Using Remote Sensing to Analyse Net Land-Use Change from Conflicting Sustainability Policies: The Case of Amsterdam
Abstract
:1. Introduction
2. The Compact City, Urban Green Space, and Sustainable Urban Development
3. Materials and Methods
3.1. Study Area
3.2. Data and Analysis
3.2.1. Data
3.2.2. Land-Use Classification
3.2.3. Analysis
4. Results
- Improvement of the quality of urban parks (p. 12);
- More green space in the city for a pleasant living environment, cooling, and water storage (p. 17);
- More and better green space in neighbourhoods (p. 23);
- Having increased proximity to green space through post-stamp parks, trees, or front gardens (p. 23).
- An increase in green roofs of 40,000 m2;
- An increase of 16 post stamp parks;
- 21 school courtyards greened.
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Zhou, W.; Wang, J.; Qian, Y.; Pickett, S.T.; Li, W.; Han, L. The rapid but “invisible” changes in urban greenspace: A comparative study of nine Chinese cities. Sci. Total Environ. 2018, 627, 1572–1584. [Google Scholar] [CrossRef]
- Dallimar, M.; Tang, Z.; Bibby, P.R.; Brindley, P.; Gaston, K.J.; Davies, Z.G. Temporal changes in greenspace in a highly urbanized region. Biol. Lett. 2011. [Google Scholar] [CrossRef] [PubMed]
- Kabisch, N. Ecosystem service implementation and governance challenges in urban green space planning—The case of Berlin, Germany. Land Use Policy 2015, 42, 557–567. [Google Scholar] [CrossRef]
- Haaland, C.; van den Bosch, C.K. Challenges and strategies for urban green-space planning in cities undergoing densification: A review. Urban For. Urban Green. 2015, 14, 760–771. [Google Scholar] [CrossRef]
- ten Brink, P.; Mutafoglu, K.; Schweitzer, J.-P.; Kettunen, M.; Twigger-Ross, C.; Baker, J.; Kuipers, Y.; Emonts, M.; Tyrväinen, L.; Hujala, T.; et al. The Health and Social Benefits of Nature and Biodiversity Protection; Institute for European Environmental Policy: London, UK; Brussels, Belgium, 2016. [Google Scholar]
- Roy, S.; Byrne, J.; Pickering, C. A systematic quantitative review of urban tree benefits, costs, and assessment methods across cities in different climatic zones. Urban For. Urban Green. 2012, 11, 351–363. [Google Scholar] [CrossRef]
- Beatley, T.; Newman, P. Biophilic Cities Are Sustainable, Resilient Cities. Sustainability 2013, 5, 3328–3345. [Google Scholar] [CrossRef] [Green Version]
- Burton, E.; Jenks, M.; Williams, K. (Eds.) The Compact City: A Sustainable Urban Form? Routledge: Abingdon, UK, 2003. [Google Scholar]
- Jim, C.Y.; Chan, M.W. Urban greenspace delivery in Hong Kong: Spatial-institutional limitations and solutions. Urban For. Urban Green. 2016, 18, 65–85. [Google Scholar] [CrossRef]
- Westerink, J.; Haase, D.; Bauer, A.; Ravetz, J.; Jarrige, F.; Aalbers, C.B. Dealing with sustainability trade-offs of the compact city in peri-urban planning across European city regions. Eur. Plan. Stud. 2013, 21, 473–497. [Google Scholar] [CrossRef]
- Jabareen, Y. Planning the resilient city: Concepts and strategies for coping with climate change and environmental risk. Cities 2013, 31, 220–229. [Google Scholar] [CrossRef]
- Artmann, M.; Kohler, M.; Meinel, G.; Gan, J.; Ioja, I.C. How smart growth and green infrastructure can mutually support each other—A conceptual framework for compact and green cities. Ecol. Indic. 2017. [Google Scholar] [CrossRef]
- Dantzig, G.B.; Saaty, T.L. Compact City: A Plan for a Liveable Urban Environment; WH Freeman: New York, NY, USA, 1973. [Google Scholar]
- Baud, I.; Kuffer, M.; Pfeffer, K.; Sliuzas, R.; Karuppannan, S. Understanding heterogeneity in metropolitan India: The added value of remote sensing data for analyzing sub-standard residential areas. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 359–374. [Google Scholar] [CrossRef]
- Patino, J.E.; Duque, J.C. A review of regional science applications of satellite remote sensing in urban settings. Comput. Environ. Urban Syst. 2013, 37, 1–17. [Google Scholar] [CrossRef]
- Byomkesh, T.; Nakagoshi, N.; Dewan, A.M. Urbanization and green space dynamics in Greater Dhaka, Bangladesh. Landsc. Ecol. Eng. 2012, 8, 45–58. [Google Scholar] [CrossRef]
- Mahmoodzadeh, H. Digital change detection using remotely sensed data for monitoring green space destruction in Tabriz. Int. J. Environ. Res. 2007, 1, 35–41. [Google Scholar]
- Schweitzer, L.; Zhou, J. Neighborhood air quality, respiratory health, and vulnerable populations in compact and sprawled regions. J. Am. Plan. Assoc. 2010, 76, 363–371. [Google Scholar] [CrossRef]
- Burton, E. The compact city and social justice. In Proceedings of the Housing Studies Association Spring Conference: Housing, Environment and Sustainability, York, UK, 18–19 April 2001. [Google Scholar]
- Xu, C.; Haase, D.; Pauleit, S. The impact of different urban dynamics on green space availability: A multiple scenario modeling approach for the region of Munich, Germany. Ecol. Indic. 2018, 93, 1–12. [Google Scholar] [CrossRef]
- Qian, Y.; Zhou, W.; Yu, W.; Pickett, S.T. Quantifying spatiotemporal pattern of urban greenspace: New insights from high resolution data. Landsc. Ecol. 2015, 30, 1165–1173. [Google Scholar] [CrossRef]
- Oliveira, R.P.; Perego, P.; de Oliveira, M.N.; Converti, A. Effect of inulin as prebiotic and synbiotic interactions between probiotics to improve fermented milk firmness. J. Food Eng. 2011, 107, 36–40. [Google Scholar] [CrossRef]
- Pugh, T.A.; MacKenzie, A.R.; Whyatt, J.D.; Hewitt, C.N. Effectiveness of green infrastructure for improvement of air quality in urban street canyons. Environ. Sci. Technol. 2012, 46, 7692–7699. [Google Scholar] [CrossRef] [PubMed]
- Van Renterghem, T.; Forssén, J.; Attenborough, K.; Jean, P.; Defrance, J.; Hornikx, M.; Kang, J. Using natural means to reduce surface transport noise during propagation outdoors. Appl. Acoust. 2015, 92, 86–101. [Google Scholar] [CrossRef] [Green Version]
- Alekseeva, I.; Menshikh, D.; Kudryavtseva, O.V. Greening as an element of sustainable urban development: Valuation of economic feasibility, policyassessment and practical examples. Вестник Российского Университета Дружбы народов. Серия: Агрономия и Животноводство 2016, 4, 51–62. [Google Scholar] [CrossRef]
- Zhang, Y.; Van den Berg, A.E.; Van Dijk, T.; Weitkamp, G. Quality over quantity: Contribution of urban green space to neighborhood satisfaction. Int. J. Environ. Res. Public Health 2017, 14, 535. [Google Scholar] [CrossRef] [PubMed]
- Ioja, C.L.; Nita, M.R.; Vanau, G.O.; Onose, D.A.; Gavrilidis, A.A. Using multi-criteria analysis for the identification of spatial land-use conflicts in the Bucharest Metropolitan Area. Ecol. Indic. 2014, 42, 112–121. [Google Scholar] [CrossRef]
- Uy, P.D.; Nakagoshi, N. Analyzing urban green space pattern and eco-network in Hanoi, Vietnam. Landsc. Ecol. Eng. 2007, 3, 143–157. [Google Scholar] [CrossRef]
- Nor Akmar, A.A.; Konijnendijk, C.C.; Sreetheran, M.; Nilsson, K. Greenspace planning and management in Klang valley, Peninsular Malaysia. Urban For. 2011, 37, 99–107. [Google Scholar]
- Brunner, J.; Cozens, P. ‘Where have all the trees gone?’ Urban consolidation and the demise of urban vegetation: A case study from Western Australia. Plan. Pract. Res. 2013, 28, 231–255. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, Y.C. Spatial-temporal dynamics of urban green space in response to rapid urbanization and greening policies. Landsc. Urban Plan. 2011, 100, 268–277. [Google Scholar] [CrossRef]
- Tian, Y.; Jim, C.Y.; Tao, Y. Challenges and strategies for greening the compact city of Hong Kong. J. Urban Plan. Dev. 2012, 138, 101–109. [Google Scholar] [CrossRef]
- Irga, P.J.; Braun, J.T.; Douglas, A.N.J.; Pettit, T.; Fujiwara, S.; Burchett, M.D.; Torpy, F.R. The distribution of green walls and green roofs throughout Australia: Do policy instruments influence the frequency of projects? Urban For. Urban Green. 2017, 24, 164–174. [Google Scholar] [CrossRef]
- CBS. Kerncijfers wijken en buurten 2018. Available online: http://statline.cbs.nl/Statweb/ (accessed on 2 July 2018).
- CBS/PBL. Regionale Prognose 2016–2040; Centraal Bureau voor de Statistiek: Den Haag, The Netherlands, 2016.
- Gemeente Amsterdam. Agenda Groen; Gemeente Amsterdam: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Gemeente Amsterdam. Interactieve kaarten. Available online: https://maps.amsterdam.nl/ (accessed on 20 May 2018).
- Openstreetmap. Openstreetmap. Available online: https://www.openstreetmap.org/#map=14/49.1388/-102.9961 (accessed on 20 May 2018).
- Gemeente Amsterdam. De Hoofdgroenstructuur Geordend; Gemeente Amsterdam: Amsterdam, The Netherlands, 2002. [Google Scholar]
- McGarigal, K. Fragstats Help; University of Massachusetts: Amherst, MA, USA, 2015. [Google Scholar]
- Tudor, M.; Radoslav, R.; Spiridon, L.C.; Păcurar, L. Assessing pedestrian accessibility to green space using GIS. Transylv. Rev. Adm. Sci. 2014, 10, 116–139. [Google Scholar]
- Maimaitijiang, M.; Ghulam, A.; Sandoval, J.O.; Maimaitiyiming, M. Drivers of land cover and land use changes in St. Louis metropolitan area over the past 40 years characterized by remote sensing and census population data. Int. J. Appl. Earth Obs. Geoinf. 2015, 35, 161–174. [Google Scholar] [CrossRef]
- Digital Globe. Digital globe. Available online: https://discover.digitalglobe.com/ (accessed on 20 May 2018).
- Gemeente Amsterdam. Monitor Agenda Groen December 2017; Gemeente Amsterdam: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Gill, S.E.; Handley, J.F.; Ennos, A.R.; Pauleit, S. Adapting Cities for Climate Change: The Role of the Green Infrastructure. Built Environ. 2007, 33, 115–133. [Google Scholar] [CrossRef]
- Jim, C.Y. Green-space preservation and allocation for sustainable greening of compact cities. Cities 2004, 21, 311–320. [Google Scholar] [CrossRef]
- Kong, F.; Yin, H.; Nakagoshi, N.; Zong, Y. Urban green space network development for biodiversity conservation: Identification based on graph theory and gravity modeling. Landsc. Urban Plan. 2010, 95, 16–27. [Google Scholar] [CrossRef]
Satellite | Bands Used | Spectral Range (newtonmeters) | Spatial Resolution (m) | Satellite Sensor (m) | Acquisition Date and Time (UTM + 1) |
---|---|---|---|---|---|
Worldview 2 | 7 (NIR 1) | 770–895 | 1.84 | 0.46 | 25 September 2016 10:40 |
5 (red) | 630–690 | ||||
3 (green) | 510–580 | ||||
Quickbird | 4 (NIR) | 760–900 | 2.41 | 0.64 | 16 July 2003 10:30 |
3 (red) | 630–690 | ||||
2 (green) | 520–600 |
Ground Truth Reference Class | |||||
---|---|---|---|---|---|
Green Space | Urban | Water | Total Sample | User’s Accuracy | |
Green space | 58 | 2 | 0 | 60 | 96.67% |
Urban | 0 | 59 | 1 | 60 | 98.33% |
Water | 0 | 5 | 55 | 60 | 91.67% |
Producer’s accuracy | 100.00% | 89.39% | 98.21% | ||
Overall classification accuracy | 95.56% | ||||
Kappa coefficient | 0.933 |
Ground Truth Reference Class | |||||
---|---|---|---|---|---|
Green Space | Urban | Water | Total Sample | User’s Accuracy | |
Green space | 60 | 0 | 0 | 60 | 100.00% |
Urban | 0 | 57 | 3 | 60 | 95.00% |
Water | 0 | 4 | 56 | 60 | 93.33% |
Producer’s accuracy | 100.00% | 93.44% | 94.92% | ||
Overall classification accuracy | 96.11% | ||||
Kappa coefficient | 0.942 |
2003 | 2016 | Change 2003–2016 | |
---|---|---|---|
Land use shares | |||
Green space | 39.95% | 35.71% | −4.24 |
urban a | 44.52% | 49.86% | 5.34 |
Water | 15.53% | 14.43% | −1.10 |
Total area of green space (km2) | 28.42 | 25.35 | −3.07 |
Shape measures | |||
Patch Density of green spaces (patches per km2 of green space) | 735.23 | 882.12 | 146.88 |
Patch Density of green spaces (patchers per km2 of green space) excluding small patches under 300 m2 | 168.82 | 166.07 | −2.75 |
Shape Index b of green space (perimeter/minimum possible perimeter based on area) | 154 | 152 | −2.34 |
Shape Index b of green space (perimeter/minimum possible perimeter based on area) excluding small patches under 300 m2 | 129 | 116 | −12.79 |
Distribution measures | |||
Percent of urban land within 50 m from green space of at least 300 m2 | 90.77% | 88.48% | −2.29 |
Percent of urban land within 50 m from green space of at least 500 m2 | 87.98% | 85.23% | −2.75 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giezen, M.; Balikci, S.; Arundel, R. Using Remote Sensing to Analyse Net Land-Use Change from Conflicting Sustainability Policies: The Case of Amsterdam. ISPRS Int. J. Geo-Inf. 2018, 7, 381. https://doi.org/10.3390/ijgi7090381
Giezen M, Balikci S, Arundel R. Using Remote Sensing to Analyse Net Land-Use Change from Conflicting Sustainability Policies: The Case of Amsterdam. ISPRS International Journal of Geo-Information. 2018; 7(9):381. https://doi.org/10.3390/ijgi7090381
Chicago/Turabian StyleGiezen, Mendel, Stella Balikci, and Rowan Arundel. 2018. "Using Remote Sensing to Analyse Net Land-Use Change from Conflicting Sustainability Policies: The Case of Amsterdam" ISPRS International Journal of Geo-Information 7, no. 9: 381. https://doi.org/10.3390/ijgi7090381
APA StyleGiezen, M., Balikci, S., & Arundel, R. (2018). Using Remote Sensing to Analyse Net Land-Use Change from Conflicting Sustainability Policies: The Case of Amsterdam. ISPRS International Journal of Geo-Information, 7(9), 381. https://doi.org/10.3390/ijgi7090381