31. [Google Scholar] [CrossRef]
- Natural Resources Canada Canadian Digital Elevation Model. Available online: http://open.canada.ca/data/en/dataset/7f245e4d-76c2-4caa-951a-45d1d2051333 (accessed on 4 May 2016).
- Global Forest Watch Canada Cumulative Anthropogenic Access, Eastern Canada. Available online: http://www.globalforestwatch.ca/data/20100913B (accessed on 4 May 2016).
- Conservation Biology Institute Canada’s Forest Inventory (CanFI) 2001 for the Boreal Eco-Region—Percent Forested, Quebec. Available online: https://databasin.org/datasets/00b4cf27796d4a32be21df7716103e3f (accessed on 20 May 2002).
- Legendre, P.; Legendre, L.F. Numerical Ecology, 3rd ed.; Elsevier: Amsterdam, The Netherlnads, 2012. [Google Scholar]
- Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’hara, R.B.; Simpson, G.L.; Solymos, P.; Stevens, M.H.H.; Wagner, H. Vegan: Community Ecology Package. In R Package Version; CRAN-R: Oulu, Finland, 2017. [Google Scholar]
- Liu, Q. Variation Partioning by Partial Redundancy Analysis (RDA). Environmetrics 1997, 8, 75–85. [Google Scholar] [CrossRef]
- Peres-Neto, P.R.; Legendre, P.; Dray, S.; Borcard, D. Variation Partitioning of Species Data Matrices: Estimation and Comparison of Fractions. Ecology 2006, 87, 2614–2625. [Google Scholar] [CrossRef]
- Legendre, P. Studying beta diversity: Ecological variation partitioning by multiple regression and canonical analysis. J. Plant Ecol. 2008, 1, 3–8. [Google Scholar] [CrossRef]
- Borcard, D.; Legendre, P.; Drapeau, P. Partialling out the spatial component of ecological variation. Ecology 1992, 73, 1045–1055. [Google Scholar] [CrossRef]
- Thuiller, W.; Lafourcade, B.; Engler, R.; Araújo, M.B. BIOMOD—A platform for ensemble forecasting of species distributions. Ecography 2009, 32, 369–373. [Google Scholar] [CrossRef]
- Guisan, A.; Zimmermann, N.E. Predictive habitat distribution models in ecology. Ecol. Model. 2000, 135, 147–186. [Google Scholar] [CrossRef]
- Guisan, A.; Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 2005, 8, 993–1009. [Google Scholar] [CrossRef]
- Zweig, M.H.; Campbell, G. Receiver-operating characteristic (ROC) plots: A fundamental evaluation tool in clinical medicine. Clin. Chem. 1993, 39, 561–577. [Google Scholar] [PubMed]
- Fieldgin, A.H.; Bell, J.F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 1997, 24, 38–49. [Google Scholar] [CrossRef]
- Pearson, R.G.; Thuiller, W.; Araújo, M.B.; Martinez-Meyer, E.; Brotons, L.; McClean, C.; Miles, L.; Segurado, P.; Dawson, T.P.; Lees, D.C. Model-based uncertainty in species range prediction. J. Biogeogr. 2006, 33, 1704–1711. [Google Scholar] [CrossRef]
- Thuiller, W.; Georges, D.; Engler, R. Biomod2: Ensemble Platform for Species Distribution Modeling; CRAN-R: Grenoble, France, 2014. [Google Scholar]
- Hirschi, J.J.M.; Sinha, B.; Josey, S.A. Global warming and changes of continentality since 1948. Weather 2007, 62, 215–221. [Google Scholar] [CrossRef] [Green Version]
- Fitterer, J.L.; Nelson, T.A.; Coops, N.C.; Wulder, M.A.; Mahony, N.A. Exploring the ecological processes driving geographical patterns of breeding bird richness in British Columbia, Canada. Ecol. Appl. 2013, 23, 888–903. [Google Scholar] [CrossRef] [PubMed]
- Renwick, A.R.; Massimino, D.; Newson, S.E.; Chamberlain, D.E.; Pearce-Higgins, J.W.; Johnston, A. Modelling changes in species’ abundance in response to projected climate change. Divers. Distrib. 2012, 18, 121–132. [Google Scholar] [CrossRef]
- Moudrý, V.; Šímová, P. Relative importance of climate, topography, and habitats for breeding wetland birds with different latitudinal distributions in the Czech Republic. Appl. Geogr. 2013, 44, 165–171. [Google Scholar] [CrossRef]
- Revermann, R.; Schmid, H.; Zbinden, N.; Spaar, R.; Schröder, B. Habitat at the mountain tops: How long can Rock Ptarmigan (Lagopus muta helvetica) survive rapid climate change in the Swiss Alps? A multi-scale approach. J. Ornithol. 2012, 153, 891–905. [Google Scholar] [CrossRef]
- Berteaux, D.; de Blois, S.; Angers, J.F.; Bonin, J.; Casajus, N.; Darveau, M.; Fournier, F.; Humphries, M.M.; McGill, B.; Larivée, J.; et al. The CC-Bio project: Studying the effects of climate change on Quebec biodiversity. Diversity 2010, 2, 1181–1204. [Google Scholar] [CrossRef]
Variable Name | Description | |
---|---|---|
Bioclimatic Variables | BIO1 | Annual Mean Temperature |
BIO2 | Mean Diurnal Range (Mean of monthly (max temp–min temp)) | |
BIO3 | Isothermality (BIO2/BIO7) (×100) | |
BIO4 | Temperature Seasonality (standard deviation ×100) | |
BIO5 | Max Temperature of Warmest Month | |
BIO6 | Min Temperature of Coldest Month | |
BIO7 | Temperature Annual Range (BIO5-BIO6) | |
BIO8 | Mean Temperature of Wettest Quarter | |
BIO9 | Mean Temperature of Driest Quarter | |
BIO10 | Mean Temperature of Warmest Quarter | |
BIO11 | Mean Temperature of Coldest Quarter | |
BIO12 | Annual Precipitation | |
BIO13 | Precipitation of Wettest Month | |
BIO14 | Precipitation of Driest Month | |
BIO15 | Precipitation Seasonality (Coefficient of Variation) | |
BIO16 | Precipitation of Wettest Quarter | |
BIO17 | Precipitation of Driest Quarter | |
BIO18 | Precipitation of Warmest Quarter | |
BIO19 | Precipitation of Coldest Quarter | |
Other Variables | elevation | Elevation in meter |
pct_for | Percentage of forested area | |
pct_wet | Percentage of wet area | |
linear | Linear disturbances |
Acronym | Name | Description | Source |
---|---|---|---|
RF | Random Forest | Measures variable importance using multiple permutations. | Breiman, 2001 |
MARS | Multivariate Adaptive Regression Splines | Allows to generate non-linear models comprising interaction. | Friedman, 1991 |
MAXENT | Maximum Entropy | Allows presence-only modelling. Automated learning approach, or machine-learning. | Phillips et al., 2004 |
Name | Latitude | Longitude | Bioclimatic Domain | Name | Latitude | Longitude | Bioclimatic Domain |
---|---|---|---|---|---|---|---|
row0 | 55.8447 | −76.2316 | Forest tundra | row25 | 51.9439 | −68.9568 | Spruce-moss |
row1 | 48.6628 | −69.6323 | Fir-white birch | row26 | 55.5781 | −75.4543 | Spruce-lichen |
row2 | 46.8135 | −78.6928 | Maple-yellow birch | row27 | 56.4672 | −67.1192 | Spruce-lichen |
row3 | 51.6501 | −59.9633 | Spruce-moss | row28 | 51.3266 | −61.8963 | Spruce-moss |
row4 | 47.6502 | −73.5156 | Fir-Yellow birch | row29 | 52.6880 | −73.1066 | Spruce-lichen |
row5 | 49.9449 | −71.3324 | Spruce-moss | row30 | 57.1851 | −67.7253 | Spruce-lichen |
row6 | 53.0530 | −75.8372 | Spruce-lichen | row31 | 56.9220 | −65.2494 | Forest tundra |
row7 | 52.4532 | −77.3685 | Spruce-lichen | row32 | 51.4333 | −77.3326 | Spruce-moss |
row8 | 50.1640 | −77.6107 | Spruce-moss | row33 | 57.1362 | −66.8704 | Spruce-lichen |
row9 | 55.8104 | −75.5142 | Spruce-lichen | row34 | 58.8476 | −77.3046 | Shrub tundra |
row10 | 47.9788 | −70.2513 | Fir-white birch | row35 | 51.7193 | −62.2129 | Spruce-moss |
row11 | 49.1433 | −78.3106 | Fir-white birch | row36 | 54.1290 | −68.6697 | Spruce-lichen |
row12 | 54.6786 | −70.7768 | Forest tundra | row37 | 48.3239 | −72.4839 | Fir-white birch |
row13 | 57.3887 | −71.8150 | Forest tundra | row38 | 52.9978 | −77.6026 | Spruce-lichen |
row14 | 47.6650 | −78.3112 | Fir-Yellow birch | row39 | 52.2419 | −68.9173 | Spruce-moss |
row15 | 50.5063 | −60.6872 | Spruce-moss | row40 | 53.3667 | −73.6408 | Spruce-lichen |
row16 | 45.4110 | −70.6361 | Maple-yellow birch | row41 | 49.8007 | −69.2638 | Spruce-moss |
row17 | 50.7644 | −75.8232 | Spruce-moss | row42 | 54.0512 | −72.7190 | Spruce-lichen |
row18 | 52.0158 | −76.7739 | Spruce-moss | row43 | 48.1273 | −66.8305 | Fir-white birch |
row19 | 49.9230 | −67.9408 | Spruce-moss | row44 | 61.7936 | −75.4240 | Herbaceous arctic tundra |
row20 | 54.8004 | −79.0797 | Spruce-lichen | row45 | 53.1172 | −73.9403 | Spruce-lichen |
row21 | 58.4981 | −71.2060 | Arctic tundra | row46 | 46.9410 | −78.6283 | Maple-yellow birch |
row22 | 48.7750 | −66.8054 | Fir-white birch | row47 | 57.5095 | −69.6575 | Forest tundra |
row23 | 53.7060 | −76.5934 | Spruce-lichen | row48 | 56.9296 | −73.6560 | Forest tundra |
row24 | 52.4247 | −74.0392 | Spruce-lichen | row49 | 47.6405 | −72.4772 | Fir-Yellow birch |
Variables | Df | Var | F | N.perm | Pr (>F) | VIF |
---|---|---|---|---|---|---|
elevation | 1 | 49.512 | 23.8522 | 99 | 0.01 | 3.359 |
pct_wet | 1 | 4.443 | 2.1403 | 99 | 0.07 | 1.232 |
BIO11 | 1 | 67.141 | 32.3447 | 99 | 0.01 | 9.217 |
BIO15 | 1 | 10.6 | 5.1063 | 99 | 0.01 | 7.199 |
BIO16 | 1 | 14.793 | 7.1266 | 99 | 0.01 | 5.181 |
BIO7 | 1 | 9.725 | 4.685 | 99 | 0.01 | 1.779 |
residuals | 43 | 89.259 |
Variables | Df | Var | F | N.perm | Pr (>F) |
---|---|---|---|---|---|
RDA1 | 1 | 117.189 | 56.455 | 199 | 0.005 |
RDA2 | 1 | 18.856 | 9.0835 | 199 | 0.005 |
RDA3 | 1 | 13.101 | 6.3114 | 199 | 0.005 |
RDA4 | 1 | 4.093 | 1.972 | 999 | 0.071 |
RDA5 | 1 | 2.017 | 0.9718 | 99 | 0.44 |
RDA6 | 1 | 0.958 | 0.4614 | 99 | 0.88 |
residuals | 43 | 89.259 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaudreau, J.; Perez, L.; Harati, S. Towards Modelling Future Trends of Quebec’s Boreal Birds’ Species Distribution under Climate Change. ISPRS Int. J. Geo-Inf. 2018, 7, 335. https://doi.org/10.3390/ijgi7090335
Gaudreau J, Perez L, Harati S. Towards Modelling Future Trends of Quebec’s Boreal Birds’ Species Distribution under Climate Change. ISPRS International Journal of Geo-Information. 2018; 7(9):335. https://doi.org/10.3390/ijgi7090335
Chicago/Turabian StyleGaudreau, Jonathan, Liliana Perez, and Saeed Harati. 2018. "Towards Modelling Future Trends of Quebec’s Boreal Birds’ Species Distribution under Climate Change" ISPRS International Journal of Geo-Information 7, no. 9: 335. https://doi.org/10.3390/ijgi7090335
APA StyleGaudreau, J., Perez, L., & Harati, S. (2018). Towards Modelling Future Trends of Quebec’s Boreal Birds’ Species Distribution under Climate Change. ISPRS International Journal of Geo-Information, 7(9), 335. https://doi.org/10.3390/ijgi7090335