Ranking of Illegal Buildings Close to Rivers: A Proposal, Its Implementation and Preliminary Validation
Abstract
:1. Introduction
- IBs impact the property market, because they discourage investments in real estate development;
- IBs impact on the government’s ability to manage and plan land use;
- IBs cause reduction of the revenue of the local government, because owners of those dwellings do not pay property taxes;
- IBs determine the degradation of the landscape, the primary source of revenue for countries like Italy thanks to the tourism;
- IBs contribute to expand the corruption;
- IBs are more exposed than legal constructions to natural hazards such as earthquakes (IBs have not passed any test of compliance with the rules about building stability, in other words, there is a high probability that they are structurally unsafe constructions) and floods (a problem that affects IBs built in the catchment of rivers). This issue is particularly severe because it is linked to the safety of the occupants of those buildings. In 2018, different Italian regions—Liguria and Sicily above all—suffered severe floods with damage to buildings and many victims. At the beginning of November 2018, the wave of bad weather caused 12 victims in Sicily.
2. Materials and Methods
2.1. Relevance of the Problem
2.2. Notations
- is the portion of land of interest for the study (e.g., a municipality, a region, or a state). GeoArea is defined as the pair , where description is a string.
- }, where is a contour line, which is a curve whose points have the same elevation with respect to the sea level. A generic contour line is defined as the tuple , where is an identifying code.
- (Rivers) is a river that crosses the GeoArea}. The generic river is described by the tuple . denotes a buffer of width w around river ; the buffer is the geometric counterpart of the legal notion of SofR.
- }, where denotes a in the . Each building in is defined as the tuple , with geom being the footprint of , is a Boolean variable denoting whether the building is illegal or not, and elevation is the value of the building’s altitude over the sea level. S is a positive numeric value denoting the degree of (spatial) exposure of to the flood hazard.
2.3. The Metric S
2.3.1. Step 1: Census of IBs
2.3.2. Step 2: Ranking of IBs
2.4. Implementation of the Proposal
- GeoArea(id, geom);
- ContourLines(id, elevation, geom);
- Rivers(id, name, geom, river_buffer);
- Buildings(id, geom, status, elevation, S).
3. A Case Study
3.1. The Input Data
3.2. Results
3.2.1. IBs Census
3.2.2. Ranking of the IBs
3.3. Validation of the Ranking
- True Positives (TP). This quantity denotes the cases in which the classification algorithm has recognized correctly the class to which they belong to.
- False Positives (FP). This quantity denotes the cases of wrong classification. In practical terms, a false positive constitutes a false alarm.
- True Negatives (TN). This quantity denotes the cases that the algorithm has recognized correctly not belonging to the class.
- False Negatives (FN). This quantity denotes the cases for which the algorithm has confused the class to which an element belongs to.
3.3.1. Manual Classification of the IBs
3.3.2. Analysis of the Ranking of the Top-34 IBs
4. Conclusions
Cautionary Notes
Supplementary Materials
Funding
Conflicts of Interest
References
- Ntonjira, L. Developing Land Information Management System (LIMS) for County Governments in Kenya: A Case Study Kirinyaga County. In Proceedings of the World Bank Conference on Land and Poverty, Washington, DC, USA, 20–24 March 2017. [Google Scholar]
- Pindiga, A.M.; Orisakwe, K. Development of a Land Information System of Tumpure Residential and Commercial Layout in Akko Local Government Area of Gombe State. IOSR J. Environ. Sci. Toxicol. Food Technol. (IOSR-JESTFT) 2013, 3, 54–63. [Google Scholar]
- Di Felice, P. Metrics to Rank Illegal Buildings; Misra, S., Gervasi, O., Murgante, B., Stankova, E., Korkhov, V., Torre, C., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O., Tarantino, E., Eds.; LNCS 11620; Springer: Basel, Switzerland, 2019; pp. 34–43. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Lugeri, N.; Dankers, R.; Hirabayashi, Y.; Döll, P.; Pińskwar, I.; Dysarz, T.; Hochrainer, S.; Matczak, P. Assessing river flood risk and adaptation in Europe—Review of projections for the future. Mitigat. Adapt. Strateg. Glob. Chang. 2010, 15, 641–656. [Google Scholar] [CrossRef]
- Huang, G. A Revisit to Impact of Urbanization on Flooding. In Urban Planning and Water-Related Disaster, Management; Huang, G., Shen, Z., Eds.; Strategies for Sustainability; Springer: Cham, Switzeraland, 2019. [Google Scholar] [CrossRef]
- Agbola, B.S.; Ajayi, O.; Taiwo, O.J.; Wahab, B.W. The August 2011 Flood in Ibadan, Nigeria: Anthropogenic Causes and Consequences. Int. J. Disaster Risk Sci. 2012, 3, 20–217. [Google Scholar] [CrossRef]
- Chen, X.; Tian, C.; Meng, X.; Xu, Q.; Cui, G.; Zhang, Q.; Xiang, L. Analyzing the effect of urbanization on flood characteristics at catchment levels. Proc. IAHS 2015, 370, 33–38. [Google Scholar] [CrossRef]
- Dissanayake, P.; Hettiarachchia, S.; Siriwardana, C. Increase in Disaster Risk due to inefficient Environmental Management, Land use policies and Relocation Policies. Case studies from Sri Lanka. Procedia Eng. 2018, 212, 1326–1333. [Google Scholar] [CrossRef]
- Hollis, G.E. The effects of urbanization on floods of different recurrence intervals. Water Resour. Res. 1975, 11, 431–435. [Google Scholar] [CrossRef]
- Li, G.F.; Xiang, X.Y.; Tong, Y.Y.; Wang, H.M. Impact assessment of urbanization on flood risk in the Yangtze River Delta. Stoch. Environ. Res. Risk Assess. 2013, 27, 1683–1693. [Google Scholar] [CrossRef]
- Mukherjee, D. Effect of urbanization on flood—A review with recent flood in chennai (India). Int. J. Eng. Sci. Res. Technol. 2016, 5. [Google Scholar] [CrossRef]
- Nirupama, N.; Simonovic, S.P. Increase of Flood Risk due to Urbanisation: A Canadian Example. Nat. Hazards 2007, 40, 25–41. [Google Scholar] [CrossRef]
- Patra, S. Impacts of urbanization on land use/cover changes and its probable implications on local climate and groundwater level. J. Urban Manag. 2018, 7, 70–84. [Google Scholar] [CrossRef]
- Pradhan-Salike, I.; Raj Pokharel, J. Impact of Urbanization and Climate Change on Urban Flooding: A case of the Kathmandu Valley. J. Nat. Resour. Dev. 2017, 7, 56–66. [Google Scholar] [CrossRef]
- Zhou, Q.; Leng, G.; Su, J.; Renc, Y. Comparison of urbanization and climate change impacts on urban flood volumes: Importance of urban planning and drainage adaptation. Sci. Total Environ. 2019, 658, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Jones, P. Formalizing the Informal: Understanding the Position of Informal Settlements and Slums in Sustainable Urbanization Policies and Strategies in Bandung, Indonesia. Sustainability 2017, 9, 1436. [Google Scholar] [CrossRef]
- Amado, M.; Amado, M.; Poggi, F.; Martins, A.; Vieira, N.; Amado, A. Transforming Cape Vert Informal Settlements. Sustainability 2018, 10, 2571. [Google Scholar] [CrossRef]
- Kuffer, M. The Scope of Earth-Observation to Improve the Consistency of the SDG Slum Indicator. ISPRS Int. J. Geo-Inf. 2018, 7, 428. [Google Scholar] [CrossRef]
- Qian, J.; Peng, Y.; Luo, C.; Wu, C.; Du, Q. Urban Land Expansion and Sustainable Land Use Policy in Shenzhen: A Case Study of China’s Rapid Urbanization. Sustainability 2016, 8, 16. [Google Scholar] [CrossRef]
- Forte, F. Illegal Buildings and Local Finance in New Metropolitan Perspectives. In Advanced Engineering Forum; Bevilacqua, C., Calabrò, F., Della Spina, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; Volume 11, pp. 600–606. [Google Scholar]
- Forte, F. The Management of Informal Settlements for Urban Sustainability: Experiences from the Campania Region (Italy); WIT Transactions on Ecology and The Environment, WIT Press: Southampton, UK, 2015; Volume 194, pp. 153–164. [Google Scholar] [CrossRef]
- Fiorillo, A. (Ed.) 2007 Urban Ecosystem; Legambiente: Rome, Italy, 2007; Available online: http://www.legambiente.it/contenuti/dossier/ecosistema-urbano-2007 (accessed on 6 October 2019).
- Abbatti l’Abuso. I Numeri delle (Mancate) Demolizioni nei Comuni Italiani. Palermo, September 2018. Available online: www.legambiente.it (accessed on 6 October 2019).
- Cialdea, D.; Quercio, N. A Methodology for Illegal Settlements re-Conversion. Int. J. Des. Nat. Ecodyn. 2018, 13, 147–155. [Google Scholar] [CrossRef]
- Awrangjeb, M. Effective Generation and Update of a Building Map Database through Automatic Building Change Detection from LiDAR Point Cloud Data. Remote Sens. 2015, 7, 14119–14150. [Google Scholar] [CrossRef]
- Avbelj, J.; Muller, R. Quality Assessment of Building Extraction From Remote Sensing Imagery. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Quebec City, QC, Canada, 13–18 July 2014. [Google Scholar] [CrossRef]
- Dong, Y.; Zhang, L.; Cui, X.; Ai, H.; Xu, B. Extraction of Buildings from Multiple-View Aerial Images Using a Feature-Level-Fusion Strategy. Remote Sens. 2018, 10, 1947. [Google Scholar] [CrossRef]
- Shetty, A.R.; Mohan, K.B. Building Extraction in High Spatial Resolution Images Using Deep Learning Techniques; Gervasi, O., Murgante, B., Misra, S., Stankova, E., Torre, C.M., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O., Tarantino, E., Ryu, Y., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzeraland, 2018; Volume 10962, pp. 327–338. [Google Scholar] [CrossRef]
- Singhal, S.; Radhika, S. Automatic Detection of Buildings from Aerial Images Using Color Invariant Features and Canny Edge Detection. Int. J. Eng. Trends Technol. 2014, 11, 393–396. [Google Scholar] [CrossRef]
- Karathanassi, V.; Iossifidis, C.; Rokos, D. Remote sensing methods and techniques as a tool for the implementation of environmental legislation. The Greek Forest Law case study. Int. J. Remote Sens. 2003, 24, 39–51. [Google Scholar] [CrossRef]
- Prathap, G.; Afanasyev, I. Deep Learning Approach for Building Detection in Satellite Multispectral Imagery. In Proceedings of the 2018 International Conference on Intelligent Systems (IS), Funchal, Madeira, Portugal, 25–27 September 2018. [Google Scholar]
- Xu, S.; Vosselman, G.; Elberink, S.O. Detection and Classification of Changes in Buildings from Airborne Laser Scanning Data. Remote Sens. 2015, 7, 17051–17076. [Google Scholar] [CrossRef]
- Yang, L.; Chi, T.H.; Peng, L.; Sun, X. Research of Illegal Building Monitoring System Construction with 3S Integration Technology. In Proceedings of the 2nd International Conference on Information Science and Engineering, Hangzhou, China, 3–5 December 2010; pp. 3908–3911. [Google Scholar]
- Zhu, D.; Fan, J. IBMDCH: Illegal building monitoring in digital city based on HPC. In Geoinformatics 2008 and Joint Conference on GIS and Built Environment: Monitoring and Assessment of Natural Resources and Environments; SPIE: Philadelphia, PA, USA, 2008; Volume 7145, p. 71451A. [Google Scholar] [CrossRef]
- Burby, R.J.; French, S.P.; Cigler, B.A.; Kaiser, E.J.; Moreau, D.; Stiftel, B. Flood Plain Land Use Management: A National Assessment; Westview Press: Boulder, CO, USA, 1985. [Google Scholar]
- Holway, J.M.; Burby, R.J. Reducing flood losses local planning and land use controls. J. Am. Plan. Assoc. 1993, 59, 205–216. [Google Scholar] [CrossRef]
- Ha, G.; Jung, J. Applying conservation easement policy to river spaces to mitigate natural hazards in South Korea. Nat. Hazards 2019, 95, 805–822. [Google Scholar] [CrossRef]
- McLaughlin, R.J. Rolling easements as a response to sea level rise in coastal Texas: Current status of the law after Severance v. Patterson. J. Land Use Environ. Law 2010, 26, 365. [Google Scholar]
- Biron, P.M.; Buffin-Belanger, T.; Larocque, M.; Chone, G.; Cloutier, C.A.; Ouellet, M.A.; Demers, S.; Olsen, T.; Desjarlais, C.; Eyquem, J. Freedom Space for Rivers: A Sustainable Management Approach to Enhance River Resilience. Environ. Manag. 2014, 54, 1056–1073. [Google Scholar] [CrossRef] [PubMed]
- Pathak, S.; Ahmad, M.M. Role of government in flood disaster recovery for SMEs in Pathumthani province, Thailand. Nat. Hazards 2018, 93, 957–966. [Google Scholar] [CrossRef]
- Koksalan, M.M.; Wallenius, J.; Zionts, S. Multiple Criteria Decision Making: From Early History to the 21st Century; World Scientific: Singapore, 2011; ISBN-10 9814335592, ISBN-13 978-9814335591. [Google Scholar]
- Tzeng, G.H.; Huang, J.J. Multiple Attribute Decision Making. Methods and Applications; Taylor & Francis: Abingdon, UK, 2011. [Google Scholar]
- Hwang, C.L.; Yoon, K. Multiple Attribute Decision Making, Methods and Applications. A State-of-the-Art Survey; Springer: New York, NY, USA, 1981. [Google Scholar] [CrossRef]
- Forte, F.; Granata, M.F.; Nesticò, A. A Prioritisation Model Aiding for the Solution of Illegal Buildings Problem; Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Torre, C.M., Taniar, D., Apduhan, B.O., Stankova, E., Wang, S., Eds.; Part I, LNCS 9786; Springer: Basel, Switzerland, 2016; pp. 193–206. [Google Scholar] [CrossRef]
- Ting, K.M. Confusion Matrix. In Encyclopedia of Machine Learning and Data Mining; Sammut, C., Webb, G.I., Eds.; Springer: Boston, MA, USA, 2017; ISBN 978-1-4899-7687-1. [Google Scholar] [CrossRef]
- Powers, D. Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness and Correlation. J. Mach. Learn. Technol. 2011, 2, 37–63. [Google Scholar]
- Gu, D.; Gerland, P.; Pelletier, F.; Cohen, B. Risks of Exposure and Vulnerability to Natural Disasters at the City Level: A Global Overview; Population Division, Technical Paper No. 2015/2; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Blahut, J.; Poretti, I.; De Amicis, M.; Sterlacchini, S. Database of geo-hydrological disasters for civil protection purposes. Nat. Hazards 2012, 60, 1065–1083. [Google Scholar] [CrossRef]
Number of Regions | IB Rate (%) | |
---|---|---|
North | 7 | 5.3 |
Centre | 7 | 11.6 |
South & islands | 6 | 35.9 |
Definition | Entity |
---|---|
GeoArea | |
ContourLines | |
Rivers | |
Buildings |
Predicted Class | Total | |||
---|---|---|---|---|
Class | No Class | |||
Actual Class | Class | TP | FN | P = TP + FN |
No Class | FP | TN | N = FP + TN | |
Total | TP + FP | FN + TN | P + N |
Class | Number of IBs | List of Their ID |
---|---|---|
High | 7 | 35990, 66089, 35986, 73424, 87942, 70015, 16044 |
Medium | 27 | 6611, 16013, 16048, 24450, 26999, 33206, 45612, 45979, 45980, 45981, 45982, 46250, 48394, 52737, 70014, 73283, 73375, 73430, 74941, 74943, 87075, 87079, 87081, 87083, 87084, 87114, 87927 |
Low | 0 |
ID | The WGS 84 Coordinates of the Top-34 IBs | The Score |
---|---|---|
35986 | 13.7909057773591 41.8112451846785 | 0.3628 |
70015 | 13.2703125062050 42.4483463160699 | 0.2390 |
66089 | 14.4432034979970 42.3074266229421 | 0.2029 |
73424 | 13.2636453804864 42.4675006580673 | 0.1996 |
35990 | 13.7905616382648 41.8109830098870 | 0.1981 |
16044 | 13.7436114375597 42.6123550872563 | 0.1976 |
87942 | 13.3391307998231 42.3547098998747 | 0.1802 |
6611 | 13.8817386009473 42.1996467035247 | 0.1690 |
45980 | 13.9329036425132 41.7757909721736 | 0.1558 |
87079 | 13.7914246030217 41.8098932751395 | 0.1485 |
87083 | 13.7914071282398 41.8093113608093 | 0.1484 |
73283 | 13.2633510504450 42.4675996999472 | 0.1456 |
87114 | 13.7910818999891 41.8081822999891 | 0.1445 |
87075 | 13.7912285170103 41.8100614001291 | 0.1420 |
45981 | 13.9325901556839 41.7758655392011 | 0.1412 |
87081 | 13.7913628516070 41.8095598485260 | 0.1305 |
87927 | 13.3396737815245 42.3547543222198 | 0.1276 |
24450 | 13.9353473815291 41.7752156564722 | 0.1271 |
33206 | 13.4647030869786 42.3258930064366 | 0.1257 |
74943 | 13.3826937064352 42.3494226012390 | 0.1236 |
16013 | 13.7436534001395 42.6124724000867 | 0.1220 |
48394 | 13.4679154591254 42.6319865247060 | 0.1197 |
16048 | 13.7422345447418 42.6122319611365 | 0.1154 |
52737 | 14.1659917501037 42.4259393999822 | 0.1141 |
70014 | 13.2701022825392 42.4484418526901 | 0.1140 |
46250 | 13.7913393295416 41.8109997679243 | 0.1080 |
73375 | 13.2628470000176 42.4700705000001 | 0.1079 |
45612 | 13.7983183441987 42.1101598916377 | 0.1043 |
45982 | 13.9327483418478 41.7758401092574 | 0.1031 |
45979 | 13.9330667114308 41.7757570874759 | 0.0964 |
74941 | 13.3801149335507 42.3515454579104 | 0.0948 |
73430 | 13.2625608000355 42.4652139000185 | 0.0937 |
26999 | 13.3520049413571 42.3656051819705 | 0.0925 |
87084 | 13.7913058647703 41.8093693195435 | 0.0919 |
Low | Medium | High | |
---|---|---|---|
Recall | Not Applicable | 1 | 1 |
Precision | Not Applicable | 1 | 1 |
Accuracy | Not Applicable | 1 | 1 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Felice, P.D. Ranking of Illegal Buildings Close to Rivers: A Proposal, Its Implementation and Preliminary Validation. ISPRS Int. J. Geo-Inf. 2019, 8, 510. https://doi.org/10.3390/ijgi8110510
Felice PD. Ranking of Illegal Buildings Close to Rivers: A Proposal, Its Implementation and Preliminary Validation. ISPRS International Journal of Geo-Information. 2019; 8(11):510. https://doi.org/10.3390/ijgi8110510
Chicago/Turabian StyleFelice, Paolino Di. 2019. "Ranking of Illegal Buildings Close to Rivers: A Proposal, Its Implementation and Preliminary Validation" ISPRS International Journal of Geo-Information 8, no. 11: 510. https://doi.org/10.3390/ijgi8110510
APA StyleFelice, P. D. (2019). Ranking of Illegal Buildings Close to Rivers: A Proposal, Its Implementation and Preliminary Validation. ISPRS International Journal of Geo-Information, 8(11), 510. https://doi.org/10.3390/ijgi8110510