The Role of African Emerging Space Agencies in Earth Observation Capacity Building for Facilitating the Implementation and Monitoring of the African Development Agenda: The Case of African Earth Observation Program
Abstract
:1. Introduction
1.1. Background
1.2. Scope and Objectives of the Study
2. Earth Observation Data for Capacity Building
3. Geospatial Tools for Capacity Building
4. Earth Observation Products and Dissemination Platforms
5. Strategic Partnerships for Capacity Building: Relevance for AU-Agenda 2063
6. Challenges and Opportunities for EO Capacity Building in Africa
7. Conclusions
- The availability and access to open and free EO data are critical for addressing data gaps in Africa, supporting national development and regional progress reporting on AU-Agenda 2063 imperatives. Multi-user agreements such as the one forged by SANSA and Airbus Defense and Space are an efficient and effective way of reducing the cost of higher-resolution data, thus improving its access for detailed environmental assessment and monitoring and to address data gaps. Concerted efforts are needed to adopt such models to make data available to various countries, achievable through advocacy and coordination by organizations such as AfriGEO, African Space Agency and the African Union. In addition, African emerging space agencies should adopt open data standards and policies to increase the use of data from African missions, without restrictions.
- Open-source tools should be exploited and encouraged at African institutions, thus solving technical problems, and exploring new tools should be part of the key performance indicators for technicians, technologists and professionals in government institutions, to increase tolerance to bugs and updates and ensure full exploitation to take advantage of capabilities of FOSS tools. This way, the costs of maintaining proprietary licenses can be significantly reduced.
- Emerging African space agencies with EO programs should consider the automation of manual processes to seamlessly produce and rapidly deliver EO-based informational products such as for agricultural optimization, informal settlements detection, illegal ship detection and disaster management, among other things. Cloud-based platforms such as GEE eliminate the need to download, process, and store petabytes of data, thus offering immense prospects for continent-wide research and applications development with minimal costs and equipment [75].
- The provision of EO datasets and products should be in accordance with users’ needs and coupled with capacity building to ensure that the provided information is fit-for-purpose, and increase their utility by end-users. In a South African context, this strategy has resulted in increased awareness and demand for EO products and services from various spheres of government. In addition, specific attention needs to be directed towards information dissemination, considering the limitations of internet bandwidth and access in most African countries. Channels such as Unstructured Supplementary Service Data (USSD), social media and SMS should be considered in conjunction with online platforms, as well as traditional media such as local radio stations for distributing information about, for example, weather, pests and diseases and other agricultural risks facing agricultural communities.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Commission, A.U. Agenda 2063: The Africa We Want; African Union Commission: Addis Ababa, Ethiopia, 2015. [Google Scholar]
- Organisation of African Unity. Lagos Plan of Action for the Economic Development of Africa. Available online: https://www.merit.unu.edu/wp-content/uploads/2015/01/Lagos-Plan-of-Action.pdf (accessed on 18 March 2019).
- Vrebos, D.; Staes, J.; Vandenbroucke, T.; Johnston, R.; Muhumuza, M.; Kasabeke, C.; Meire, P. Mapping ecosystem service flows with land cover scoring maps for data-scarce regions. Ecosyst. Serv. 2015, 13, 28–40. [Google Scholar] [CrossRef]
- Ngongondo, C.; Xu, C.-Y.; Gottschalk, L.; Alemaw, B. Evaluation of spatial and temporal characteristics of rainfall in Malawi: A case of data scarce region. Theor. Appl. Climatol. 2011, 106, 79–93. [Google Scholar] [CrossRef]
- Currie, P.; Lay-Sleeper, E.; Fernández, J.E.; Kim, J.; Musango, J.K. Towards urban resource flow estimates in data scarce environments: The case of African cities. J. Environ. Prot. 2015, 6, 1066–1083. [Google Scholar] [CrossRef]
- Anderson, K.; Ryan, B.; Sonntag, W.; Kavvada, A.; Friedl, L. Earth observation in service of the 2030 Agenda for Sustainable Development. Geo-Spat. Inf. Sci. 2017, 20, 77–96. [Google Scholar] [CrossRef]
- Desconnets, J.-C.; Giuliani, G.; Guigoz, Y.; Lacroix, P.; Mlisa, A.; Noort, M.; Ray, N.; Searby, N.D. GEOCAB Portal: A gateway for discovering and accessing capacity building resources in Earth Observation. Int. J. Appl. Earth Obs. Geoinf. 2017, 54, 95–104. [Google Scholar] [CrossRef]
- National Space Strategy. Available online: https://www.sansa.org.za/wp-content/uploads/2018/05/National-Space-Strategy.pdf (accessed on 22 April 2019).
- Arino, O.; Gross, D.; Ranera, F.; Leroy, M.; Bicheron, P.; Brockman, C.; Defourny, P.; Vancutsem, C.; Achard, F.; Durieux, L. GlobCover: ESA service for global land cover from MERIS. In Proceedings of the 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007; pp. 2412–2415. [Google Scholar]
- Defourny, P.; Vancutsem, C.; Bicheron, P.; Brockmann, C.; Nino, F.; Schouten, L.; Leroy, M. GLOBCOVER: A 300 m global land cover product for 2005 using Envisat MERIS time series. In Proceedings of the ISPRS Commission VII Mid-Term Symposium: Remote Sensing: From Pixels to Processes, Enschede, The Netherlands, 8–11 May 2006. [Google Scholar]
- Bartholome, E.; Belward, A.S. GLC2000: A new approach to global land cover mapping from Earth observation data. Int. J. Remote Sens. 2005, 26, 1959–1977. [Google Scholar] [CrossRef]
- Loveland, T.R.; Reed, B.C.; Brown, J.F.; Ohlen, D.O.; Zhu, Z.; Yang, L.; Merchant, J.W. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int. J. Remote Sens. 2000, 21, 1303–1330. [Google Scholar] [CrossRef]
- Friedl, M.A.; McIver, D.K.; Hodges, J.C.; Zhang, X.Y.; Muchoney, D.; Strahler, A.H.; Woodcock, C.E.; Gopal, S.; Schneider, A.; Cooper, A. Global land cover mapping from MODIS: Algorithms and early results. Remote Sens. Environ. 2002, 83, 287–302. [Google Scholar] [CrossRef]
- Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- Levin, N.; Heimowitz, A. Mapping spatial and temporal patterns of Mediterranean wildfires from MODIS. Remote Sens. Environ. 2012, 126, 12–26. [Google Scholar] [CrossRef]
- Davies, D.K.; Ilavajhala, S.; Wong, M.M.; Justice, C.O. Fire information for resource management system: Archiving and distributing MODIS active fire data. IEEE Trans. Geosci. Remote Sens. 2009, 47, 72–79. [Google Scholar] [CrossRef]
- Gatebe, C.; Ichoku, C.; Poudyal, R.; Román, M.; Wilcox, E. Surface albedo darkening from wildfires in northern sub-Saharan Africa. Environ. Res. Lett. 2014, 9, 065003. [Google Scholar] [CrossRef] [Green Version]
- Bertels, L.; Smets, B.; Wolfs, D. Dynamic water surface detection algorithm applied on PROBA-V multispectral data. Remote Sens. 2016, 8, 1010. [Google Scholar] [CrossRef]
- Dube, T.; Mutanga, O.; Seutloali, K.; Adelabu, S.; Shoko, C. Water quality monitoring in sub-Saharan African lakes: A review of remote sensing applications. Afr. J. Aquat. Sci. 2015, 40, 1–7. [Google Scholar] [CrossRef]
- Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418. [Google Scholar] [CrossRef] [PubMed]
- Proud, S.R.; Fensholt, R.; Rasmussen, L.V.; Sandholt, I. Rapid response flood detection using the MSG geostationary satellite. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 536–544. [Google Scholar] [CrossRef]
- Bryant, R.; Rainey, M. Investigation of flood inundation on playas within the Zone of Chotts, using a time-series of AVHRR. Remote Sens. Environ. 2002, 82, 360–375. [Google Scholar] [CrossRef]
- Eerens, H.; Haesen, D.; Rembold, F.; Urbano, F.; Tote, C.; Bydekerke, L. Image time series processing for agriculture monitoring. Environ. Model. Softw. 2014, 53, 154–162. [Google Scholar] [CrossRef]
- Meroni, M.; Fasbender, D.; Balaghi, R.; Dali, M.; Haffani, M.; Haythem, I.; Hooker, J.; Lahlou, M.; Lopez-Lozano, R.; Mahyou, H. Evaluating NDVI data continuity between SPOT-VEGETATION and PROBA-V missions for operational yield forecasting in North African countries. IEEE Trans. Geosci. Remote Sens. 2016, 54, 795–804. [Google Scholar] [CrossRef]
- Vintrou, E.; Desbrosse, A.; Bégué, A.; Traoré, S.; Baron, C.; Seen, D.L. Crop area mapping in West Africa using landscape stratification of MODIS time series and comparison with existing global land products. Int. J. Appl. Earth Obs. Geoinf. 2012, 14, 83–93. [Google Scholar] [CrossRef]
- Zhang, X.; Friedl, M.A.; Schaaf, C.B. Global vegetation phenology from Moderate Resolution Imaging Spectroradiometer (MODIS): Evaluation of global patterns and comparison with in situ measurements. J. Geophys. Res. Biogeosci. 2006, 111. [Google Scholar] [CrossRef]
- Muchoney, D.M.; Williams, M. Building a 2010 biodiversity conservation data baseline: Contributions of the Group on Earth Observations. Ecol. Res. 2010, 25, 937–946. [Google Scholar] [CrossRef]
- Eklundh, L.; Olsson, L. Vegetation index trends for the African Sahel 1982–1999. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Swinnen, E.; Veroustraete, F. Extending the SPOT-VEGETATION NDVI time series (1998–2006) back in time with NOAA-AVHRR data (1985–1998) for southern Africa. IEEE Trans. Geosci. Remote Sens. 2008, 46, 558–572. [Google Scholar] [CrossRef]
- Toukiloglou, P. Comparison of AVHRR, MODIS and VEGETATION for Land Cover Mapping and Drought Monitoring at 1 km Spatial Resolution. Ph.D. Thesis, Cranfield University, Cranfield, UK, 2007. [Google Scholar]
- Africa Regional Data Cube. Available online: http://www.data4sdgs.org/index.php/initiatives/africa-regional-data-cube (accessed on 2 March 2019).
- Digital Earth Africa. Available online: https://www.ga.gov.au/__data/assets/pdf_file/0008/73376/Digital-Earth-Africa.pdf (accessed on 12 April 2019).
- Shahi, K.; Shafri, H.Z.; Taherzadeh, E.; Mansor, S.; Muniandy, R. A novel spectral index to automatically extract road networks from WorldView-2 satellite imagery. Egypt. J. Remote Sens. Space Sci. 2015, 18, 27–33. [Google Scholar] [CrossRef] [Green Version]
- Yan, Q.; Zhang, J.-X.; Qiu, Z.-C.; Gao, W.-J. Capability of Spot 5 Imagery in Surveying and Mapping. Available online: http://en.cnki.com.cn/Article_en/CJFDTotal-CHKD200504031.htm (accessed on 24 March 2019).
- De Wulf, R.R.; Goossens, R.E.; de Roover, B.P.; Borry, F.C. Extraction of forest stand parameters from panchromatic and multispectral SPOT-1 data. Int. J. Remote Sens. 1990, 11, 1571–1588. [Google Scholar] [CrossRef]
- Peerbhay, K.Y.; Mutanga, O.; Ismail, R. Investigating the capability of few strategically placed Worldview-2 multispectral bands to discriminate forest species in KwaZulu-Natal, South Africa. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 307–316. [Google Scholar] [CrossRef]
- Mahdavi, S.; Salehi, B.; Granger, J.; Amani, M.; Brisco, B.; Huang, W. Remote sensing for wetland classification: A comprehensive review. Gisci. Remote Sens. 2018, 55, 623–658. [Google Scholar] [CrossRef]
- Davranche, A.; Lefebvre, G.; Poulin, B. Wetland monitoring using classification trees and SPOT-5 seasonal time series. Remote Sens. Environ. 2010, 114, 552–562. [Google Scholar] [CrossRef] [Green Version]
- Krupnik, A. Accuracy assessment of automatically derived digital elevation models from SPOT images. Photogramm. Eng. Remote Sens. 2000, 66, 1017–1023. [Google Scholar]
- Day, T.; Muller, J.P. Quality assessment of digital elevation models produced by automatic stereomatchers from SPOT image pairs. Photogramm. Rec. 1988, 12, 797–808. [Google Scholar] [CrossRef]
- Poon, J.; Fraser, C.S.; Chunsun, Z.; Li, Z.; Gruen, A. Quality assessment of digital surface models generated from IKONOS imagery. Photogramm. Rec. 2005, 20, 162–171. [Google Scholar] [CrossRef]
- Fairfield, J.; Leymarie, P. Drainage networks from grid digital elevation models. Water Resour. Res. 1991, 27, 709–717. [Google Scholar] [CrossRef]
- Ekhtari, N.; Zoej, M.J.V.; Sahebi, M.R.; Mohammadzadeh, A. Automatic building extraction from LIDAR digital elevation models and WorldView imagery. J. Appl. Remote Sens. 2009, 3, 033571. [Google Scholar] [CrossRef]
- McCarty, J.; Neigh, C.; Carroll, M.; Wooten, M. Extracting smallholder cropped area in Tigray, Ethiopia with wall-to-wall sub-meter WorldView and moderate resolution Landsat 8 imagery. Remote Sens. Environ. 2017, 202, 142–151. [Google Scholar] [CrossRef]
- Rydberg, A.; Borgefors, G. Integrated method for boundary delineation of agricultural fields in multispectral satellite images. IEEE Trans. Geosci. Remote Sens. 2001, 39, 2514–2520. [Google Scholar] [CrossRef]
- Matikainen, L.; Lehtomäki, M.; Ahokas, E.; Hyyppä, J.; Karjalainen, M.; Jaakkola, A.; Kukko, A.; Heinonen, T. Remote sensing methods for power line corridor surveys. ISPRS J. Photogramm. Remote Sens. 2016, 119, 10–31. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.-H.; Kim, H.-O.; Wdowinski, S.; Feliciano, E. Evaluation of polarimetric SAR decomposition for classifying wetland vegetation types. Remote Sens. 2015, 7, 8563–8585. [Google Scholar] [CrossRef]
- Billa, L.; Pradhan, B. Semi-automated procedures for shoreline extraction using single RADARSAT-1 SAR image. Estuar. Coast. Shelf Sci. 2011, 95, 395–400. [Google Scholar]
- Yeremy, M.L.; Beaudoin, A.; Beaudoin, J.D.; Walter, G.M. Global Shoreline Mapping from an Airborne Polarimetric SAR: Assessment for RADARSAT 2 Polarimetric Modes; DEFENCE RESEARCH ESTABLISHMENT OTTAWA (ONTARIO): Fort Belvoir, VA, USA, 2001. [Google Scholar]
- Brusch, S.; Lehner, S.; Fritz, T.; Soccorsi, M.; Soloviev, A.; van Schie, B. Ship surveillance with TerraSAR-X. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1092–1103. [Google Scholar] [CrossRef]
- Zhao, Z.; Ji, K.; Xing, X.; Zou, H.; Zhou, S. Ship surveillance by integration of space-borne SAR and AIS–review of current research. J. Navig. 2014, 67, 177–189. [Google Scholar] [CrossRef]
- Mdakane, L.W.; Kleynhans, W. An image-segmentation-based framework to detect oil slicks from moving vessels in the southern african oceans using SAR imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2810–2818. [Google Scholar] [CrossRef]
- Solberg, A.H.; Brekke, C.; Husoy, P.O. Oil spill detection in Radarsat and Envisat SAR images. IEEE Trans. Geosci. Remote Sens. 2007, 45, 746–755. [Google Scholar] [CrossRef]
- Rouault, M.; Johannessen, J.; Collard, F.; Bernard, S. Synthetic aperture radar products for the African marine environment. S. Afr. J. Sci. 2009, 105, 85–86. [Google Scholar] [CrossRef]
- Rebelo, L.-M. Eco-hydrological characterization of inland wetlands in Africa using L-band SAR. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 3, 554–559. [Google Scholar] [CrossRef]
- Long, S.; Fatoyinbo, T.E.; Policelli, F. Flood extent mapping for Namibia using change detection and thresholding with SAR. Environ. Res. Lett. 2014, 9, 035002. [Google Scholar] [CrossRef]
- Ciolli, M.; Federici, B.; Ferrando, I.; Marzocchi, R.; Sguerso, D.; Tattoni, C.; Vitti, A.; Zatelli, P. FOSS Tools and Applications for Education in Geospatial Sciences. ISPRS Int. J. Geo-Inf. 2017, 6, 225. [Google Scholar] [CrossRef]
- Gong, P.; Wang, J.; Yu, L.; Zhao, Y.; Zhao, Y.; Liang, L.; Niu, Z.; Huang, X.; Fu, H.; Liu, S. Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens. 2013, 34, 2607–2654. [Google Scholar] [CrossRef]
- Hu, Q.; Wu, W.; Xia, T.; Yu, Q.; Yang, P.; Li, Z.; Song, Q. Exploring the use of Google Earth imagery and object-based methods in land use/cover mapping. Remote Sens. 2013, 5, 6026–6042. [Google Scholar] [CrossRef]
- Guan, X.; Huang, C.; Liu, G.; Meng, X.; Liu, Q. Mapping rice cropping systems in Vietnam using an NDVI-based time-series similarity measurement based on DTW distance. Remote Sens. 2016, 8, 19. [Google Scholar] [CrossRef]
- Jin, N.; Tao, B.; Ren, W.; Feng, M.; Sun, R.; He, L.; Zhuang, W.; Yu, Q. Mapping irrigated and rainfed wheat areas using multi-temporal satellite data. Remote Sens. 2016, 8, 207. [Google Scholar] [CrossRef]
- Ghaffarian, S. Automatic building detection based on Purposive FastICA (PFICA) algorithm using monocular high resolution Google Earth images. ISPRS J. Photogramm. Remote Sens. 2014, 97, 152–159. [Google Scholar] [CrossRef]
- Ibrahim-Bathis, K.; Ahmed, S. Geospatial technology for delineating groundwater potential zones in Doddahalla watershed of Chitradurga district, India. Egypt. J. Remote Sens. Space Sci. 2016, 19, 223–234. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.; Gong, J.; Li, W. Applications and impacts of Google Earth: A decadal review (2006–2016). ISPRS J. Photogramm. Remote Sens. 2018, 146, 91–107. [Google Scholar] [CrossRef]
- Yu, L.; Gong, P. Google Earth as a virtual globe tool for Earth science applications at the global scale: Progress and perspectives. Int. J. Remote Sens. 2012, 33, 3966–3986. [Google Scholar] [CrossRef]
- Goodchild, M.F. The use cases of digital earth. Int. J. Digit. Earth 2008, 1, 31–42. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Johansen, K.; Phinn, S.; Taylor, M. Mapping woody vegetation clearing in Queensland, Australia from Landsat imagery using the Google Earth Engine. Remote Sens. Appl. Soc. Environ. 2015, 1, 36–49. [Google Scholar] [CrossRef]
- Liu, C.-C.; Shieh, M.-C.; Ke, M.-S.; Wang, K.-H. Flood prevention and emergency response system powered by Google Earth Engine. Remote Sens. 2018, 10, 1283. [Google Scholar] [CrossRef]
- Mahdianpari, M.; Salehi, B.; Mohammadimanesh, F.; Homayouni, S.; Gill, E. The First Wetland Inventory Map of Newfoundland at a Spatial Resolution of 10 m Using Sentinel-1 and Sentinel-2 Data on the Google Earth Engine Cloud Computing Platform. Remote Sens. 2019, 11, 43. [Google Scholar] [CrossRef]
- Sazib, N.; Mladenova, I.; Bolten, J. Leveraging the Google Earth Engine for Drought Assessment Using Global Soil Moisture Data. Remote Sens. 2018, 10, 1265. [Google Scholar] [CrossRef]
- Parks, S.; Holsinger, L.; Voss, M.; Loehman, R.; Robinson, N. Mean composite fire severity metrics computed with Google Earth Engine offer improved accuracy and expanded mapping potential. Remote Sens. 2018, 10, 879. [Google Scholar] [CrossRef]
- Xiong, J.; Thenkabail, P.; Tilton, J.; Gumma, M.; Teluguntla, P.; Oliphant, A.; Congalton, R.; Yadav, K.; Gorelick, N. Nominal 30-m cropland extent map of continental Africa by integrating pixel-based and object-based algorithms using Sentinel-2 and Landsat-8 data on Google Earth Engine. Remote Sens. 2017, 9, 1065. [Google Scholar] [CrossRef]
- He, M.; Kimball, J.; Maneta, M.; Maxwell, B.; Moreno, A.; Beguería, S.; Wu, X. Regional crop gross primary productivity and yield estimation using fused landsat-MODIS data. Remote Sens. 2018, 10, 372. [Google Scholar] [CrossRef]
- Kumar, L.; Mutanga, O. Google Earth Engine Applications Since Inception: Usage, Trends, and Potential. Remote Sens. 2018, 10, 1509. [Google Scholar] [CrossRef]
- L’Astorina, A.; Tomasoni, I.; Basoni, A.; Carrara, P. Beyond the dissemination of Earth Observation research: Stakeholders’ and users’ involvement in project co-design. J. Sci. Commun. 2015, 14, C03. [Google Scholar] [CrossRef]
- Wu, B.; Meng, J.; Li, Q.; Yan, N.; Du, X.; Zhang, M. Remote sensing-based global crop monitoring: Experiences with China’s CropWatch system. Int. J. Digit. Earth 2014, 7, 113–137. [Google Scholar] [CrossRef]
- Becker-Reshef, I.; Justice, C.; Sullivan, M.; Vermote, E.; Tucker, C.; Anyamba, A.; Small, J.; Pak, E.; Masuoka, E.; Schmaltz, J. Monitoring global croplands with coarse resolution earth observations: The Global Agriculture Monitoring (GLAM) project. Remote Sens. 2010, 2, 1589–1609. [Google Scholar] [CrossRef]
- Claverie, M.; Ju, J.; Masek, J.G.; Dungan, J.L.; Vermote, E.F.; Roger, J.-C.; Skakun, S.V.; Justice, C. The Harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sens. Environ. 2018, 219, 145–161. [Google Scholar] [CrossRef]
- Atzberger, C. Advances in remote sensing of agriculture: Context description, existing operational monitoring systems and major information needs. Remote Sens. 2013, 5, 949–981. [Google Scholar] [CrossRef]
- African Union. African Space Strategy. Available online: https://au.int/sites/default/files/newsevents/workingdocuments/33178-wd-african_space_strategy_-_st20445_e_original.pdf (accessed on 15 April 2019).
- Malahlela, O.E. Inland waterbody mapping: Towards improving discrimination and extraction of inland surface water features. Int. J. Remote Sens. 2016, 37, 4574–4589. [Google Scholar] [CrossRef]
- Malahlela, O.E.; Oliphant, T.; Tsoeleng, L.T.; Mhangara, P. Mapping chlorophyll-a concentrations in a cyanobacteria-and algae-impacted Vaal Dam using Landsat 8 OLI data. S. Afr. J. Sci. 2018, 114, 1–9. [Google Scholar] [CrossRef]
- Republic of South Africa. National Water Act Act No 36 of 1998. Available online: http://www.dwaf.gov.za/Documents/Legislature/nw_act/NWA.htm (accessed on 21 March 2019).
- National Water Resource Strategy. Available online: http://www.dwa.gov.za/documents/Other/Strategic%20Plan/NWRS2-Final-email-version.pdf (accessed on 22 April 2019).
- Nations, U. Sendai Framework for Disaster Risk Reduction 2015–2030; United Nations: San Francisco, CA, USA, 2015. [Google Scholar]
- Protocol, K. United Nations Framework Convention on Climate Change. Available online: http://www.globaldialoguefoundation.org/files/ENV.2009-jun.unframeworkconventionclimate.pdf (accessed on 15 April 2019).
- Bessis, J.-L.; Bequignon, J.; Mahmood, A. The international charter “space and major disasters” initiative. Acta Astronaut. 2004, 54, 183–190. [Google Scholar] [CrossRef]
- SANSA and the Japan International Cooperation Agency Conduct Training in Agricultural Crop Monitoring and Crop Yield Estimation to Government Officials. Available online: https://www.sansa.org.za/2017/05/23/sansa-and-the-japan-international-cooperation-agency-conduct-training-in-agricultural-crop-monitoring-and-crop-yield-estimation-to-government-officials/ (accessed on 18 March 2019).
- Committee on Earth Observation Satellites (CEOS). The Working Group on Capacity Building and Data Democracy. Available online: http://ceos.org/ourwork/workinggroups/wgcapd/ (accessed on 20 March 2019).
- Fernandez-Prieto, D.; Palazzo, F. The role of Earth observation in improving water governance in Africa: ESA’s TIGER initiative. Hydrogeol. J. 2007, 15, 101–104. [Google Scholar] [CrossRef]
- Walli, A.; Tøttrup, C.; Naeimi, V.; Bauer-Gottwein, P.; Bila, M.; Mufeti, P.; Tumbulto, J.; Rajah, C.; Moloele, L.; Koetz, B. TIGER-NET—Enabling an earth observation capacity for integrated water resource management in Africa. In Proceedings of the ESA Living Planet Symposium, Edinburgh, UK, 9–13 September 2013. [Google Scholar]
- Ansdell, M.; Delgado, L.; Hendrickson, D. Analyzing the Development Paths of Emerging Spacefaring Nations: Opportunities or Challenges for Space Sustainability? George Washington University: Washington, DC, USA, 2011. [Google Scholar]
- Tella, O. Space as a Fulcrum of Nigeria’s External Relations and Regional Hegemony. Space Policy 2018, 46, 46–52. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kganyago, M.; Mhangara, P. The Role of African Emerging Space Agencies in Earth Observation Capacity Building for Facilitating the Implementation and Monitoring of the African Development Agenda: The Case of African Earth Observation Program. ISPRS Int. J. Geo-Inf. 2019, 8, 292. https://doi.org/10.3390/ijgi8070292
Kganyago M, Mhangara P. The Role of African Emerging Space Agencies in Earth Observation Capacity Building for Facilitating the Implementation and Monitoring of the African Development Agenda: The Case of African Earth Observation Program. ISPRS International Journal of Geo-Information. 2019; 8(7):292. https://doi.org/10.3390/ijgi8070292
Chicago/Turabian StyleKganyago, Mahlatse, and Paidamwoyo Mhangara. 2019. "The Role of African Emerging Space Agencies in Earth Observation Capacity Building for Facilitating the Implementation and Monitoring of the African Development Agenda: The Case of African Earth Observation Program" ISPRS International Journal of Geo-Information 8, no. 7: 292. https://doi.org/10.3390/ijgi8070292
APA StyleKganyago, M., & Mhangara, P. (2019). The Role of African Emerging Space Agencies in Earth Observation Capacity Building for Facilitating the Implementation and Monitoring of the African Development Agenda: The Case of African Earth Observation Program. ISPRS International Journal of Geo-Information, 8(7), 292. https://doi.org/10.3390/ijgi8070292