A GIS-Based Support Vector Machine Model for Flash Flood Vulnerability Assessment and Mapping in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methodology
2.3.1. Data Normalization
2.3.2. Analytic Hierarchy Process
2.3.3. Support Vector Machine
- (1)
- Supposing the training set of known sample set is T = {x1, x2, …, xn, y} where xi is the ith input data (xi ∈ Rn), y is the output data, and i = 1, 2, …, n.
- (2)
- Then, these data are divided into two categories using an n-dimensional hyperplane to get the maximum interval. This is shown in Equations (4) and (5):
- (3)
- Using the Lagrange multiplier, the cost function can be defined as follows:
- (4)
2.3.4. Vulnerability Assessment
2.3.5. Spatial Autocorrelation Analysis
- (1)
- Measuring the overall spatial correlation degree of flash flood vulnerability in China was based on global Moran’s I. The global indicators of spatial association Moran’s I are given as follows:
- (2)
- Global spatial autocorrelation can not accurately reflect the specific spatial location of an agglomeration or anomaly. Therefore, it is necessary to use a local spatial autocorrelation method to explore the vulnerability correlation in some local spatial locations. The LISA Moran’s Ii are given as follows:
3. Model for Flash Flood Vulnerability
3.1. Establishment of the Assessment Index System
3.1.1. Exposure
- (1)
- Material exposure
- Enterprises and institutions (ENI) include hospitals (HOS), nursing homes (NUH), schools (SCH), and enterprises (ENT). Exposure refers to the number of ENI per unit (D = Ei/Si), with D being the ENI density, Ei being the ENI in the region i, and Si being the area of region i.
- Roads includes railways (RAI), highways (HIG), provincial roads (PRO), and national highways (NAT). Exposure refers to the length of all road per unit (D = Ri/Si), with D being the RAI density, Ri being the length of road in the region i, and Si being the area of region i.
- Flood control project (FCP) includes bridges (BRI), culverts (CUL), and dams (DAM). Exposure refers to the number of FCP per unit (D = Wi/Si), with D being the FCP density, Wi being the FCP in the region i, and Si being the area of region i.
- Building information includes the number of houses (NUM), the floor area (ARE), the number of floors (FLO), and the structure of houses (STR). Exposure refers to the area of building per unit (D = Bi/Si) with D being the building density, Bi being the building area in the region i, and Si being the area of region i.
- (2)
- Social exposure
- Population density (POD) is the population per assessment unit (D = Pi/Si), with D being the population density, Pi being the population in the region i, and Si being the area of region i.
- Conomic density (GDP) is the gross domestic product (GDP) per assessment unit (D = Gi/Si), with D being the economic density, Gi being the GDP in the region i, and Si being the area of region i.
- Land use type (LUT) includes arable land (ARA), construction land (CON), woodland (WOO), grassland (GRA), water area (WAT), and unused land (UNU).
3.1.2. Disaster Reduction Capability
- (1)
- SusceptibilityMonitoring and warning facilities (MWF) include rainfall stations (RAS), monitoring stations (MOS), radio stations (RADS), and gauging stations (GAS). Susceptibility refers to the number of MWF in per unit (D = Mi/Si), with D being the MWF density, Mi being the facilities in the region i, and Si being the area of region i.
- (2)
- Coping ability
- Road density (ROD) is the length of all roads in per assessment unit (D = Roi/Si), with D being the ROD, Roi being the length of all roads in the region i, and Si being the area of region i.
- River density (RID) is the length of all rivers in per assessment unit (D = Rii/Si), with D being the RID, Rii being the length of all rivers in the region i, and Si being the area of region i.
- Hospital density (HOD) is the number of hospitals in per assessment unit (D = Hi/Si), with D being the HOD, Hi being the number of hospital in the region i, and Si being the area of region i.
3.2. Assessment Units and Data Preprocessing
3.2.1. Assessment Unit
3.2.2. Data Preprocessing
4. Results
4.1. Exposure Assessment
4.2. Disaster Reduction Capability Assessment
4.3. Vulnerability Assessment
5. Discussion
5.1. The Assessment Methodology
5.2. Exposure, Disaster Reduction Capability, and Vulnerability Analysis of Flash Floods in China
5.3. The Limitations and Implications
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Sample Type | ID | Input | Output | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ENI | RAI | FCP | Building | POD | GDP | LUT | MWF | ROD | RID | HOD | |||
Training sample | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 |
150 | 0.1446 | 0.1458 | 0.146 | 0.1448 | 0.159 | 0.1382 | 0.1488 | 0.8503 | 0.8514 | 0.8561 | 0.8498 | 0.1602 | |
250 | 0.2487 | 0.245 | 0.242 | 0.2434 | 0.2377 | 0.2432 | 0.2446 | 0.7445 | 0.7457 | 0.7599 | 0.7643 | 0.2597 | |
350 | 0.3546 | 0.3506 | 0.3452 | 0.3582 | 0.3376 | 0.3445 | 0.3482 | 0.641 | 0.6562 | 0.662 | 0.6539 | 0.3456 | |
400 | 0.3998 | 0.3997 | 0.3994 | 0.3985 | 0.4 | 0.3995 | 0.3988 | 0.6004 | 0.6001 | 0.6021 | 0.6003 | 0.3959 | |
500 | 0.5063 | 0.5099 | 0.5056 | 0.4962 | 0.5116 | 0.4951 | 0.4986 | 0.5117 | 0.4997 | 0.511 | 0.493 | 0.5104 | |
600 | 0.5998 | 0.5996 | 0.6 | 0.5976 | 0.5999 | 0.5999 | 0.5994 | 0.4003 | 0.4004 | 0.4013 | 0.4015 | 0.59 | |
700 | 0.6946 | 0.6999 | 0.695 | 0.7044 | 0.6918 | 0.7084 | 0.7025 | 0.2872 | 0.303 | 0.2992 | 0.3079 | 0.694 | |
800 | 0.7996 | 0.7997 | 0.7983 | 0.7988 | 0.7992 | 0.7948 | 0.7991 | 0.2009 | 0.201 | 0.2004 | 0.2005 | 0.789 | |
900 | 0.8967 | 0.8961 | 0.9085 | 0.8996 | 0.9057 | 0.8995 | 0.9092 | 0.1024 | 0.0944 | 0.1002 | 0.1024 | 0.9036 | |
Test sample | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 |
3 | 0.0006 | 0.0021 | 0.0014 | 0.0021 | 0.0024 | 0.0028 | 0.0023 | 0.9996 | 0.9951 | 0.9954 | 0.9982 | 0.0017 | |
5 | 0.0028 | 0.0046 | 0.0029 | 0.0029 | 0.0052 | 0.0032 | 0.0052 | 0.9985 | 0.9945 | 0.9931 | 0.9964 | 0.0049 | |
7 | 0.0033 | 0.0063 | 0.0052 | 0.004 | 0.0059 | 0.0038 | 0.0077 | 0.997 | 0.9934 | 0.9929 | 0.9946 | 0.0068 | |
9 | 0.0046 | 0.0081 | 0.0059 | 0.0048 | 0.0075 | 0.0052 | 0.0132 | 0.993 | 0.9913 | 0.9926 | 0.9929 | 0.0091 | |
11 | 0.0065 | 0.0101 | 0.0087 | 0.0099 | 0.0084 | 0.0061 | 0.0143 | 0.9903 | 0.9894 | 0.988 | 0.9914 | 0.0093 | |
13 | 0.0082 | 0.0121 | 0.0087 | 0.0121 | 0.0105 | 0.0096 | 0.0189 | 0.9898 | 0.9851 | 0.984 | 0.9882 | 0.0118 | |
15 | 0.0095 | 0.0178 | 0.0104 | 0.0142 | 0.0114 | 0.011 | 0.0202 | 0.9867 | 0.9842 | 0.9829 | 0.9868 | 0.0146 |
References
- Lin, Q.G.; Wang, Y. Spatial and temporal analysis of a fatal landslide inventory in China from 1950 to 2016. Landslides 2018, 15, 2357–2372. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Y.; Li, L. Major natural disasters and their spatio-temporal variation in the history of China. J. Geogr. Sci. 2012, 22, 963–976. [Google Scholar] [CrossRef]
- Fu, G.B.; Yu, J.J.; Yu, X.B.; Ouyang, R.L.; Zhang, Y.C.; Wang, P.; Liu, W.B.; Min, L.L. Temporal variation of extreme rainfall events in China, 1961–2009. J. Hydrol. 2013, 487, 48–59. [Google Scholar] [CrossRef]
- Nadim, F.; Kjekstad, O.; Peduzzi, P.; Herold, C.; Jaedicke, C. Global landslide and avalanche hotspots. Landslides 2006, 3, 159–173. [Google Scholar] [CrossRef]
- Guo, L.; Zhang, X.L.; Liu, R.H.; Liu, Y.S.; Liu, Q. Achievements and Preliminary Analysis on China National Flash Flood Disasters Investigation and Evaluation. J. Geo-Inf. Sci. 2017, 19, 1548–1556. [Google Scholar]
- Liu, C.Z.; Miao, T.B.; Chen, H.Q.; Dong, K.J.; Li, Z.H.; Li, H.J. Basic feature and origin of the “8 · 8” mountain torrent-debris flow disaster happened in Zhouqu County, Gansu, China, Aug. 8, 2010. Geol. Bull. China 2011, 30, 141–150. [Google Scholar]
- Cutter, S.L.; Finch, C. Temporal and Spatial Changes in Social Vulnerability to Natural Hazards. Proc. Natl. Acad. Sci. USA 2008, 105, 2301–2306. [Google Scholar] [CrossRef]
- Peng, L.; Xu, S.N.; Hou, J.W.; Peng, J.H. Quantitative risk analysis for landslides: The case of the Three Gorges area, China. Landslides 2015, 12, 1–18. [Google Scholar] [CrossRef]
- Galli, M.; Guzzetti, F. Landslide vulnerability criteria: A case study from Umbria, central Italy. Environ. Manag. 2007, 40, 649. [Google Scholar] [CrossRef]
- Totschnig, R.; Fuchs, S. Mountain torrents: Quantifying vulnerability and assessing uncertainties. Eng. Geol. 2013, 155, 31–44. [Google Scholar] [CrossRef] [Green Version]
- Dandapat, K.; Panda, G.K. Flood vulnerability analysis and risk assessment using analytical hierarchy process. Modeling Earth Syst. Environ. 2017, 3, 1–20. [Google Scholar] [CrossRef]
- Ding, M.T.; Wei, F.Q.; Hu, K.H. Property insurance against debris-flow disasters based on risk assessment and the principal-agent theory. Nat. Hazards 2012, 60, 801–817. [Google Scholar] [CrossRef]
- Lian, J.J.; Yang, W.C.; Xu, K.; Ma, C. Flash flood vulnerability assessment for small catchments with a material flow approach. Nat. Hazards 2017, 88, 699–719. [Google Scholar] [CrossRef]
- Du, J.; Wang, M.; Shi, P. A Probabilistic Approach of Assessing Rainstorm-induced Flood Loss Risk Based on Historical Event Records—Case Study in Hunan Province, China. J. Basic Sci. Eng. 2014, 22, 916–927. [Google Scholar]
- Velasco, D.; Semperetorres, D.; Corral, C.; Llort, X.; Velasco, E. A probabilistic approach of the Flash Flood Early Warning System (FF-EWS) in Catalonia based on radar ensemble generation. EGU Gen. Assem. 2010, 12, 10275. [Google Scholar]
- Borga, M.; Stoffel, M.; Marchi, L.; Marra, F.; Jakob, M. Hydrogeomorphic response to extreme rainfall in headwater systems: Flash floods and debris flows. J. Hydrol. 2014, 518, 194–205. [Google Scholar] [CrossRef]
- Quan, R. Risk assessment of flood disaster in Shanghai based on spatial–temporal characteristics analysis from 251 to 2000. Environ. Earth Sci. 2014, 72, 4627–4638. [Google Scholar] [CrossRef]
- Li, Z.; Nadim, F.; Huang, H.; Uzielli, M.; Lacasse, S. Quantitative vulnerability estimation for scenario-based landslide hazards. Landslides 2010, 7, 125–134. [Google Scholar] [CrossRef]
- Ding, M.; Heiser, M.; Hübl, J.; Fuchs, S. Regional vulnerability assessment for debris flows in China—A CWS approach. Landslides. 2016, 13, 1–14. [Google Scholar] [CrossRef]
- Zeleňáková, M.; Gaňová, L.; Purcz, P.; Satrapa, L. Methodology of flood risk assessment from flash floods based on hazard and vulnerability of the river basin. Nat. Hazards 2015, 79, 2055–2071. [Google Scholar]
- Xiong, J.N.; Sun, M.; Zhang, H.; Cheng, W.M.; Yang, Y.H.; Sun, M.Y.; Cao, Y.F.; Wang, J.Y. Application of the Levenburg–Marquardt back propagation neural network approach for landslide risk assessments. Nat. Hazards Earth Syst. Sci. 2019, 19, 629–653. [Google Scholar] [CrossRef]
- Vranken, L.; Turnhout, P.V.; Eeckhaut, M.V.D.; Vandekerckhove, L.; Poesen, J. Economic valuation of landslide damage in hilly regions: A case study from Flanders, Belgium. Sci. Total Environ. 2013, 447, 323–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahmati, O.; Samani, A.N.; Mahdavi, M.; Pourghasemi, H.R.; Zeinivand, H. Groundwater potential mapping at Kurdistan region of Iran using analytic hierarchy process and GIS. Arab. J. Geosci. 2015, 8, 7059–7071. [Google Scholar] [CrossRef]
- Pei, H.J.; Chen, J.; Li, W.; Sun, Y.P.; Chen, W.K. Spatiotemporal pattern & risk assessment of storm flood in Gansu province. J. Nat. Disasters 2017, 26, 167–175. [Google Scholar]
- Vranken, L.; Vantilt, G.; Van Den Eeckhaut, M.; Vandekerckhove, L.; Poesen, J. Landslide risk assessment in a densely populated hilly area. Landslides 2015, 12, 787–798. [Google Scholar] [CrossRef]
- Hung, L.Q.; Van, N.T.H.; Duc, D.M.; Ha, L.T.C.; Van Son, P.; Khanh, N.H.; Binh, L.T. Landslide susceptibility mapping by combining the analytical hierarchy process and weighted linear combination methods: A case study in the upper Lo River catchment (Vietnam). Landslides 2016, 13, 1285–1301. [Google Scholar] [CrossRef]
- Liu, Y.S.; Yang, Z.S.; Huang, Y.H.; Liu, C.J. Spatiotemporal evolution and driving factors of China’s flash flood disasters since 1949. Sci. China Earth Sci. 2019, 49, 60–72. [Google Scholar] [CrossRef]
- Bolturk, E.; Kahraman, C. A novel interval-valued neutrosophic AHP with cosine similarity measure. Soft Comput. 2018, 22, 4941–4958. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Pradhan, B.; Gokceoglu, C. Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran. Nat. Hazards 2012, 63, 965–996. [Google Scholar] [CrossRef]
- Li, Z.W.; Zeng, G.M.; Zhang, H.; Yang, B.; Jiao, S. The integrated eco-environment assessment of the red soil hilly region based on GIS: A case study in Changsha City, China. Ecol. Model. 2007, 202, 540–546. [Google Scholar] [CrossRef]
- Murray, A.T. GIS and Multicriteria Decision Analysis (review). Geogr. Anal. 2002, 34, 91–92. [Google Scholar] [CrossRef]
- Xian, S.D. A new fuzzy comprehensive evaluation model based on the support vector machine. Fuzzy Inf. Eng. 2010, 2, 75–86. [Google Scholar] [CrossRef]
- Li, L.P.; Lan, H.X.; Guo, C.B.; Zhang, Y.S.; Li, Q.W.; Wu, Y.M. A modified frequency ratio method for landslide susceptibility assessment. Landslides 2016, 14, 1–15. [Google Scholar] [CrossRef]
- Yao, X.; Tham, L.G.; Dai, F.C. Landslide susceptibility mapping based on Support Vector Machine: A case study on natural slopes of Hong Kong, China. Geomorphology 2008, 101, 572–582. [Google Scholar] [CrossRef]
- Xu, C.; Dai, F.C.; Xu, X.W.; Yuan, H.L. GIS-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang River watershed, China. Geomorphology 2012, 145–146, 70–80. [Google Scholar] [CrossRef]
- Cherkassky, V. The nature of statistical learning theory. IEEE Trans. Neural Netw. 2002, 38, 409. [Google Scholar] [CrossRef] [PubMed]
- Franklin, J. The elements of statistical learning: Data mining, inference and prediction. J. R. Stat. Soc. 2010, 99, 567. [Google Scholar] [CrossRef]
- Rawat, P.K.; Pant, C.C.; Tiwari, P.C.; Pant, P.D.; Sharma, A.K. Spatial variability assessment of river-line floods and flash floods in Himalaya: A case study using GIS. Disaster Prev. Manag. 2012, 21, 135–159. [Google Scholar] [CrossRef]
- Jin, G.; Deng, X.Z.; Zhao, X.D.; Guo, B.S.; Yang, J. Spatio-temporal patterns of urban land use efficiency in theYangtze River Economic Zone during 2005–2014. Acta Geogr. Sin. 2018, 73, 1242–1252. [Google Scholar]
- Greiving, S.; Fleischhauer, M.; Lückenkötter, J. A Methodology for an integrated risk assessment of spatially relevant hazards. J. Environ. Plan. Manag. 2006, 49, 1–19. [Google Scholar] [CrossRef]
- Fell, R.; Corominas, J.; Bonnard, C.; Cascini, L.; Leroi, E.; Savage, W.Z. Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Eng. Geol. 2007, 102, 85–98. [Google Scholar] [CrossRef]
- Gallopín, G.C. Linkages between vulnerability, resilience, and adaptive capacity. Glob. Environ. Chang. 2006, 16, 293–303. [Google Scholar] [CrossRef]
- Li, H.; Zhang, P.Y.; Cheng, Y.Q. Concepts and Assessment Methods of Vulnerability. Prog. Geogr. 2008, 2, 18–25. [Google Scholar]
- Špitalar, M.; Gourley, J.J.; Lutoff, C.; Kirstetter, P.E.; Brilly, M.; Carr, N. Analysis of flash flood parameters and human impacts in the US from 2006 to 2012. J. Hydrol. 2014, 519, 863–870. [Google Scholar] [CrossRef]
- Bodoque, J.M.; Amerigo, M.; Díez-Herrero, A.; García, J.A.; Cortés, B.; Ballesteros-Cánovas, J.A.; Olcina, J. Improvement of resilience of urban areas by integrating social perception in flash-flood risk management. J. Hydrol. 2016, 541, 665–676. [Google Scholar] [CrossRef] [Green Version]
- Cascini, L. Applicability of landslide susceptibility and hazard zoning at different scales. Eng. Geol. 2008, 102, 164–177. [Google Scholar] [CrossRef]
- Li, L.T.; Xu, Z.X.; Pang, B.; Liu, L. Flood risk zoning in China. J. Hydraul. Eng. 2012, 43, 22–30. [Google Scholar]
- Zhou, Y.; Li, N.; Wu, W.X.; Wu, J.D. Assessment of provincial social vulnerability to natural disasters in China. Nat. Hazards 2014, 71, 2165–2186. [Google Scholar] [CrossRef]
- Guan, Y.; Cheng, Y.; Wang, D.X. Research on risk assessment of landslide hazard in Xinjiang. Eng. Surv. Mapp. 2018, 27, 26–31. [Google Scholar]
- Liu, X.L.; Miao, C.; Tian, C.S. Comparative Analysis of Two Methods for Assessing Hazard of Landslide and Debris-flow on a Regional Scale. J. Disaster Prev. Mitig. Eng. 2017, 37, 71–78. [Google Scholar]
- Yin, Z.E.; Tian, P.F.; Chi, X.X. Multi-scenario-based risk analysis of precipitation extremesin China during the past 60 years (1951–2011). Acta Geogr. Sin. 2018, 73, 405–413. [Google Scholar]
- Nasiri, H.; Yusof, M.J.M.; Ali, T.A.M.; Hussein, M.K.B. District flood vulnerability index: Urban decision-making tool. Int. J. Environ. Sci. Technol. 2019, 16, 2249–2258. [Google Scholar] [CrossRef]
- Uzielli, M.; Nadim, F.; Lacasse, S.; Kaynia, A.M. A conceptual framework for quantitative estimation of physical vulnerability to landslides. Eng. Geol. 2008, 102, 251–256. [Google Scholar] [CrossRef]
- Kim, S.E.; Choi, H.I. Assessment of vulnerability to extreme flash floods in design storms. Int. J. Environ. Res. Public Health 2011, 8, 2907–2922. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.Y.; Liu, Y.; Ma, L.; Su, F. Methodology for the assessment and classification of regional; vulnerability to natural hazards in China: The application of a DEA model. Nat. Hazards 2013, 65, 115–134. [Google Scholar] [CrossRef]
- Wei, Y.M.; Fan, Y.; Lu, C.; Tsai, H.T. The assessment of vulnerability to natural disasters in China by using the DEA method. Environ. Impact Assess. Rev. 2004, 24, 427–439. [Google Scholar] [CrossRef]
- Ding, R.X.; Ni, P.-F. The New Pattern of Regional Economic Space in China: The Perspective of Urban Real Estate. China Ind. Econ. 2017, 5, 94–112. [Google Scholar]
- Tang, W.; Zhou, T.C.; Sun, J.; Li, Y.H.; Li, W.P. Accelerated Urban Expansion in Lhasa City and the Implications for Sustainable Development in a Plateau City. Sustainability 2017, 9, 1499. [Google Scholar] [CrossRef]
- Gu, L.W. GIS-based Risk Zone of Flood Hazard in Anhui Province. Meteorol. Environ. Res. 2011, 6, 67–70. [Google Scholar]
- Hui, Z.D. Mountain Disasters and Its Countermeasures in Qinling Daba Mountain Area. J. Nat. Disasters 1994, 3, 31–36. [Google Scholar]
- Nie, J.; Fan, Y.D.; Deng, L.; Guan, Y. Research and application of torrential flood loss assessment based on radar remote sensing technology. J. Nat. Disasters 2010, 19, 105–110. [Google Scholar]
- Lou, W.P.; Chen, H.Y.; Zheng, F.; Rui, W.U. Economic loss assessment of typhoon based on principal component analysis and neural network. Geogr. Res. 2009, 28, 1243–1254. [Google Scholar]
- Li, M.Z.; Lv, J.; Chen, X.; Jiang, N. Provincial evaluation of vulnerability to geological disaster in China and its influencing factors: A three-stage DEA-based analysis. Nat. Hazards 2015, 79, 1649–1662. [Google Scholar] [CrossRef]
- Xu, M.-J.; Yang, Z.-S. The Evaluation and Analysis of Coordinated Development on Resources and Environment Carrying Capacity in Southwestern Mountainous Area of China: A Case in Dehong Dai-Jingpo Autonomous Prefecture, Yunnan Province. J. Nat. Resour. 2016, 31, 1726–1738. [Google Scholar]
- Yang, J.X. Evaluation on Coordination of Tourism Economy and City Development in Southwest of China. J. Anhui Agric. Sci. 2012, 40, 3683–3685. [Google Scholar]
- Jiang, J.H.; Shi, J.S.; Li, Y.W. The Planning and Construction of City Parks from the Perspective of Disaster Prevention and Reduction: A Case Study of Chengdu City. J. Southwest Jiaotong Univ. 2008, 5, 72–77. [Google Scholar]
- Jiang, K.X.; Cao, S.M.; Yin, G.H. A Study on the Legislative System of Disaster Prevention and Reduction in China. J. Nat. Disasters 1999, 2, 110–114. [Google Scholar]
- Cui, P.; Zhuang, J.Q.; Chen, X.C.; Zhang, J.Q.; Zhou, X.J. Characteristics and Countermeasures of Debris Flow in Wenchuan Area after the Earthquake. J. Sichuan Univ. 2010, 42, 10–19. [Google Scholar]
- Westen, C.J.V.; Castellanos, E.; Kuriakose, S.L. Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview. Eng. Geol. 2008, 102, 112–131. [Google Scholar] [CrossRef]
Factors | Source |
---|---|
Road | China: Flash Flood Investigation and Evaluation Dataset of China, 1949–2015, 1:1,000,000. |
Building | China: Flash Flood Investigation and Evaluation Dataset of China, 2013, 1:50,000. |
Flood control projects | China: Flash Flood Investigation and Evaluation Dataset of China, 2013, 1:50,000. |
Enterprises and Institutions | China: Flash Flood Investigation and Evaluation Dataset of China, 2013, 1:50,000. |
DEM | China: Geospatial Data Cloud, 2000, 90 × 90 m. |
Population density | China: Resources and Environmental Sciences Data Center, 2010, 1 × 1 km. |
GDP | China: Resources and Environmental Sciences Data Center, 2010, 1 × 1 km. |
Land use | China: China: Resources and Environmental Sciences Data Center, 2010, 100 × 100 m. |
Monitoring and warning facilities | China: Flash Flood Investigation and Evaluation Dataset of China, 2013, 1:50,000. |
River | China: Flash Flood Investigation and Evaluation Dataset of China, 2013, 1:1,000,000. |
Geomorphological regionalization | China: State Key Laboratory of Resources and Environment Information System, 2013, 1:15,000,000. |
Comparative Importance | Definition | Description |
---|---|---|
1 | Equal importance | Two factors have same influence on parent decision. |
3 | Weak importance | One factor has a moderate influence on another factor. |
5 | Essential or strong importance | One factor has a strong influence on another factor. |
7 | Demonstrated importance | One factor has a significant influence on another factor. |
9 | Absolute importance | Evidence favoring one decision factor over the other is the highest order of affirmation. |
2, 4, 6, 8 | Intermediate | When compromise is needed, values between two adjacent judgments are used. |
Reciprocals | If Ai is the judgment value when i is compared with j, then Aj has the reciprocal value when compared to Ai | A reasonable assumption. |
Road Density | River Density | Building Density | |
---|---|---|---|
Road density | 1 | 3 | 5 |
River density | 1/3 | 1 | 3 |
Building density | 1/5 | 1/3 | 1 |
Factor | Class | Assigned Rank | Normalized Weights | Factor | Class | Assigned Rank | Normalized Weights |
---|---|---|---|---|---|---|---|
Road | RAI | 1 | 0.565 | LUT | ARA | 1 | 0.468 |
HIG | 3 | 0.262 | CON | 3 | 0.248 | ||
NAT | 5 | 0.118 | WOO | 5 | 0.121 | ||
PRO | 7 | 0.055 | GRA | 6 | 0.080 | ||
FCP | BRI | 1 | 0.333 | WAT | 7 | 0.054 | |
CUL | 1 | 0.333 | UNU | 9 | 0.029 | ||
DAM | 1 | 0.333 | Economic | GDP | 1 | 1 | |
Building | NUM | 1 | 0.25 | Population | POD | 1 | 1 |
ARE | 1 | 0.25 | River | RID | 1 | 1 | |
FLO | 1 | 0.25 | Road | ROD | 1 | 1 | |
STR | 1 | 0.25 | Hospital | HOD | 1 | 1 | |
ENI | HOS | 1 | 0.25 | MWF | MOS | 1 | 0.522 |
NUH | 1 | 0.25 | RAS | 3 | 0.2 | ||
SCH | 1 | 0.25 | RADS | 3 | 0.2 | ||
ENT | 1 | 0.25 | GAS | 5 | 0.078 |
Type | Exposure | |||
---|---|---|---|---|
Value | Count | Area/ | Ratio (%) | |
10,000 ha | ||||
Extremely low | 0–0.11 | 179 | 33.98 | 0.04 |
Low | 0.11–0.27 | 1388 | 51,950.38 | 54.87 |
Moderate | 0.27–0.38 | 427 | 10,123.94 | 10.69 |
High | 0.38–0.55 | 111 | 2580.67 | 2.73 |
Extremely high | 0.55–1.0 | 33 | 740.54 | 0.78 |
Non-Prevention and Control County | -- | 724 | 29,248.44 | 30.89 |
NAME | Extremely Low | Low | Moderate | High | Extremely High | |||||
---|---|---|---|---|---|---|---|---|---|---|
Area/ | Ratio (%) | Area/ | Ratio (%) | Area/ | Ratio (%) | Area/ | Ratio (%) | Area/ | Ratio (%) | |
10,000 ha | 10,000 ha | 10,000 ha | 10,000 ha | 10,000 ha | ||||||
Shaanxi | 0 | 0 | 1257.75 | 1.31 | 491.82 | 0.51 | 69.35 | 0.07 | 64.77 | 0.07 |
Anhui | 0 | 0 | 225.48 | 0.24 | 199.50 | 0.21 | 38.09 | 0.04 | 21.18 | 0.02 |
Guizhou | 0 | 0 | 1503.28 | 1.57 | 257.69 | 0.27 | 0 | 0 | 0 | 0 |
Henan | 0 | 0 | 183.11 | 0.19 | 438.54 | 0.46 | 33.10 | 0.03 | 27.21 | 0.03 |
Sichuan | 0 | 0 | 4167.74 | 4.34 | 626.78 | 0.65 | 0 | 0 | 0 | 0 |
Xinjiang | 0 | 0 | 8091.97 | 8.43 | 70.75 | 0.07 | 0 | 0 | 0 | 0 |
Tibet | 0 | 0 | 9307.44 | 9.70 | 0 | 0 | 0 | 0 | 0 | 0 |
Liaoning | 13.86 | 0.01 | 450.12 | 0.47 | 254.87 | 0.27 | 241.99 | 0.25 | 149.73 | 0.16 |
Hebei | 6.31 | 0.01 | 602.35 | 0.63 | 195.35 | 0.20 | 217.05 | 0.23 | 39.90 | 0.04 |
Yunnan | 0 | 0 | 2483.81 | 2.59 | 1290.97 | 1.35 | 57.18 | 0.06 | 0 | 0 |
Jilin | 0 | 0 | 926.11 | 0.97 | 1118.88 | 1.17 | 65.24 | 0.07 | 0 | 0 |
Gansu | 0.92 | 0 | 2452.03 | 2.55 | 519.41 | 0.54 | 126.79 | 0.13 | 35.76 | 0.04 |
Guangxi | 0 | 0 | 1844.65 | 1.92 | 1119.49 | 1.17 | 199.07 | 0.21 | 0 | 0 |
Shanxi | 0 | 0 | 1911.76 | 1.99 | 297.21 | 0.31 | 53.38 | 0.06 | 0 | 0 |
Guangdong | 4.62 | 0.01 | 446.00 | 0.47 | 526.92 | 0.55 | 477.77 | 0.50 | 43.20 | 0.05 |
Hunan | 6.44 | 0.01 | 1317.03 | 1.37 | 599.32 | 0.62 | 21.75 | 0.02 | 0 | 0 |
Beijing | 0 | 0 | 1.57 | 0 | 68.05 | 0.07 | 34.97 | 0.04 | 0 | 0 |
Heilongjiang | 0 | 0 | 3012.95 | 3.14 | 66.27 | 0.07 | 0 | 0 | 0 | 0 |
Jiangxi | 0 | 0 | 1033.6 | 1.08 | 479.06 | 0.50 | 0 | 0 | 0 | 0 |
Hubei | 0.82 | 0 | 279.17 | 0.29 | 668.33 | 0.70 | 289.55 | 0.30 | 120.39 | 0.13 |
Fujian | 0 | 0 | 344.10 | 0.36 | 561.62 | 0.59 | 244.09 | 0.25 | 70.86 | 0.07 |
Ningxia | 0 | 0 | 361.28 | 0.38 | 49.93 | 0.05 | 0 | 0 | 0 | 0 |
Qinghai | 0 | 0 | 4931.7 | 5.14 | 31.58 | 0.03 | 0 | 0 | 0 | 0 |
Zhejiang | 0 | 0 | 101.32 | 0.11 | 333.44 | 0.35 | 316.60 | 0.33 | 152.94 | 0.16 |
Shandong | 0 | 0 | 1276.44 | 1.33 | 160.34 | 0.17 | 1.68 | 0 | 0 | 0 |
Hainan | 0 | 0 | 184.8 | 0.19 | 40.82 | 0.04 | 18.66 | 0.02 | 0 | 0 |
Chongqing | 0 | 0 | 635.31 | 0.66 | 136.87 | 0.14 | 51.69 | 0.05 | 0 | 0 |
Tianjin | 0 | 0 | 8.15 | 0.01 | 0 | 0 | 0 | 0 | 0 | 0 |
Jiangsu | 0 | 0 | 6.67 | 0.01 | 0 | 0 | 0 | 0 | 0 | 0 |
Inner Mongolia | 0.07 | 0 | 4999.57 | 5.21 | 727.26 | 0.76 | 6.31 | 0.01 | 0 | 0 |
Type | Disaster Reduction Capability | |||
---|---|---|---|---|
Value | Count | Area/ | Ratio (%) | |
10,000 ha | ||||
Extremely Low | 0–0.13 | 174 | 77.46 | 0.08 |
Low | 0.13–0.34 | 211 | 5217.25 | 5.51 |
Moderate | 0.34–0.39 | 1043 | 46,630.35 | 49.25 |
High | 0.39–0.47 | 344 | 9160.29 | 9.68 |
Extremely High | 0.47–1.0 | 366 | 4344.16 | 4.59 |
Non-Prevention and Control County | -- | 724 | 29,248.44 | 30.89 |
NAME | Extremely Low | Low | Moderate | High | Extremely High | |||||
---|---|---|---|---|---|---|---|---|---|---|
Area/ | Ratio (%) | Area/ | Ratio (%) | Area/ | Ratio (%) | Area/ | Ratio (%) | Area/ | Ratio (%) | |
10,000 ha | 10,000 ha | 10,000 ha | 10,000 ha | 10,000 ha | ||||||
Shaanxi | 0 | 0 | 32.52 | 0.03 | 970.17 | 1.01 | 455.68 | 0.48 | 425.31 | 0.44 |
Anhui | 0 | 0 | 0 | 0 | 185.14 | 0.19 | 152.38 | 0.16 | 146.73 | 0.16 |
Guizhou | 0 | 0 | 224.24 | 0.23 | 1349.20 | 1.41 | 175.53 | 0.18 | 12.01 | 0.18 |
Henan | 0 | 0 | 63.02 | 0.07 | 419.62 | 0.44 | 118.49 | 0.12 | 83.53 | 0.12 |
Sichuan | 0 | 0 | 146.59 | 0.15 | 3815.96 | 3.98 | 434.49 | 0.45 | 397.48 | 0.45 |
Xinjiang | 0 | 0 | 0 | 0 | 7445.42 | 7.76 | 676.50 | 0.71 | 40.81 | 0.71 |
Tibet | 0 | 0 | 0 | 0 | 9176.06 | 9.56 | 131.38 | 0.14 | 0.00 | 0.14 |
Liaoning | 0 | 0 | 267.45 | 0.28 | 291.82 | 0.30 | 217.03 | 0.23 | 334.27 | 0.23 |
Hebei | 72.84 | 0.08 | 352.24 | 0.37 | 434.50 | 0.45 | 193.75 | 0.20 | 7.63 | 0.20 |
Yunnan | 0 | 0 | 463.14 | 0.48 | 2149.40 | 2.24 | 1,109.63 | 1.16 | 109.78 | 1.16 |
Jilin | 0 | 0 | 374.81 | 0.39 | 736.25 | 0.77 | 68.22 | 0.07 | 4.83 | 0.07 |
Gansu | 0 | 0 | 9.68 | 0.01 | 1902.29 | 1.98 | 681.82 | 0.71 | 541.11 | 0.71 |
Guangxi | 0 | 0 | 437.61 | 0.46 | 1247.54 | 1.30 | 561.59 | 0.59 | 92.59 | 0.59 |
Shanxi | 0 | 0 | 0 | 0 | 974.75 | 1.02 | 149.41 | 0.16 | 314.30 | 0.16 |
Guangdong | 4.62 | 0.05 | 332.27 | 0.35 | 617.37 | 0.64 | 277.18 | 0.29 | 267.06 | 0.29 |
Hunan | 0 | 0 | 440.75 | 0.46 | 1108.97 | 1.16 | 302.84 | 0.32 | 91.99 | 0.32 |
Beijing | 0 | 0 | 60.99 | 0.06 | 9.76 | 0.01 | 33.69 | 0.04 | 0.15 | 0.04 |
Heilongjiang | 0 | 0 | 153.64 | 0.16 | 2776.84 | 2.89 | 75.26 | 0.08 | 73.48 | 0.08 |
Jiangxi | 0 | 0 | 646.20 | 0.67 | 716.23 | 0.75 | 149.45 | 0.16 | 0.79 | 0.16 |
Hubei | 0 | 0 | 0 | 0 | 342.22 | 0.36 | 554.93 | 0.58 | 461.11 | 0.58 |
Fujian | 0 | 0 | 476.41 | 0.50 | 316.52 | 0.33 | 364.03 | 0.38 | 63.70 | 0.38 |
Ningxia | 0 | 0 | 56.48 | 0.06 | 197.44 | 0.21 | 93.65 | 0.10 | 63.64 | 0.10 |
Qinghai | 0 | 0 | 0 | 0 | 4564.22 | 4.75 | 237.82 | 0.25 | 161.24 | 0.25 |
Zhejiang | 0 | 0 | 381.39 | 0.40 | 131.10 | 0.14 | 190.10 | 0.20 | 201.72 | 0.20 |
Shandong | 0 | 0 | 53.46 | 0.06 | 165.15 | 0.17 | 98.12 | 0.10 | 123.45 | 0.10 |
Hainan | 0 | 0 | 0 | 0 | 155.04 | 0.16 | 62.03 | 0.07 | 27.21 | 0.07 |
Chongqing | 0 | 0 | 218.19 | 0.23 | 405.86 | 0.42 | 148.13 | 0.15 | 51.69 | 0.15 |
Tianjin | 0 | 0 | 0 | 0 | 0 | 0 | 8.15 | 0.01 | 0 | 0.01 |
Jiangsu | 0 | 0 | 0 | 0 | 6.67 | 0.01 | 0 | 0 | 0 | 0 |
Inner Mongolia | 0 | 0 | 26.15 | 0.03 | 4021.53 | 4.19 | 1438.98 | 1.50 | 246.55 | 1.50 |
Type | Vulnerability | |||
---|---|---|---|---|
Value | Count | Area/ | Ratio (%) | |
10,000 ha | ||||
Extremely Low | 0–0.27 | 436 | 2506.58 | 2.65 |
Low | 0.27–0.54 | 692 | 34,824.2 | 36.78 |
Moderate | 0.54–0.6 | 571 | 18,157.54 | 19.18 |
High | 0.6–0.7 | 378 | 8714.33 | 9.20 |
Extremely High | 0.7–1.0 | 61 | 1226.86 | 1.30 |
Non-Prevention and Control County | -- | 724 | 29,248.44 | 30.89 |
NAME | Extremely Low | Low | Moderate | High | Extremely High | |||||
---|---|---|---|---|---|---|---|---|---|---|
Area/ | Ratio (%) | Area/ | Ratio (%) | Area/ | Ratio (%) | Area/ | Ratio (%) | Area/ | Ratio (%) | |
10,000 ha | 10,000 ha | 10,000 ha | 10,000 ha | 10,000 ha | ||||||
Shaanxi | 360.55 | 0.38 | 267.97 | 0.28 | 808.39 | 0.84 | 411.36 | 0.43 | 35.42 | 0.04 |
Anhui | 9.88 | 0.01 | 124.40 | 0.13 | 341.27 | 0.36 | 8.70 | 0.01 | 0 | 0 |
Guizhou | 12.01 | 0.01 | 21.91 | 0.02 | 1617.59 | 1.69 | 109.47 | 0.11 | 0 | 0 |
Henan | 8.14 | 0.01 | 44.17 | 0.05 | 134.34 | 0.14 | 298.25 | 0.31 | 197.06 | 0.21 |
Sichuan | 388.61 | 0.41 | 2387.03 | 2.49 | 1817.33 | 1.89 | 201.56 | 0.21 | 0 | 0 |
Xinjiang | 40.81 | 0.04 | 7970.38 | 8.30 | 151.53 | 0.16 | 0 | 0 | 0 | 0 |
Tibet | 121.04 | 0.13 | 7727.49 | 8.05 | 1458.91 | 1.52 | 0 | 0 | 0 | 0 |
Liaoning | 12.44 | 0.01 | 194.82 | 0.20 | 298.56 | 0.31 | 542.18 | 0.57 | 62.58 | 0.07 |
Hebei | 7.63 | 0.01 | 27.83 | 0.03 | 240.79 | 0.25 | 501.00 | 0.52 | 283.71 | 0.30 |
Yunnan | 92.39 | 0.10 | 935.11 | 0.97 | 2380.47 | 2.48 | 423.99 | 0.44 | 0 | 0 |
Jilin | 18.30 | 0.02 | 178.39 | 0.19 | 569.67 | 0.59 | 417.71 | 0.44 | 0 | 0 |
Gansu | 517.52 | 0.54 | 1156.34 | 1.21 | 1118.82 | 1.17 | 292.32 | 0.31 | 49.90 | 0.05 |
Guangxi | 0.43 | 0 | 114.93 | 0.12 | 1332.04 | 1.39 | 891.93 | 0.93 | 0 | 0 |
Shanxi | 314.30 | 0.33 | 109.85 | 0.11 | 902.84 | 0.94 | 111.47 | 0.12 | 0 | 0 |
Guangdong | 4.66 | 0.01 | 378.96 | 0.40 | 741.40 | 0.77 | 373.49 | 0.39 | 0 | 0 |
Hunan | 38.94 | 0.04 | 64.77 | 0.07 | 939.44 | 0.98 | 849.68 | 0.89 | 51.73 | 0.05 |
Beijing | 0.15 | 0 | 1.42 | 0 | 34.37 | 0.04 | 48.13 | 0.05 | 20.52 | 0.02 |
Heilongjiang | 73.48 | 0.08 | 2486.02 | 2.59 | 519.72 | 0.54 | 0 | 0 | 0 | 0 |
Jiangxi | 0.79 | 0 | 17.35 | 0.02 | 450.07 | 0.469 | 1016.57 | 1.06 | 27.88 | 0.03 |
Hubei | 56.55 | 0.06 | 54.63 | 0.06 | 738.86 | 0.77 | 484.68 | 0.51 | 23.54 | 0.03 |
Fujian | 0 | 0 | 13.77 | 0.01 | 116.37 | 0.12 | 812.77 | 0.85 | 277.76 | 0.29 |
Ningxia | 74.86 | 0.08 | 140.85 | 0.15 | 170.20 | 0.18 | 25.30 | 0.03 | 0 | 0 |
Qinghai | 303.64 | 0.32 | 4479.61 | 4.67 | 180.04 | 0.19 | 0 | 0 | 0 | 0 |
Zhejiang | 6.20 | 0.01 | 90.80 | 0.10 | 290.51 | 0.30 | 347.85 | 0.36 | 168.95 | 0.18 |
Shandong | 3.52 | 0 | 118.62 | 0.12 | 234.60 | 0.24 | 55.69 | 0.06 | 27.74 | 0.03 |
Hainan | 0 | 0 | 97.44 | 0.10 | 146.84 | 0.15 | 0 | 0 | 0 | 0 |
Chongqing | 0 | 0 | 93.86 | 0.10 | 264.42 | 0.28 | 465.59 | 0.49 | 0 | 0 |
Tianjin | 0 | 0 | 0 | 0 | 0 | 0 | 8.15 | 0.01 | 0 | 0 |
Jiangsu | 0 | 0 | 6.67 | 0.01 | 0 | 0 | 0 | 0 | 0 | 0 |
Inner Mongolia | 39.77 | 0.04 | 5518.79 | 5.75 | 158.17 | 0.17 | 16.41 | 0.02 | 0.07 | 0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, J.; Li, J.; Cheng, W.; Wang, N.; Guo, L. A GIS-Based Support Vector Machine Model for Flash Flood Vulnerability Assessment and Mapping in China. ISPRS Int. J. Geo-Inf. 2019, 8, 297. https://doi.org/10.3390/ijgi8070297
Xiong J, Li J, Cheng W, Wang N, Guo L. A GIS-Based Support Vector Machine Model for Flash Flood Vulnerability Assessment and Mapping in China. ISPRS International Journal of Geo-Information. 2019; 8(7):297. https://doi.org/10.3390/ijgi8070297
Chicago/Turabian StyleXiong, Junnan, Jin Li, Weiming Cheng, Nan Wang, and Liang Guo. 2019. "A GIS-Based Support Vector Machine Model for Flash Flood Vulnerability Assessment and Mapping in China" ISPRS International Journal of Geo-Information 8, no. 7: 297. https://doi.org/10.3390/ijgi8070297
APA StyleXiong, J., Li, J., Cheng, W., Wang, N., & Guo, L. (2019). A GIS-Based Support Vector Machine Model for Flash Flood Vulnerability Assessment and Mapping in China. ISPRS International Journal of Geo-Information, 8(7), 297. https://doi.org/10.3390/ijgi8070297