Hot Spot Analysis versus Cluster and Outlier Analysis: An Enquiry into the Grouping of Rural Accommodation in Extremadura (Spain)
Abstract
:1. Introduction
2. Materials and Methods
- -
- inverse distance, which is based on the premise that the farther away an element is, the smaller the impact it has;
- -
- inverse distance squared, that only differs from the previous one in that the slope is sharper, so neighbour influences drop off more quickly;
- -
- fixed distance band, whereby the neighbouring features within a set distance of influence are weighted equally (1 in this case), whereas features outside the specified distance do not influence calculations (their weight is zero).
- -
- Euclidean distance, which uses the straight-line distance between points A and B; i.e., the shortest possible distance.
- -
- Manhattan distance, when the distance between two points is measured along the x and y axes; i.e., it is the distance you must travel if you are restricted to north–south and east–west travel only.
3. Results
3.1. Hot Spot Analysis
3.2. Cluster and Outlier Analysis
3.3. Comparison of Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
ID Rural Accommodation * | Accommodation Vacancies | Hot Spot Analysis | Cluster and Outlier Analysis | |||||||
---|---|---|---|---|---|---|---|---|---|---|
GiZ Score | GiP Value | Number Neighbours | Gi Bin | Lmi Index | LMiZ Score | LMiP Value | CO Type | Number Neighbours | ||
2 | 8 | −2.059 | 0.039 | 17 | −2 | 2.884 | 1.941 | 0.010 | LL | 16 |
22 | 2 | −2.099 | 0.036 | 16 | −2 | 8.351 | 1.956 | 0.015 | LL | 15 |
26 | 2 | −1.649 | 0.099 | 65 | −1 | 13.583 | 1.516 | 0.070 | 64 | |
27 | 9 | −1.649 | 0.099 | 64 | −1 | 2.789 | 1.742 | 0.020 | LL | 63 |
38 | 12 | 3.459 | 0.001 | 61 | 3 | 4.660 | 3.145 | 0.010 | HH | 60 |
39 | 4 | 3.405 | 0.001 | 61 | 3 | −23.66 | −3.306 | 0.005 | LH | 60 |
41 | 17 | 3.139 | 0.002 | 51 | 3 | 17.759 | 2.840 | 0.015 | HH | 50 |
42 | 10 | 3.139 | 0.002 | 51 | 3 | −1.917 | −3.150 | 0.005 | LH | 50 |
43 | 8 | 3.139 | 0.002 | 51 | 3 | −7.868 | −2.934 | 0.010 | LH | 50 |
44 | 4 | 3.026 | 0.002 | 48 | 3 | −18.987 | −3.060 | 0.005 | LH | 47 |
46 | 12 | 2.993 | 0.003 | 45 | 3 | 3.492 | 2.918 | 0.015 | HH | 44 |
47 | 14 | 2.289 | 0.022 | 24 | 2 | 4.761 | 2.176 | 0.050 | HH | 23 |
76 | 32 | 1.886 | 0.059 | 3 | 1 | 1.049 | 0.244 | 0.315 | 2 | |
78 | 10 | 1.319 | 0.187 | 4 | 0 | −0.240 | −1.742 | 0.050 | LH | 3 |
79 | 20 | 2.338 | 0.019 | 4 | 2 | 4.273 | 2.298 | 0.045 | HH | 3 |
81 | 21 | 1.891 | 0.059 | 2 | 1 | 1.766 | 1.588 | 0.065 | 1 | |
89 | 7 | 3.172 | 0.002 | 6 | 3 | −4.054 | −3.405 | 0.005 | LH | 5 |
91 | 8 | 2.006 | 0.045 | 6 | 2 | −1.878 | −2.323 | 0.030 | LH | 5 |
92 | 8 | 2.700 | 0.007 | 7 | 3 | −2.670 | −3.069 | 0.010 | LH | 6 |
95 | 10 | 2.785 | 0.005 | 8 | 3 | −0.699 | −2.789 | 0.020 | LH | 7 |
98 | 28 | 2.785 | 0.005 | 8 | 3 | 12.803 | 1.856 | 0.060 | 7 | |
99 | 44 | 3.111 | 0.002 | 7 | 3 | 16.486 | 1.537 | 0.060 | 6 | |
100 | 24 | 3.111 | 0.002 | 7 | 3 | 11.472 | 2.743 | 0.020 | HH | 6 |
101 | 14 | 3.561 | 0.000 | 6 | 3 | 3.710 | 3.976 | 0.005 | HH | 5 |
102 | 28 | 2.353 | 0.019 | 1 | 2 | 0.000 | 0.000 | 1.000 | 0 | |
128 | 4 | −1.563 | 0.118 | 3 | 0 | 1.618 | 1.128 | 0.045 | LL | 2 |
129 | 4 | −1.563 | 0.118 | 3 | 0 | 1.618 | 1.272 | 0.030 | LL | 2 |
134 | 20 | 2.189 | 0.029 | 9 | 2 | 6.615 | 2.166 | 0.030 | HH | 8 |
135 | 8 | 2.189 | 0.029 | 9 | 2 | −2.461 | −2.308 | 0.030 | LH | 8 |
136 | 10 | 2.189 | 0.029 | 9 | 2 | −0.583 | −2.198 | 0.025 | LH | 8 |
137 | 40 | 2.189 | 0.029 | 9 | 2 | 10.054 | 0.874 | 0.195 | 8 | |
138 | 12 | 2.189 | 0.029 | 9 | 2 | 1.149 | 2.181 | 0.040 | HH | 8 |
139 | 12 | 2.189 | 0.029 | 9 | 2 | 1.149 | 2.336 | 0.030 | HH | 8 |
140 | 6 | −1.930 | 0.054 | 7 | −1 | 2.800 | 1.798 | 0.010 | LL | 6 |
141 | 16 | 2.189 | 0.029 | 9 | 2 | 4.174 | 2.356 | 0.035 | HH | 8 |
142 | 16 | 2.189 | 0.029 | 9 | 2 | 4.174 | 2.056 | 0.045 | HH | 8 |
143 | 10 | 2.189 | 0.029 | 9 | 2 | −0.583 | −2.125 | 0.040 | LH | 8 |
144 | 12 | −1.093 | 0.275 | 3 | 0 | −0.376 | −1.496 | 0.010 | HL | 2 |
146 | 8 | −1.930 | 0.054 | 7 | −1 | 1.694 | 1.833 | 0.005 | LL | 6 |
147 | 4 | −1.742 | 0.082 | 8 | −1 | 3.596 | 1.433 | 0.045 | LL | 7 |
148 | 2 | −1.742 | 0.082 | 8 | −1 | 4.361 | 1.389 | 0.060 | 7 | |
149 | 3 | −1.930 | 0.054 | 7 | −1 | 4.185 | 1.667 | 0.025 | LL | 6 |
150 | 8 | −1.930 | 0.054 | 7 | −1 | 1.694 | 2.070 | 0.005 | LL | 6 |
151 | 6 | −1.930 | 0.054 | 7 | −1 | 2.800 | 1.889 | 0.010 | LL | 6 |
159 | 9 | 3.219 | 0.001 | 3 | 3 | −1.290 | −4.501 | 0.005 | LH | 2 |
161 | 32 | 2.610 | 0.009 | 4 | 3 | 6.641 | 1.221 | 0.125 | 3 | |
162 | 32 | 2.610 | 0.009 | 4 | 3 | 6.641 | 1.530 | 0.080 | 3 | |
171 | 8 | 3.140 | 0.002 | 3 | 3 | −2.070 | −3.932 | 0.015 | LH | 2 |
191 | 10 | −2.180 | 0.029 | 19 | −2 | 0.823 | 2.128 | 0.005 | LL | 18 |
192 | 8 | −2.003 | 0.045 | 15 | −2 | 2.627 | 1.796 | 0.025 | LL | 14 |
196 | 10 | −1.700 | 0.089 | 18 | −1 | 0.624 | 1.701 | 0.025 | LL | 17 |
202 | 6 | −2.099 | 0.036 | 16 | −2 | 4.831 | 1.988 | 0.020 | LL | 15 |
206 | 4 | −2.204 | 0.028 | 22 | −2 | 8.357 | 1.975 | 0.005 | LL | 21 |
207 | 8 | 1.123 | 0.261 | 2 | 0 | −0.696 | −2.134 | 0.040 | LH | 1 |
208 | 8 | −2.059 | 0.039 | 17 | −2 | 2.884 | 1.987 | 0.015 | LL | 16 |
209 | 7 | −2.059 | 0.039 | 17 | −2 | 3.904 | 2.132 | 0.005 | LL | 16 |
210 | 7 | −2.059 | 0.039 | 17 | −2 | 3.904 | 2.055 | 0.015 | LL | 16 |
211 | 6 | −2.059 | 0.039 | 17 | −2 | 4.887 | 1.880 | 0.020 | LL | 16 |
213 | 10 | −2.059 | 0.039 | 17 | −2 | 0.736 | 2.022 | 0.005 | LL | 16 |
214 | 6 | −2.059 | 0.039 | 17 | −2 | 4.887 | 2.152 | 0.005 | LL | 16 |
215 | 12 | −2.099 | 0.036 | 16 | −2 | −1.543 | −2.441 | 0.010 | HL | 15 |
216 | 5 | −2.059 | 0.039 | 17 | −2 | 5.834 | 1.878 | 0.025 | LL | 16 |
217 | 4 | −2.059 | 0.039 | 17 | −2 | 6.744 | 1.913 | 0.025 | LL | 16 |
223 | 12 | −1.379 | 0.168 | 13 | 0 | −0.930 | −1.443 | 0.050 | HL | 12 |
224 | 6 | −2.376 | 0.018 | 23 | −2 | 6.667 | 2.159 | 0.005 | LL | 22 |
263 | 16 | −1.308 | 0.191 | 8 | 0 | −3.181 | −1.805 | 0.015 | HL | 7 |
283 | 27 | −1.074 | 0.283 | 11 | 0 | −12.70 | −1.909 | 0.010 | HL | 10 |
324 | 12 | 1.895 | 0.058 | 6 | 1 | 0.804 | 1.859 | 0.080 | 5 | |
325 | 12 | −1.370 | 0.171 | 12 | 0 | −0.889 | −1.642 | 0.025 | HL | 11 |
339 | 8 | 1.795 | 0.073 | 2 | 1 | −1.035 | −3.118 | 0.025 | LH | 1 |
341 | 12 | 1.729 | 0.084 | 3 | 1 | 0.508 | 1.930 | 0.075 | 2 | |
345 | 10 | 1.219 | 0.223 | 2 | 0 | −0.160 | −2.091 | 0.050 | LH | 1 |
349 | 32 | 1.795 | 0.073 | 2 | 1 | −1.035 | −0.452 | 0.275 | 1 | |
350 | 12 | −0.700 | 0.484 | 2 | 0 | −0.213 | −1.158 | 0.005 | HL | 1 |
384 | 16 | −1.141 | 0.254 | 10 | 0 | −3.114 | −1.489 | 0.025 | HL | 9 |
391 | 10 | 2.043 | 0.041 | 3 | 2 | −0.319 | −2.598 | 0.035 | LH | 2 |
404 | 32 | 2.043 | 0.041 | 3 | 2 | 1.828 | 0.404 | 0.280 | 2 | |
405 | 16 | 2.043 | 0.041 | 3 | 2 | 2.020 | 2.267 | 0.050 | HH | 2 |
432 | 12 | 3.162 | 0.002 | 41 | 3 | 3.532 | 3.097 | 0.015 | HH | 40 |
433 | 12 | 3.162 | 0.002 | 41 | 3 | 3.532 | 2.971 | 0.015 | HH | 40 |
434 | 10 | 2.465 | 0.014 | 39 | 2 | −1.329 | −2.394 | 0.020 | LH | 38 |
435 | 14 | 2.465 | 0.014 | 39 | 2 | 6.543 | 2.539 | 0.010 | HH | 38 |
436 | 22 | 2.743 | 0.006 | 46 | 3 | 25.180 | 2.777 | 0.010 | HH | 45 |
437 | 14 | 2.290 | 0.022 | 40 | 2 | 6.137 | 2.171 | 0.025 | HH | 39 |
438 | 9 | 3.005 | 0.003 | 42 | 3 | −4.267 | −3.027 | 0.010 | LH | 41 |
444 | 8 | 2.830 | 0.005 | 43 | 3 | −6.570 | −2.903 | 0.015 | LH | 42 |
445 | 7 | 1.684 | 0.092 | 59 | 1 | −6.342 | −1.675 | 0.055 | 58 | |
446 | 8 | 2.496 | 0.013 | 46 | 2 | −5.990 | −2.509 | 0.015 | LH | 45 |
447 | 10 | 2.580 | 0.010 | 47 | 3 | −1.518 | −2.528 | 0.005 | LH | 46 |
448 | 20 | 3.459 | 0.001 | 61 | 3 | 31.011 | 3.739 | 0.005 | HH | 60 |
449 | 10 | 2.441 | 0.015 | 48 | 2 | −1.450 | −2.442 | 0.020 | LH | 47 |
450 | 6 | 2.441 | 0.015 | 48 | 2 | −10.64 | −2.442 | 0.020 | LH | 47 |
452 | 12 | 2.445 | 0.014 | 49 | 2 | 2.961 | 2.530 | 0.020 | HH | 48 |
453 | 8 | 3.561 | 0.000 | 57 | 3 | −9.374 | −3.473 | 0.005 | LH | 56 |
454 | 44 | 2.884 | 0.004 | 50 | 3 | 68.150 | 1.943 | 0.030 | HH | 49 |
455 | 14 | 3.136 | 0.002 | 63 | 3 | 10.531 | 3.233 | 0.005 | HH | 62 |
457 | 12 | 3.524 | 0.000 | 67 | 3 | 4.956 | 3.338 | 0.010 | HH | 66 |
458 | 12 | 3.352 | 0.001 | 60 | 3 | 4.479 | 3.040 | 0.010 | HH | 59 |
460 | 8 | 3.245 | 0.001 | 65 | 3 | −9.072 | −3.329 | 0.005 | LH | 64 |
466 | 16 | 3.245 | 0.001 | 65 | 3 | 17.481 | 3.326 | 0.005 | HH | 64 |
467 | 8 | −1.365 | 0.172 | 7 | 0 | 1.160 | 1.435 | 0.035 | LL | 6 |
468 | 8 | 3.936 | 0.000 | 68 | 3 | −11.21 | −3.811 | 0.005 | LH | 67 |
470 | 2 | 2.830 | 0.005 | 43 | 3 | −22.37 | −2.929 | 0.005 | LH | 42 |
472 | 10 | 3.524 | 0.000 | 67 | 3 | −2.438 | −3.428 | 0.005 | LH | 66 |
473 | 8 | 2.999 | 0.003 | 65 | 3 | −8.393 | −2.936 | 0.005 | LH | 64 |
474 | 36 | 3.103 | 0.002 | 40 | 3 | 53.443 | 2.447 | 0.015 | HH | 39 |
475 | 15 | 3.119 | 0.002 | 63 | 3 | 13.521 | 3.373 | 0.005 | HH | 62 |
476 | 6 | 3.156 | 0.002 | 64 | 3 | −15.54 | −3.234 | 0.010 | LH | 63 |
477 | 12 | 3.156 | 0.002 | 64 | 3 | 4.341 | 3.058 | 0.010 | HH | 63 |
478 | 12 | 3.156 | 0.002 | 64 | 3 | 4.341 | 3.309 | 0.010 | HH | 63 |
479 | 12 | 3.156 | 0.002 | 64 | 3 | 4.341 | 3.237 | 0.005 | HH | 63 |
480 | 29 | 3.119 | 0.002 | 63 | 3 | 52.397 | 2.814 | 0.005 | HH | 62 |
493 | 12 | 2.250 | 0.024 | 22 | 2 | 1.848 | 2.229 | 0.020 | HH | 21 |
495 | 8 | 3.139 | 0.002 | 51 | 3 | −7.868 | −3.292 | 0.005 | LH | 50 |
496 | 9 | 1.894 | 0.058 | 94 | 1 | −3.872 | −2.046 | 0.030 | LH | 93 |
498 | 14 | 3.139 | 0.002 | 51 | 3 | 9.545 | 2.902 | 0.010 | HH | 50 |
504 | 7 | −1.645 | 0.100 | 13 | 0 | 2.661 | 1.567 | 0.040 | LL | 12 |
508 | 32 | 2.790 | 0.005 | 42 | 3 | 42.159 | 2.668 | 0.005 | HH | 41 |
510 | 16 | 2.790 | 0.005 | 42 | 3 | 12.119 | 3.076 | 0.010 | HH | 41 |
511 | 14 | 2.790 | 0.005 | 42 | 3 | 7.706 | 2.774 | 0.010 | HH | 41 |
514 | 16 | 2.289 | 0.022 | 24 | 2 | 7.413 | 2.202 | 0.030 | HH | 23 |
515 | 12 | 3.069 | 0.002 | 47 | 3 | 3.657 | 3.728 | 0.005 | HH | 46 |
516 | 6 | 2.289 | 0.022 | 24 | 2 | −7.306 | −2.493 | 0.025 | LH | 23 |
517 | 4 | −1.906 | 0.057 | 28 | −1 | 8.106 | 1.846 | 0.015 | LL | 27 |
518 | 4 | −1.697 | 0.090 | 28 | −1 | 7.133 | 1.583 | 0.035 | LL | 27 |
519 | 14 | 2.660 | 0.008 | 45 | 3 | 7.586 | 2.503 | 0.025 | HH | 44 |
520 | 7 | 3.181 | 0.001 | 50 | 3 | −10.94 | −2.951 | 0.020 | LH | 49 |
521 | 20 | 3.181 | 0.001 | 50 | 3 | 25.755 | 3.324 | 0.005 | HH | 49 |
522 | 8 | 3.224 | 0.001 | 49 | 3 | −7.931 | −3.183 | 0.010 | LH | 48 |
523 | 8 | 3.139 | 0.002 | 51 | 3 | −7.868 | −3.063 | 0.005 | LH | 50 |
524 | 10 | 3.139 | 0.002 | 51 | 3 | −1.917 | −3.267 | 0.005 | LH | 50 |
525 | 10 | 2.137 | 0.033 | 27 | 2 | −0.969 | −2.109 | 0.035 | LH | 26 |
526 | 8 | 3.221 | 0.001 | 50 | 3 | −7.997 | −3.377 | 0.005 | LH | 49 |
527 | 16 | 3.139 | 0.002 | 51 | 3 | 15.058 | 3.017 | 0.010 | HH | 50 |
528 | 34 | 4.032 | 0.000 | 54 | 3 | 79.852 | 3.470 | 0.005 | HH | 53 |
529 | 52 | 3.079 | 0.002 | 52 | 3 | 88.041 | 2.460 | 0.020 | HH | 51 |
530 | 8 | 3.879 | 0.000 | 60 | 3 | −10.44 | −4.185 | 0.005 | LH | 59 |
532 | 10 | 3.879 | 0.000 | 60 | 3 | −2.553 | −3.933 | 0.005 | LH | 59 |
533 | 10 | 3.879 | 0.000 | 60 | 3 | −2.553 | −3.945 | 0.005 | LH | 59 |
534 | 18 | 3.958 | 0.000 | 59 | 3 | 27.904 | 4.347 | 0.005 | HH | 58 |
535 | 10 | 3.958 | 0.000 | 59 | 3 | −2.584 | −4.273 | 0.005 | LH | 58 |
537 | 5 | 4.001 | 0.000 | 58 | 3 | −22.89 | −4.174 | 0.005 | LH | 57 |
539 | 30 | 3.139 | 0.002 | 51 | 3 | 49.551 | 2.868 | 0.015 | HH | 50 |
542 | 6 | −1.649 | 0.099 | 64 | −1 | 7.590 | 1.498 | 0.060 | 63 | |
544 | 10 | −2.132 | 0.033 | 44 | −2 | 1.210 | 2.039 | 0.005 | LL | 43 |
547 | 8 | −2.132 | 0.033 | 44 | −2 | 4.809 | 2.356 | 0.010 | LL | 43 |
548 | 19 | −1.649 | 0.099 | 64 | −1 | −15.58 | −1.782 | 0.040 | HL | 63 |
550 | 4 | −2.123 | 0.034 | 45 | −2 | 11.647 | 1.850 | 0.020 | LL | 44 |
561 | 10 | −2.141 | 0.032 | 89 | −2 | 1.683 | 2.233 | 0.010 | LL | 88 |
562 | 8 | 3.008 | 0.003 | 47 | 3 | −7.267 | −2.864 | 0.005 | LH | 46 |
563 | 12 | 3.008 | 0.003 | 47 | 3 | 3.583 | 2.889 | 0.010 | HH | 46 |
564 | 12 | 3.008 | 0.003 | 47 | 3 | 3.583 | 3.215 | 0.005 | HH | 46 |
565 | 18 | −1.418 | 0.156 | 27 | 0 | −8.187 | −1.511 | 0.045 | HL | 26 |
574 | 8 | −1.762 | 0.078 | 39 | −1 | 3.729 | 2.034 | 0.015 | LL | 38 |
575 | 10 | −1.640 | 0.101 | 41 | 0 | 0.900 | 1.874 | 0.025 | LL | 40 |
581 | 8 | −1.640 | 0.101 | 41 | 0 | 3.550 | 1.606 | 0.050 | LL | 40 |
582 | 3 | −1.762 | 0.078 | 39 | −1 | 10.052 | 1.613 | 0.060 | 38 | |
586 | 8 | −1.762 | 0.078 | 39 | −1 | 3.729 | 1.756 | 0.040 | LL | 38 |
592 | 17 | −1.036 | 0.300 | 9 | 0 | −3.389 | −1.401 | 0.050 | HL | 8 |
600 | 12 | −1.775 | 0.076 | 28 | −1 | −1.712 | −1.837 | 0.025 | HL | 27 |
601 | 12 | −1.865 | 0.062 | 29 | −1 | −1.826 | −1.786 | 0.020 | HL | 28 |
609 | 8 | −1.762 | 0.078 | 39 | −1 | 3.729 | 1.609 | 0.050 | LL | 38 |
612 | 12 | −1.842 | 0.066 | 35 | −1 | −1.972 | −1.937 | 0.010 | HL | 34 |
614 | 21 | −1.291 | 0.197 | 44 | 0 | −13.64 | −1.580 | 0.045 | HL | 43 |
633 | 12 | −1.416 | 0.157 | 36 | 0 | −1.546 | −1.514 | 0.040 | HL | 35 |
634 | 16 | −1.209 | 0.227 | 80 | 0 | −7.981 | −1.640 | 0.050 | HL | 79 |
643 | 12 | −1.467 | 0.142 | 35 | 0 | −1.579 | −1.629 | 0.050 | HL | 34 |
646 | 10 | −1.950 | 0.051 | 46 | −1 | 1.130 | 1.938 | 0.010 | LL | 45 |
672 | 4 | −1.649 | 0.099 | 65 | −1 | 10.687 | 1.607 | 0.025 | LL | 64 |
673 | 10 | −1.649 | 0.099 | 65 | −1 | 1.124 | 1.500 | 0.050 | LL | 64 |
675 | 4 | −1.649 | 0.099 | 65 | −1 | 10.687 | 1.634 | 0.060 | 64 | |
678 | 6 | −1.671 | 0.095 | 28 | −1 | 5.075 | 1.583 | 0.040 | LL | 27 |
681 | 16 | −1.749 | 0.080 | 28 | −1 | −7.096 | −2.156 | 0.010 | HL | 27 |
687 | 4 | −1.749 | 0.080 | 28 | −1 | 7.377 | 1.619 | 0.040 | LL | 27 |
693 | 8 | −1.781 | 0.075 | 34 | −1 | 3.521 | 1.824 | 0.030 | LL | 33 |
696 | 12 | −1.788 | 0.074 | 29 | −1 | −1.752 | −1.965 | 0.020 | HL | 28 |
710 | 31 | −1.583 | 0.113 | 29 | 0 | −30.60 | −2.179 | 0.010 | HL | 28 |
757 | 12 | −1.969 | 0.049 | 22 | −2 | −1.689 | −2.094 | 0.010 | HL | 21 |
759 | 4 | −1.969 | 0.049 | 22 | −2 | 7.385 | 1.790 | 0.030 | LL | 21 |
760 | 8 | −1.969 | 0.049 | 22 | −2 | 3.140 | 1.731 | 0.020 | LL | 21 |
761 | 8 | −1.969 | 0.049 | 22 | −2 | 3.140 | 1.842 | 0.025 | LL | 21 |
762 | 8 | −1.969 | 0.049 | 22 | −2 | 3.140 | 1.824 | 0.025 | LL | 21 |
763 | 8 | −1.969 | 0.049 | 22 | −2 | 3.140 | 1.963 | 0.005 | LL | 21 |
764 | 4 | −1.969 | 0.049 | 22 | −2 | 7.385 | 1.775 | 0.020 | LL | 21 |
765 | 7 | −1.969 | 0.049 | 22 | −2 | 4.256 | 1.876 | 0.010 | LL | 21 |
766 | 8 | −1.969 | 0.049 | 22 | −2 | 3.140 | 1.944 | 0.005 | LL | 21 |
767 | 8 | −1.969 | 0.049 | 22 | −2 | 3.140 | 2.051 | 0.015 | LL | 21 |
768 | 10 | −1.969 | 0.049 | 22 | −2 | 0.799 | 2.056 | 0.015 | LL | 21 |
769 | 10 | −1.969 | 0.049 | 22 | −2 | 0.799 | 2.017 | 0.005 | LL | 21 |
784 | 4 | −2.347 | 0.019 | 23 | −2 | 9.166 | 2.382 | 0.005 | LL | 22 |
785 | 2 | −2.347 | 0.019 | 23 | −2 | 11.605 | 1.972 | 0.020 | LL | 22 |
786 | 4 | −2.347 | 0.019 | 23 | −2 | 9.166 | 2.220 | 0.005 | LL | 22 |
References
- Rengifo Gallego, J.I.; Sánchez Martín, J.M. El patrimonio en Extremadura: Un mecanismo para la cooperación transfronteriza. Polígonos Rev. Geogr. 2017, 29, 223–248. [Google Scholar] [CrossRef]
- Sánchez Martín, J.M.; Rengifo Gallego, J.I. Los espacios naturales protegidos y su capacidad de atracción turística: Referencias al Parque Nacional de Monfragüe (Extremadura-España). In Intellectual Capital and Regional Development: New Landscapes and Challenges for Planning the Space; APDR: Covilhâ, Portugal, 2017; pp. 1196–1206. [Google Scholar]
- Sánchez Martín, J.M.; Rengifo Gallego, J.I. Evolución del sector turístico en la Extremadura del siglo XXI: Auge, crisis y recuperación. Lurralde Investig. Espac. 2019, 42, 29–50. [Google Scholar]
- Instituto Nacional de Estadística (INE). Available online: https://www.ine.es/dyngs/INEbase/es/operacion.htm?c=Estadistica_C&cid=1254736176963&menu=ultiDatos&idp=1254735576863 (accessed on 2 January 2019).
- Junta de Extremadura (Extremadura Turismo). Available online: http://www.turismoextremadura.com/es/organiza-tu-viaje/donde-alojarse/index.html (accessed on 31 December 2018).
- Sánchez Martín, J.M.; Sánchez Rivero, M.; Rengifo Gallego, J.I. Patrones de distribución de la oferta turística mediante técnicas geoestadísticas en Extremadura (2004–2014). Bol. Asoc. Geogr. Esp. 2018, 76, 276–302. [Google Scholar] [CrossRef]
- Sánchez Martín, J.M.; Rengifo Gallego, J.I.; Martín Delgado, L.M. Tourist Mobility at the Destination toward Protected Areas: The Case-Study of Extremadura. Sustainability 2018, 10, 4853. [Google Scholar] [CrossRef]
- Junta de Extremadura. Plan Turístico de Extremadura 2017–2020; Junta de Extremadura: Mérida, Mexico, 2017. [Google Scholar]
- Timothy, D.J.; Wall, G. Tourist accommodation in an Asian historic city. J. Tour. Stud. 1995, 6, 63–73. [Google Scholar]
- Niewiadomski, P. Different Forms of Expansion of International Hotel Groups and the Processes of Regional Development in Central and Eastern Europe; Post-Graduate Symposium, Queen Mary University: London, UK, 2009. [Google Scholar]
- Ioannides, D.; Timothy, D.J. Tourism in the USA: A Spatial and Social Synthesis; Routledge: Abingdon, VA, USA, 2009; p. 240. [Google Scholar]
- Claveria, O.; Monte, E.; Torra, S. Modelling tourism demand to Spain with machine learning techniques. The impact of forecast horizon on model selection. Rev. Econ. Apl. 2016, 24, 109–132. [Google Scholar]
- Steven, R.; Morrison, C.; Castley, G. Birdwatching and avitourism: A global review of research into its participant markets, distribution and impacts, highlighting future research priorities to inform sustainable avitourism management. J. Sustain. Tour. 2014, 23, 1257–2176. [Google Scholar] [CrossRef]
- Clifton, J.; Benson, A. Planning for Sustainable Ecotourism: The Case for Research Ecotourism in Developing Country Destinations. J. Sustain. Tour. 2006, 14, 238–254. [Google Scholar] [CrossRef]
- López Palomeque, F. Geografía del turismo en España: Una aproximación a la distribución espacial de la demanda turística y de la oferta de alojamiento. Doc. D’anàlisi Geogr. 1988, 13, 35–64. [Google Scholar]
- Sancho, A. Introducción al Turismo; WTO: New York, NY, USA, 1998; p. 393. [Google Scholar]
- Vacas, C.; Landeta, M.-L. Aproximación al último medio siglo de turismo en España, 1959–2009. Rev. Estud. Tur. 2009, 180, 21–64. [Google Scholar]
- Walford, N. Patterns of development in tourist accommodation enterprises on farms in England and Wales. Appl. Geogr. 2001, 21, 331–345. [Google Scholar] [CrossRef]
- Millán Escriche, M. Turismo en la Región de Murcia: Evolución de la oferta turística de interior y su distribución espacial. Cuad. Tur. 2004, 13, 51–72. [Google Scholar]
- Sarrión-Gavilán, M.D.; Benítez-Márquez, M.D.; Mora-Rangel, E.O. Spatial distribution of tourism supply in Andalusia. Tour. Manag. Perspect. 2015, 15, 29–45. [Google Scholar] [CrossRef]
- Bégin, S. The geography of a tourist business: Hotel distribution and urban development in Xiamen, China. Tour. Geogr. 2010, 2, 448–471. [Google Scholar] [CrossRef]
- Merinero Rodríguez, R.; Pulido Fernández, J.I.; Navarro Yánez, C. Propuesta metodológica para la caracterización territorial del turismo a escala local. Bol. Asoc. Geogr. Esp. 2014, 66, 291–321. [Google Scholar] [CrossRef]
- Jurado Almonte, J.J.; Pazos-García, F.J. Población y turismo rural en territorios de baja densidad demográfica en España. Bol. Asoc. Geogr. Esp. 2016, 71, 247–272. [Google Scholar] [CrossRef]
- Yang, Y.; Luo, H.; Law, R. Theoretical, empirical, and operational models in hotel location research. Int. J. Hosp. Manag. 2014, 36, 209–220. [Google Scholar] [CrossRef]
- Godinho, P.; Phipllips, P.; Moutinho, L. Hotel location when competitors may react: A game-theoretic gravitational model. Tour. Manag. 2018, 69, 384–396. [Google Scholar] [CrossRef]
- Suárez-Vega, R.; Acosta-González, E.; Casimiro-Reina, L.; Hernández, J.M. Assessing the Spatial and Environmental Characteristics of Rural Tourism Lodging Units Using a Geographical Weighted Regression Model. In Quantitative Methods in Tourism Economics; Matias, Á., Nijkamp, P., Sarmento, M., Eds.; Physica: Heidelberg, Germany, 2013. [Google Scholar]
- Sánchez Martín, J.M.; Sánchez Rivero, M.; Rengifo Gallego, J.I. Análisis del equilibrio entre el potencial turístico y la oferta de alojamientos en turismo rural mediante técnicas de estadística espacial. Una aplicación a la provincia de Cáceres (España). Cuad. Tur. 2017, 39, 547–576. [Google Scholar] [CrossRef]
- Latinopoulos, D. Using a spatial hedonic analysis to evaluate the effect of sea view on hotel prices. Tour. Manag. 2018, 65, 87–99. [Google Scholar] [CrossRef]
- Kim, J.; Jang, S.; Kang, S.; Kim, S. Why are hotel room prices different? Exploring spatially varying relationships between room price and hotel attributes. J. Bus. Res. 2018. [Google Scholar] [CrossRef]
- Da Cunha, S.K.; Da Cunha, J.C. Tourism cluster competitiveness and sustainability: Proposal for a systemic model to measure the impact of tourism on local development. Braz. Adm. Rev. 2005, 2, 47–62. [Google Scholar] [CrossRef]
- Sánchez Rivero, M.; Sánchez Martín, J.M.; Rengifo Gallego, J.I. Methodological approach for assessing the potential of a rural tourism destination: An application in the province of Cáceres (Spain). Curr. Issues Tour. 2016, 19, 1084–1102. [Google Scholar] [CrossRef]
- Constantin, D.L.; Reveiu, A. A Spatial Analysis of Tourism Infrastructure in Romania: Spotlight on Accommodation and Food Service Companies. Reg. J. ERSA 2018, 5, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Xia, B.; Dong, S.; Zhao, M.; Li, Z.; Li, Y.; Cheng, H. Analysis of economic efficiency and eco-efficiency of Chinese star hotels based on SBM model. IOP Conf. Ser. Earth Environ. Sci. 2018, 190, 1–9. [Google Scholar] [CrossRef]
- Brauckmann, S. City tourism and the sharing economy—Potential effects of online peer-to-peer marketplaces on urban property markets. J. Tour. Futures 2017, 3, 114–126. [Google Scholar] [CrossRef]
- Cheng, K.-L.; Hsu, S.-C.; Li, W.-M.; Ma, H-W. Quantifying potential anthropogenic resources of buildings through hot spot analysis. Resour. Conserv. Recycl. 2018, 133, 10–20. [Google Scholar] [CrossRef]
- Anselin, L. Local Indicators of Spatial Association-LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Anselin, L.; Syabri, I.; Kho, Y. GeoDA: An Introduction to Spatial Data Analysis. Geogr. Anal. 2005, 38, 5–22. [Google Scholar] [CrossRef]
- Anselin, L. A Local Indicator of Multivariate Spatial Association: Extending Geary´s c. Geogr. Anal. 2018, 1–25. [Google Scholar] [CrossRef]
- Instituto Geográfico Nacional (IGN). Available online: http://www.ign.es/web/ign/portal/cbg-area-cartografia (accessed on 19 March 2018).
- Instituto Geográfico Nacional (IGN). Base Topográfica Nacional (BTN100). Available online: http://centrodedescargas.cnig.es/CentroDescargas/buscadorCatalogo.do?codFamilia=BT100# (accessed on 19 March 2018).
- Gobierno de España. Ministerio de Fomento. Real Decreto 1071/2007 de 27 de Julio, por el que se Regula el Sistema Geodésico de Referencia Oficial en España; Gobierno de España: Madrid, Spain, 2007; pp. 35986–35989. [Google Scholar]
- Instituto Geográfico Nacional (IGN). Base Topográfica Nacional 1:100,000 (BTN100). Available online: http://www.ign.es/web/resources/docs/IGNCnig/CBG%20-%20BTN100.pdf (accessed on 19 March 2018).
- Anselin, L. Model Validation in Spatial Econometrics: A Review and Evaluation of Alternative Approaches. Int. Reg. Sci. Rev. 1988, 11, 279–316. [Google Scholar] [CrossRef]
- Anselin, L. A test for spatial autocorrelation in seemingly unrelated regressions. Econ. Lett. 1988, 28, 335–341. [Google Scholar] [CrossRef]
- Ullah, A.; Giles, D.E.A. (Eds.) Handbook of Applied Economic Statistics; Taylor & Francis Group: New York, NY, USA, 1998; p. 624. [Google Scholar]
- Anselin, L.; Bera, A.K.; Florax, R.; Yoon, M.J. Simple diagnostic tests for spatial dependence. Reg. Sci. Urban Econ. 1996, 26, 77–104. [Google Scholar] [CrossRef]
- Amaral, P.V.; Anselin, L. Finite sample properties of Moran’s I test for spatial autocorrelation in tobit models. Pap. Reg. Sci. 2014, 93, 773–781. [Google Scholar] [CrossRef]
- Kelejian, H.; Piras, G. Tests for Spatial Correlation. In Spatial Econometrics; Kelejian, H., Piras, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 237–270. [Google Scholar]
- Ord, J.K.; Getis, A. Local Spatial Autocorrelation Statistics: Distributional Issues and an Application. Geogr. Anal. 1995, 27, 286–306. [Google Scholar] [CrossRef]
- Longley, P.; Batty, M. Spatial Analysis: Modelling in a GIS Environment; John Wiley & Sons: New York, NY, USA, 1996; p. 395. [Google Scholar]
- Fotheringham, A.S. “The Problem of Spatial Autocorrelation” and Local Spatial Statistics. Geogr. Anal. 2009, 41, 398–403. [Google Scholar] [CrossRef]
- Long, J.; Robertson, C. Comparing spatial patterns. Geogr. Compass 2017, 12, 27–41. [Google Scholar] [CrossRef]
- Sánchez Rivero, M. Análisis espacial de datos y turismo: Nuevas técnicas para el análisis turístico. Una aplicación al caso extremeño. Rev. Estud. Empresariales 2008, 2, 48–66. [Google Scholar]
- ESRI. Cómo Funciona Análisis de Puntos Calientes (Gi* de Getis-Ord). Available online: https://pro.arcgis.com/es/pro-app/tool-reference/spatial-statistics/h-how-hot-spot-analysis-getis-ord-gi-spatial-stati.htm (accessed on 25 September 2018).
- ESRI. The ESRI Guide to GIS. Anlysis. Volume 1: Geographic Patterns & Relationships; ESRI Press: Redlands, CA, USA, 1999; p. 188. [Google Scholar]
- Mitchell, A. Guide to GIS Analysis. Volume 2: Spatial Measurements & Statistics: Spatial and Mearusements; ESRI Press: Redlands, CA, USA, 2005; p. 249. [Google Scholar]
- ESRI. The ESRI Guide to GIS Analysis. Volume 2: Spatial Measurements; ESRI Press: Redlands, CA, USA, 2009; p. 238. [Google Scholar]
- Sánchez Martín, J.M.; Sánchez Rivero, M.; Rengifo Gallego, J.I. La evaluación del potencial turístico para el desarrollo del turismo rural. Aplicación metodológica sobre la provincia de Cáceres. Geofocus. Int. Rev. Geogr. Inf. Sci. Technol. 2013, 13, 99–130. [Google Scholar]
- ESRI. Cómo Funciona Análisis de Cluster y de Valor Atípico (I Anselin Local de Moran). Available online: https://pro.arcgis.com/es/pro-app/tool-reference/spatial-statistics/h-how-cluster-and-outlier-analysis-anselin-local-m.htm (accessed on 25 September 2018).
- Babak, O.; Deutsch, C.V. Statistical approach to inverse distance interpolation. Stoch. Environ. Res. Risk Assess. 2009, 23, 543–553. [Google Scholar] [CrossRef]
- Sánchez Cuervo, A.M.; Mitchell Aide, T. Identifying hotspots of deforestation and reforestation in Colombia (2001–2010): Implications for protected areas. Ecosphere 2013, 4, 1–21. [Google Scholar] [CrossRef]
- Fei, L.; Zhang, Q.; Deng, Y. Identifying influential nodes in complex networks based on the inverse-square law. Phys. A Stat. Mech. Its Appl. 2018, 512, 1044–1059. [Google Scholar] [CrossRef]
- Danielsson, P.E. Euclidean Distance Mapping. Comput. Graph. Image Process. 1980, 14, 227–248. [Google Scholar] [CrossRef]
- Ratliff, R.D.; Mori, S.R. Squared Euclidean Distance: A Statistical Test to Evaluate Plant Community Change; Department of Agriculture, Forest Service, Pacific Southwest Research Station: Albany, NY, USA, 1993; p. 4. [Google Scholar]
- Amin, R.; Bohnert, A.; Holmes, L.; Rajasekaran, A.; Assanasen, C. Epidemiologic mapping of Florida childhood cancer clusters. Pediatr. Blood Cancer 2010, 54, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, L.W.; Caplan, J.M.; Piza, E. Risk Clusters, Hotspots, and Spatial Intelligence: Risk Terrain Modeling as an Algorithm for Police Resource Allocation Strategies. J. Quant. Criminol. 2011, 27, 339–362. [Google Scholar] [CrossRef]
- Prasannakumar, V.; Vijith, H.; Charuta, R.; Geetha, N. Spatio-Temporal Clustering of Road Accidents: GIS Based Analysis and Assessment. Procedia Soc. Behav. Sci. 2011, 21, 317–325. [Google Scholar] [CrossRef] [Green Version]
- Östh, J.; Reggiani, A.; Galiazzo, G. Spatial economic resilience and accessibility: A joint perspective. Comput. Environ. Urban Syst. 2015, 49, 148–159. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, J.-H.; Zhuang, P-J. The Spatial Relationship of Tourist Distribution in Chinese Cities. Tour. Geogr. 2011, 13, 75–90. [Google Scholar] [CrossRef]
- Gutiérrez, J.; García Palomares, J.C.; Romanillos, G.; Salas Olmedo, M.H. The eruption of Airbnb in tourist cities: Comparing spatial patterns of hotels and peer-to-peer accommodation in Barcelona. Tour. Manag. 2017, 62, 278–291. [Google Scholar] [CrossRef] [Green Version]
- Sánchez Martín, J.M.; Rengifo Gallego, J.I.; Sánchez Rivero, M. Caracterización espacial del turismo en Extremadura mediante análisis de agrupamiento (Grouping Analysis). Un ensayo técnico. Geofocus. Int. Rev. Geogr. Inf. Sci. Technol. 2017, 19, 207–235. [Google Scholar] [CrossRef]
- Jiménez, V.; Sánchez, J.M.; Rengifo, J.I. A New Residential Role for the Rural Environment in Extremadura, Spain. Sustainability 2019, 11, 435. [Google Scholar] [CrossRef]
Data Type | Source | Cartographic Information | Alphanumerical Information |
---|---|---|---|
Cartographic | IGN (3) | Administrative units | Area |
Altimetry | Altitude | ||
Hydrography | Order | ||
Population centres | Type | ||
Transport system | Type | ||
Energy | Type | ||
Alphanumeric | Extremadura Turismo (4) | Georeferencing information on Google Maps | Type of accommodation Address |
Municipality | |||
e-mail/phone | |||
Accommodation places |
Mapping Clusters Analysis | Spatial Relationships | Distance Method | Accommodation Supply |
---|---|---|---|
Cluster and Outlier Hot Spot | Inverse Distance Inverse Distance Squared Fixed Distance | Euclidean Distance Manhattan Distance | Rural Accommodation |
Results | Area | Rural Accommodation | Accommodation Places | Average of Places |
---|---|---|---|---|
Hot Spot 99% Confidence | La Vera, Vegas Altas, Zafra-Río Bodión | 69 | 1036 | 15.01 |
Hot Spot 95% Confidence | La Vera, Alange, Zafra-Río Bodión | 27 | 390 | 14.44 |
Hot Spot 90% Confidence | La Vera, dispersed geographic points | 8 | 133 | 16.63 |
Not Significant | Scattered | 628 | 6452 | 10.27 |
Cold Spot 90% Confidence | Jerte and Ambroz Valleys, Gata | 30 | 228 | 7.60 |
Cold Spot 95% Confidence | Sierra de Montánchez, Jerte and Ambroz Valleys | 35 | 246 | 7.03 |
Results | Area | Rural Accommodation | Accommodation Places | Average of Places |
---|---|---|---|---|
Not Significant | Scattered | 623 | 6518 | 10.46 |
Cluster High-High | La Vera, Alange, Zafra-Río Bodión | 47 | 849 | 18.06 |
Outlier High-Low | Sierra de Gata and Montánchez, Jerte and Ambroz Valleys | 22 | 341 | 15.50 |
Outlier Low-High | La Vera, Alange, Zafra-Río Bodión, Vegas Altas | 47 | 386 | 8.21 |
Cluster Low-Low | Sierra de Gata and Montánchez, Jerte and Ambroz Valleys, La Serena | 39 | 269 | 6.90 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Martín, J.-M.; Rengifo-Gallego, J.-I.; Blas-Morato, R. Hot Spot Analysis versus Cluster and Outlier Analysis: An Enquiry into the Grouping of Rural Accommodation in Extremadura (Spain). ISPRS Int. J. Geo-Inf. 2019, 8, 176. https://doi.org/10.3390/ijgi8040176
Sánchez-Martín J-M, Rengifo-Gallego J-I, Blas-Morato R. Hot Spot Analysis versus Cluster and Outlier Analysis: An Enquiry into the Grouping of Rural Accommodation in Extremadura (Spain). ISPRS International Journal of Geo-Information. 2019; 8(4):176. https://doi.org/10.3390/ijgi8040176
Chicago/Turabian StyleSánchez-Martín, José-Manuel, Juan-Ignacio Rengifo-Gallego, and Rocío Blas-Morato. 2019. "Hot Spot Analysis versus Cluster and Outlier Analysis: An Enquiry into the Grouping of Rural Accommodation in Extremadura (Spain)" ISPRS International Journal of Geo-Information 8, no. 4: 176. https://doi.org/10.3390/ijgi8040176
APA StyleSánchez-Martín, J. -M., Rengifo-Gallego, J. -I., & Blas-Morato, R. (2019). Hot Spot Analysis versus Cluster and Outlier Analysis: An Enquiry into the Grouping of Rural Accommodation in Extremadura (Spain). ISPRS International Journal of Geo-Information, 8(4), 176. https://doi.org/10.3390/ijgi8040176