Seeing Climate Change: A Framework for Understanding Visualizations for Climate Adaptation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Review of Existing Geovisualization Frameworks
2.2. Development of CVAP
3. Results
3.1. Literature Review Findings
3.2. The CVAP Framework
3.3. Applying CVAP
3.4. Applying Engagement Themes
3.4.1. Inform
3.4.2. Consult
3.4.3. Involve
3.4.4. Partner
4. Discussion
4.1. Challenges and Opportunities around Classifying Geovisualizations
4.2. Potential Framework Use
5. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Leskens, J.G.; Kehl, C.; Tutenel, T.; Kol, T.; De Haan, G.; Stelling, G.; Eisemann, E. An interactive simulation and visualization tool for flood analysis usable for practitioners. Mitig. Adapt. Strateg. Glob. Chang. 2017, 22, 307–324. [Google Scholar] [CrossRef] [Green Version]
- Bishop, I.D.; Pettit, C.J.; Sheth, F.; Sharma, S. Evaluation of data visualisation options for land-use policy and decision making in response to climate change. Environ. Plan. B Plan. Des. 2013, 40, 213–233. [Google Scholar] [CrossRef]
- Kuser Olsen, V.B.; Momen, B.; Langsdale, S.M.; Galloway, G.E.; Link, E.; Brubaker, K.L.; Ruth, M.; Hill, R.L. An approach for improving flood risk communication using realistic interactive visualisation. J. Flood Risk Manag. 2018, 11, S783–S793. [Google Scholar] [CrossRef]
- Grainger, S.; Mao, F.; Buytaert, W. Environmental data visualisation for non-scientific contexts: Literature review and design framework. Environ. Model. Softw. 2016, 85, 299–318. [Google Scholar] [CrossRef] [Green Version]
- Schroth, O.; Pond, E.; Sheppard, S.R.J. Evaluating presentation formats of local climate change in community planning with regard to process and outcomes. Landsc. Urban Plan. 2015, 142, 147–158. [Google Scholar] [CrossRef] [Green Version]
- Neset, T.S.; Glaas, E.; Ballantyne, A.G.; Linnér, B.O.; Opach, T.; Navarra, C.; Johansson, J.; Bohman, A.; Rød, J.K.; Goodsite, M. Climate change effects at your doorstep: Geographic visualization to support Nordic homeowners in adapting to climate change. Appl. Geogr. 2016, 74, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Raskin, R.; Goodchild, M.; Gahegan, M. Geospatial Cyberinfrastructure: Past, present and future. Comput. Environ. Urban Syst. 2010, 34, 264–277. [Google Scholar] [CrossRef]
- Marmo, C.; Cartwright, W.; Yuille, J. Knowledge in (Geo) Visualisation: The relationship between seeing and thinking. GeoCart 2010, 2010, 123–132. [Google Scholar]
- Newell, R.; Canessa, R. Seeing, Believing, and Feeling. Spaces Flows Int. J. Urban ExtraUrban Stud. 2015, 6, 15–30. [Google Scholar] [CrossRef]
- Lewis, J.L.; Casello, J.M.; Groulx, M. Effective Environmental Visualization for Urban Planning and Design: Interdisciplinary Reflections on a Rapidly Evolving Technology. J. Urban Technol. 2012, 19, 85–106. [Google Scholar] [CrossRef]
- Foo, K.; Gallagher, E.; Bishop, I.; Kim, A. Critical landscape visualization to LAND SI “Critical Approaches to Landscape Visualization”. Landsc. Urban Plan. 2015, 142, 80–84. [Google Scholar] [CrossRef]
- Lovett, A.; Appleton, K.; Warren-Kretzschmar, B.; Von Haaren, C. Using 3D visualization methods in landscape planning: An evaluation of options and practical issues. Landsc. Urban Plan. 2015, 142, 85–94. [Google Scholar] [CrossRef]
- Newell, R.; Canessa, R.; Sharma, T. Visualizing Our Options for Coastal Places: Exploring Realistic Immersive Geovisualizations as Tools for Inclusive Approaches to Coastal Planning and Management. Front. Mar. Sci. 2017, 4, 290. [Google Scholar] [CrossRef]
- Maceachren, A.M.; Kraak, M.J. Exploratory cartographic visualization advancing the agenda. Comput. Geosci. 1997, 23, 335–343. [Google Scholar] [CrossRef]
- Newell, R.; Canessa, R.; Sharma, T. Modeling Both the Space and Place of Coastal Environments: Exploring an Approach for Developing Realistic Geovisualizations of Coastal Places. Front. Mar. Sci. 2017, 4, 87. [Google Scholar] [CrossRef] [Green Version]
- Bohman, A.; Neset, T.S.; Opach, T.; Rød, J.K. Decision support for adaptive action—Assessing the potential of geographic visualization. J. Environ. Plan. Manag. 2015, 58, 2193–2211. [Google Scholar] [CrossRef] [Green Version]
- Al-Kodmany, K. Using visualization techniques for enhancing public participation in planning and design: Process, implementation, and evaluation. Landsc. Urban Plan. 1999, 45, 37–45. [Google Scholar] [CrossRef]
- Shaw, A.; Sheppard, S.; Burch, S.; Flanders, D.; Wiek, A.; Carmichael, J.; Robinson, J.; Cohen, S. Making local futures tangible-Synthesizing, downscaling, and visualizing climate change scenarios for participatory capacity building. Glob. Environ. Chang. 2009, 19, 447–463. [Google Scholar] [CrossRef]
- Haynes, P.; Hehl-Lange, S.; Lange, E. Mobile Augmented Reality for Flood Visualisation. Environ. Model. Softw. 2018, 109, 380–389. [Google Scholar] [CrossRef]
- Newell, R.; Dale, A.; Winters, C. A picture is worth a thousand data points: Exploring visualizations as tools for connecting the public to climate change research. Cogent Soc. Sci. 2016, 2, 1201885. [Google Scholar] [CrossRef]
- Stephens, S.H.; DeLorme, D.E.; Hagen, S.C. Evaluating the Utility and Communicative Effectiveness of an Interactive Sea-Level Rise Viewer through Stakeholder Engagement. J. Bus. Tech. Commun. 2015, 29, 314–343. [Google Scholar] [CrossRef]
- Vandenbroucke, D.; Dessers, E.; Crompvoets, J.; Bregt, A.K.; Van Orshoven, J. A methodology to assess the performance of spatial data infrastructures in the context of work processes. Comput. Environ. Urban Syst. 2013, 38, 58–66. [Google Scholar] [CrossRef]
- Pettit, C.J.; Raymond, C.M.; Bryan, B.A.; Lewis, H. Identifying strengths and weaknesses of landscape visualisation for effective communication of future alternatives. Landsc. Urban Plan. 2011, 100, 231–241. [Google Scholar] [CrossRef]
- Morseletto, P. Analysing the influence of visualisations in global environmental governance. Environ. Sci. Policy 2017, 78, 40–48. [Google Scholar] [CrossRef]
- Glaas, E.; Ballantyne, A.G.; Neset, T.S.; Linnér, B.O. Visualization for supporting individual climate change adaptation planning: Assessment of a web-based tool. Landsc. Urban Plan. 2017, 158, 1–11. [Google Scholar] [CrossRef]
- Robinson, L. Public outrage and public trust: A road map for public involvement in waste management decision-making. In Proceedings of the Waste and Recycle 2002 Conference, Perth, Australia, October 2002; pp. 1–4, 7, 9–14. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.200.1308&rep=rep1&type=pdf (accessed on 1 September 2020).
- Lieske, D.J.; Wade, T.; Roness, L.A. Climate change awareness and strategies for communicating the risk of coastal flooding: A Canadian Maritime case example. Estuar. Coast. Shelf Sci. 2014, 140, 83–94. [Google Scholar] [CrossRef]
- Macchione, F.; Costabile, P.; Costanzo, C.; De Santis, R. Moving to 3-D flood hazard maps for enhancing risk communication. Environ. Model. Softw. 2019, 111, 510–522. [Google Scholar] [CrossRef]
- Hildebrandt, D.; Döllner, J. Service-oriented, standards-based 3D geovisualization: Potential and challenges. Comput. Environ. Urban Syst. 2010, 34, 484–495. [Google Scholar] [CrossRef]
- Kinkeldey, C.; Schiewe, J.; Gerstmann, H.; Götze, C.; Kit, O.; Lüdeke, M.; Taubenböck, H.; Wurm, M. Evaluating the use of uncertainty visualization for exploratory analysis of land cover change: A qualitative expert user study. Comput. Geosci. 2015, 84, 46–53. [Google Scholar] [CrossRef] [Green Version]
- Poco, J.; Dasgupta, A.; Wei, Y.; Hargrove, W.; Schwalm, C.; Cook, R.; Bertini, E.; Silva, C. SimilarityExplorer: A visual inter-comparison tool for multifaceted climate Data. Comput. Graph. Forum 2014, 33, 341–350. [Google Scholar] [CrossRef]
- Johansson, J.; Schmid Neset, T.S.; Linnér, B.O. Evaluating climate visualization: An information visualization approach. In Proceedings of the 2010 14th International Conference Information Visualisation, London, UK, 26–29 July 2010; pp. 156–161. [Google Scholar]
- Tress, B.; Tress, G. Scenario visualisation for participatory landscape planning—A study from Denmark. Landsc. Urban Plan. 2003, 64, 161–178. [Google Scholar] [CrossRef]
- Opach, T.; Rød, J.K. Cartographic visualization of vulnerability to natural hazards. Cartographica 2013, 48, 113–125. [Google Scholar] [CrossRef]
- Tsai, M.K.; Lee, Y.C.; Lu, C.H.; Chen, M.H.; Chou, T.Y.; Yau, N.J. Integrating geographical information and augmented reality techniques for mobile escape guidelines on nuclear accident sites. J. Environ. Radioact. 2012, 109, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Bodoque, J.M.; Díez-Herrero, A.; Amerigo, M.; García, J.A.; Olcina, J. Enhancing flash flood risk perception and awareness of mitigation actions through risk communication: A pre-post survey design. J. Hydrol. 2019, 568, 769–779. [Google Scholar] [CrossRef]
- Smith, D.A.; Ibáñez, A.; Herrera, F. The importance of context: Assessing the benefits and limitations of participatory mapping for empowering indigenous communities in the Comarca Ngäbe-Buglé, Panama. Cartographica 2017, 52, 49–62. [Google Scholar] [CrossRef]
- Hong, D.-B.; Bae, J.-J.; Yang, C.-S. Automatic Mapping Technique of Sea Ice in the Coastal Waters of the Arctic Ocean Using Sentinel-1 Data. J. Coast. Res. 2018, 85, 556–560. [Google Scholar] [CrossRef]
- Goode, D.J. Visualisation cartographique des prélèvements d’eau souterraine à l’échelle d’un sous-bassin. Hydrogeol. J. 2016, 24, 1057–1065. [Google Scholar] [CrossRef]
Source | Theme/Contribution | Description | Audience |
---|---|---|---|
Grainger et al. (2016) | Interactivity | A high level of interactivity increases scientific information uptake | Academia and Laypersons |
Bishop et al. (2013) | Abstraction vs Realism | Amount of realism can impact level of communication | Decision makers |
Glaas et al. (2017) | Risk | Communicate magnitude of potential damage | Homeowners and Public |
Bohman et al. (2015); Maceachren and Kraak (1997) | Map Use Cube | Characterizes geovisualization objectives | Academia |
Robinson, L. (2002) | Community Involvement | Classification of engagement processes | General public and government agencies |
Source | Geovisualization | Climate Adaptation | Public Engagement | Relevance to Framework |
---|---|---|---|---|
Glaas et al. (2017) | VisAdapt Product | Integration of climate scenarios and local risk maps | Adaptive capacity for homeowners | Risk, Interactivity, Realistic visuals, |
Lovett et al. (2015) | 3D landscape visualization | Future landscape changes | Stakeholder involvement | Level of realism in 3D visuals |
Bohman et al. (2015) | VisAdapt and ViewExposed | Nordic climate change property risks | Urban planners and decision makers, homeowners and insurance brokers | Risk assessment, Public decision-making, Geovisualization |
Bishop et al. (2012) | Victorian Climate Change Adaptation Program (VCCAP) | Climate change predictions | Policy and decision makers, extension staff, researchers | Visualizing expected climate change, Risk |
Sheppard et al. (2011) | Local Climate Change Visioning Project (LCCVP) | Change effects at local (community) level | Public debate on climate change | Climate adaptation, Realistic visuals |
Pettit et al. (2011) | Lower Murray Landscape Futures (LMLF) | Communicating landscape futures | Environmental managers, planners, and university students | Interactivity, Realism |
Lieske D.J. (2015) | Community Adaptation Viewer (CAV) | Spatial decision support system to assist in adaptation planning | Community stakeholders | Risk, Interactivity |
Romañach et al. (2014) | EverVIEW Data Viewer | Everglades restoration | National and International planning | Coastal environment Risk reduction, Community involvement |
Tress and Tress (2003) | Photorealistic Visualization | Rural land use planning | Participatory planning | Realistic visuals |
Stephens et al. (2015) | Sea Level Rise Viewer | Hurricane risk communication | Stakeholders and Resource managers | Risk |
Poco et al. (2014) | SimilarityExplorer | Tool for analysis of climate data | Climate scientists | Data interaction |
Li et al. (2011) | Web based GIS for sea ice archives | Sea ice monitoring | Ease of access and data dissemination | Interactivity, data exploration |
Kinkeldey et al. (2015) | Land cover change analysis tool | Future land cover change scenarios | Experts | Risk and Uncertainty |
Macchione et al. (2019) | 3D urban flood inundation maps | Sea level rise | Engage public, stakeholders, and engineers with flood hazards | Realistic visuals, Risk, Interactivity |
Schroth et al. (2015) | Kimberley Climate Adaptation Project (KCAP) | Mountain pine beetle impacts and flood susceptibility | Community awareness and participation | Interactivity, Risk |
Johansson et al. (2010) | WorldView | Representation of climate change related issues | Public involvement | Realistic visuals, Interactivity, Risk |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goudine, A.; Newell, R.; Bone, C. Seeing Climate Change: A Framework for Understanding Visualizations for Climate Adaptation. ISPRS Int. J. Geo-Inf. 2020, 9, 644. https://doi.org/10.3390/ijgi9110644
Goudine A, Newell R, Bone C. Seeing Climate Change: A Framework for Understanding Visualizations for Climate Adaptation. ISPRS International Journal of Geo-Information. 2020; 9(11):644. https://doi.org/10.3390/ijgi9110644
Chicago/Turabian StyleGoudine, Alexei, Robert Newell, and Christopher Bone. 2020. "Seeing Climate Change: A Framework for Understanding Visualizations for Climate Adaptation" ISPRS International Journal of Geo-Information 9, no. 11: 644. https://doi.org/10.3390/ijgi9110644