Dynamic Monitoring of Forest Land in Fuling District Based on Multi-Source Time Series Remote Sensing Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Methods
2.2.1. Landsat and HJ-1 A/B Time Series Remote Sensing Image Data
2.2.2. Verification Data
2.2.3. Multi-Source Time Series Remote Sensing Image Fusion Method Based on Space-Time Features
3. Results
3.1. Image Fusion Results
3.2. Forest Monitoring Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gartner, P.; Forster, M.; Kleinschmit, B. The benefit of synthetically generated RapidEye and Landsat 8 data fusion time series for riparian forest disturbance monitoring. Remote Sens. Environ. 2016, 177, 237–247. [Google Scholar] [CrossRef] [Green Version]
- Guttler, F.; Lenco, D.; Nin, J.; Teisseire, M.; Poncelet, P. A graph-based approach to detect spatiotemporal dynamics in satellite image time series. ISPRS J. Photogramm. Remote Sens. 2017, 130, 92–107. [Google Scholar] [CrossRef] [Green Version]
- Tran, T.V.; de Beurs, K.M.; Julian, J.P. Monitoring forest disturbances in Southeast Oklahoma using Landsat and MODIS images. Int. J. Appl. Earth Obs. Geoinf. 2016, 44, 42–52. [Google Scholar] [CrossRef]
- Vogeler, J.C.; Braaten, J.D.; Slesak, R.A.; Falkowski, M.J. Extracting the full value of the Landsat archive: Inter-sensor harmonization for the mapping of Minnesota forest canopy cover (1973–2015). Remote Sens. Environ. 2018, 209, 363–374. [Google Scholar] [CrossRef]
- Gasparovic, M.; Jogun, T. The effect of fusing Sentinel-2 bands on land-cover classification. Int. J. Remote Sens. 2018, 39, 822–841. [Google Scholar] [CrossRef]
- Masek, J.G.; Huang, C.Q.; Wolfe, R.; Cohen, W.; Hall, F.; Kutler, J.; Nelson, P. North American forest disturbance mapped from a decadal Landsat record. Remote Sens. Environ. 2008, 112, 2914–2926. [Google Scholar] [CrossRef]
- Lunetta, R.S.; Johnson, D.M.; Lyon, J.G.; Crotwell, J. Impacts of imagery temporal frequency on land-cover change detection monitoring. Remote Sens. Environ. 2004, 89, 444–454. [Google Scholar] [CrossRef]
- Gao, F.; Masek, J.; Schwaller, M.; Hall, F. On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2207–2218. [Google Scholar]
- Zhu, X.L.; Chen, J.; Gao, F.; Chen, X.H.; Masek, J.G. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sens. Environ. 2010, 114, 2610–2623. [Google Scholar] [CrossRef]
- Schmidt, M.; Udelhoven, T.; Gill, T.; Roder, A. Long term data fusion for a dense time series analysis with MODIS and Landsat imagery in an Australian Savanna. J. Appl. Remote Sens. 2012, 6, 063512. [Google Scholar]
- Reiche, J.; Verbesselt, J.; Hoekman, D.; Herold, M. Fusing Landsat and SAR time series to detect deforestation in the tropics. Remote Sens. Environ. 2015, 156, 276–293. [Google Scholar] [CrossRef]
- Wang, Q.M.; Blackburn, G.A.; Onojeghuo, A.O.; Dash, J.; Zhou, L.Q.; Zhang, Y.H.; Atkinson, P.M. Fusion of Landsat 8 OLI and Sentinel-2 MSI Data. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3885–3899. [Google Scholar] [CrossRef]
- Gao, F.; Anderson, M.C.; Zhang, X.Y.; Yang, Z.W.; Alfieri, J.G.; Kustas, W.P.; Mueller, R.; Johnson, D.M.; Prueger, J.H. Toward mapping crop progress at field scales through fusion of Landsat and MODIS imagery. Remote Sens. Environ. 2017, 188, 9–25. [Google Scholar] [CrossRef]
- Hilker, T.; Wulder, M.A.; Coops, N.C.; Linke, J.; McDermid, G.; Masek, J.G.; Gao, F.; White, J.C. A new data fusion model for high spatial- and temporal-resolution mapping of forest disturbance based on Landsat and MODIS. Remote Sens. Environ. 2009, 113, 1613–1627. [Google Scholar] [CrossRef]
- Fu, D.J.; Chen, B.Z.; Wang, J.; Zhu, X.L.; Hilker, T. An Improved Image Fusion Approach Based on Enhanced Spatial and Temporal the Adaptive Reflectance Fusion Model. Remote Sens. 2013, 5, 6346–6360. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.A.; Wu, C.Q.; Li, Q.; Li, J.S. Chinese HJ-1A/B satellites and data characteristics. Sci. China Earth Sci. 2010, 53, 51–57. [Google Scholar] [CrossRef]
- Wang, Q.M.; Wu, C.Q.; Li, Q. Environment Satellite 1 and its application in environmental monitoring. J. Remote Sens. 2010, 14, 104–121. [Google Scholar]
- Pan, Z.K.; Huang, J.F.; Zhou, Q.B.; Wang, L.M.; Cheng, Y.X.; Zhang, H.K.; Blackburn, G.A.; Yan, J.; Liu, J.H. Mapping crop phenology using NDVI time-series derived from HJ-1 A/B data. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 188–197. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.J.; Xue, N.S. Current situation and Sustainable Development Countermeasures of forest resources in Fuling District. Intelligence 2008, 11, 217. (In Chinese) [Google Scholar]
- Zhang, Z.M. Fuling Yearbook; Fuling Yearbook Editorial Department: Chongqing, China, 2015. (In Chinese) [Google Scholar]
- USGS GLOVIS Portal. Available online: http://glovis.usgs.gov (accessed on 6 May 2016).
- Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens. Environ. 2012, 118, 83–94. [Google Scholar] [CrossRef]
- Seber, G.A.F.; Lee, A.J. Linear Regression Analysis, 2nd ed.; Wiley: Hoboken, NJ, USA, 2003. [Google Scholar]
- Mahalanobis, P.C. On the generalized distance in statistics. Proc. Natl. Inst. Sci. India 1936, 2, 49–55. [Google Scholar]
- Xu, Z.X.; Takeuchi, K.; Ishidaira, H. Monotonic trend and step changes in Japanese precipitation. J. Hydrol. 2003, 279, 144–150. [Google Scholar] [CrossRef]
- de Beurs, K.M.; Henebry, G.M. A statistical framework for the analysis of long image time series. Int. J. Remote Sens. 2005, 26, 1551–1573. [Google Scholar] [CrossRef]
- Fernandes, R.; Leblanc, S.G. Parametric (modified least squares) and non-parametric (Theil-Sen) linear regressions for predicting biophysical parameters in the presence of measurement errors. Remote Sens. Environ. 2005, 95, 303–316. [Google Scholar] [CrossRef]
- Cai, B.F.; Yu, R. Advance and evaluation in the long time series vegetation trends research based on remote sensing. J. Remote Sens. 2009, 13, 1170–1186. (In Chinese) [Google Scholar]
- Theil, H. A rank invariant method of linear and polynomial regression analysis, Part 3. Nederl. Akad. Wetensch. Proc. 1950, 53, 1397–1412. [Google Scholar]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Jiang, Q. The situation of returning farmland to forests in the Three Gorges Reservoir area and a new round of conversion of farmland to forests—Taking Zigui County as an example. Hubei Forest. Sci. Technol. 2015, 44, 64–66, 83. (In Chinese) [Google Scholar]
- Xie, X.M.; Min, X.R. Construction experience in the forest in fuling district of chongqing city. Forest. Econ. 2011, 3, 57–58. (In Chinese) [Google Scholar]
- Zhao, L. Analysis and simulation of land use spatial pattern of Fuling district. M. S. Thesis, Southwest University, Chongqing, China, 2014. (In Chinese). [Google Scholar]
- Zhu, Z.; Woodcock, C.E. Continuous change detection and classification of land cover using all available Landsat data. Remote Sens. Environ. 2014, 144, 152–171. [Google Scholar] [CrossRef]
- Cohen, W.B.; Yang, Z.G.; Kennedy, R. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync - Tools for calibration and validation. Remote Sens. Environ. 2010, 114, 2911–2924. [Google Scholar] [CrossRef]
- Huang, C.Q.; Coward, S.N.; Masek, J.G.; Thomas, N.; Zhu, Z.L.; Vogelmann, J.E. An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks. Remote Sens. Environ. 2010, 114, 183–198. [Google Scholar] [CrossRef]
Sensor | Acquisition Time |
---|---|
Landsat 7 ETM+ | 1999-10-01 |
Landsat 7 ETM+ | 2000-09-01 |
Landsat 7 ETM+ | 2002-09-07 |
Landsat 5 TM | 2003-09-18 |
Landsat 7 ETM+ | 2004-09-12 |
Landsat 7 ETM+ | 2005-09-15 |
Landsat 5 TM | 2006-08-09 |
Landsat 7 ETM+ | 2007-09-21 |
Landsat 7 ETM+ | 2008-09-23 |
Landsat 7 ETM+ | 2009-08-25 |
Landsat 7 ETM+ | 2010-08-28 |
Landsat 7 ETM+ | 2011-06-28 |
Landsat 7 ETM+ | 2013-06-17 |
Data | Band | Minimum | Maximum | Mean Value | Standard Deviation | Root Mean Square Difference (RMSE) |
---|---|---|---|---|---|---|
HJ-1 B 20090930 | 1 | 95 | 163 | 108.576 | 5.055 | 0.330 |
2 | 39 | 83 | 47.459 | 3.312 | 0.530 | |
3 | 36 | 107 | 49.337 | 5.775 | 0.536 | |
4 | 32 | 112 | 62.556 | 7.901 | 0.637 | |
Landsat 7 20090825 | 1 | 76 | 155 | 98.643 | 7.185 | - |
2 | 54 | 146 | 76.332 | 8.121 | - | |
3 | 40 | 191 | 70.826 | 13.830 | - | |
4 | 25 | 126 | 63.228 | 14.684 | - | |
Fused image | 1 | 76.002 | 172.125 | 98.251 | 7.367 | 0.156 |
2 | 55.489 | 182.686 | 75.652 | 9.456 | 0.339 | |
3 | 36.738 | 235.146 | 69.876 | 13.564 | 0.188 | |
4 | 22.840 | 128.591 | 62.035 | 13.562 | 0.396 |
Strong Recession | Micro-Recession | Unchanged | Weak Growth | Strong Growth | |
---|---|---|---|---|---|
Percentage (%) | 2.15 | 4.72 | 0.35 | 31.98 | 60.08 |
Class | Positive Change | Unchanged | Negative Change | Total | User’s Accuracy (%) |
---|---|---|---|---|---|
Positive change | 614 | 32 | 23 | 669 | 91.78 |
Unchanged | 24 | 116 | 41 | 181 | 64.09 |
Negative change | 17 | 8 | 256 | 281 | 91.10 |
Total | 655 | 156 | 320 | 1131 | - |
Producer’s Accuracy (%) | 93.74 | 74.36 | 80.00 | Overall Accuracy (%) | 87.18 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, B.; Tan, Y.; Guo, D.; Xu, B. Dynamic Monitoring of Forest Land in Fuling District Based on Multi-Source Time Series Remote Sensing Images. ISPRS Int. J. Geo-Inf. 2019, 8, 36. https://doi.org/10.3390/ijgi8010036
Bai B, Tan Y, Guo D, Xu B. Dynamic Monitoring of Forest Land in Fuling District Based on Multi-Source Time Series Remote Sensing Images. ISPRS International Journal of Geo-Information. 2019; 8(1):36. https://doi.org/10.3390/ijgi8010036
Chicago/Turabian StyleBai, Bingxin, Yumin Tan, Dong Guo, and Bo Xu. 2019. "Dynamic Monitoring of Forest Land in Fuling District Based on Multi-Source Time Series Remote Sensing Images" ISPRS International Journal of Geo-Information 8, no. 1: 36. https://doi.org/10.3390/ijgi8010036
APA StyleBai, B., Tan, Y., Guo, D., & Xu, B. (2019). Dynamic Monitoring of Forest Land in Fuling District Based on Multi-Source Time Series Remote Sensing Images. ISPRS International Journal of Geo-Information, 8(1), 36. https://doi.org/10.3390/ijgi8010036