Using Flickr Geotagged Photos to Estimate Visitor Trajectories in World Heritage Cities
Abstract
:1. Introduction
2. Data Sources for Urban Tourist Mobility Studies in Cultural Heritage Cities
2.1. Challenges for Tourist Mobility Studies in Cultural Heritage Cities
2.2. From Classical Tourism Statistics to Position-Tracking Technologies: Increasing Spatial and Temporal Granularity
2.2.1. Positioning Loggers
2.2.2. Mobile Phone Satellite Position Records
2.2.3. Geotagged Social Media Sources
3. Study Context
4. Material and Methods
4.1. Data Collection and Cleaning
- id: unique ID of the uploaded photo (pid).
- owner-id: unique user ID of the person who uploaded the photo (up).
- longitude: (geotag information) x coordinate (xp).
- latitude: (geotag information) y coordinate (yp).
- dates-taken: date and time when the photo was taken (tp).
- dates-posted: date and time when the photo was uploaded.
4.2. Empirical Approach
4.2.1. Reconstruction of Spatiotemporal Trajectories
- Around 2% of the potential STT could not be reconstructed due to sequence error problems between photos (illogical distribution).
- Around 48% of potential STTs were discarded since they had an insufficient spatial distance between photos (trajectories that were no longer than 1 km).
- >30% STT per street: primary attractions of 1st order.
- 20.1–30.0% STT per street: primary attractions of 2nd order.
- 10.1–20.0% STT per street: secondary attractions.
- 2.6–10.0% STT: complementary attractions.
- <2.5% STT per street: need to gain visibility.
4.2.2. Association of Visitor Mobility and Land Uses
- Warehouse—parking: garages, storage rooms and parking lots.
- Residential: single-family and multi-family homes.
- Offices: offices, including banks and insurance companies.
- Retail and commerce: commercial premises, workshops, galleries, markets and hypermarkets.
- Hospitality and leisure: hotels, bars and cafes.
- Cultural: museums, libraries, colleges or schools.
- Religious: cathedrals, churches, chapels, convents or parish centres.
- Singular buildings: historical-artistic monuments.
5. Results and Discussion
5.1. Visitor Mobility Patterns in the Historic Centre of Toledo
5.2. Land Uses Association with Visitor’ Spatial Behaviour
6. Conclusions
6.1. Implications of Our Findings and Main Contribution to the Field
6.2. Limitations
6.3. Future Research Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | |
---|---|---|---|---|---|---|---|---|
Number of photos | 3490 | 3263 | 5289 | 3974 | 5062 | 4221 | 4843 | 2909 |
Number of users | 190 | 228 | 223 | 238 | 243 | 214 | 182 | 153 |
Average number of photos per user | 18.4 | 14.3 | 23.7 | 16.7 | 20.8 | 19.7 | 26.6 | 19.0 |
References
- Urry, J. Mobilities; Polity Press: Cambridge, UK, 2007. [Google Scholar]
- Bock, K. The changing nature of city tourism and its possible implications for the future of cities. Eur. J. Futures Res. 2015, 3, 20. [Google Scholar] [CrossRef] [Green Version]
- Rifkin, J. The Age of Access; Penguin: London, UK, 2000. [Google Scholar]
- Anton Clavé, S. Urban tourism and walkability. In The future of tourism; Fayos-Solà, E., Cooper, C., Eds.; Springer: Cham, Switzerland, 2019; pp. 195–211. [Google Scholar]
- Russo, A.P.; Scarnato, A. “Barcelona in common”: A new urban regime for the 21st century tourist city? J. Urban Aff. 2018, 40, 455–474. [Google Scholar] [CrossRef]
- Lee, C.B. Cultural policy as regeneration approach in western cities: A case study of Liverpool’s RopeWalks. Geogr. Compass 2009, 3, 495–517. [Google Scholar] [CrossRef]
- Türkün, A. Urban regeneration and hegemonic power relationships. Int. Plan. Stud. 2011, 16, 61–72. [Google Scholar] [CrossRef]
- Wachsmuth, D.; Weisler, A. Airbnb and the Rent Gap: Gentrification through the Sharing Economy. Environ. Plan. A Econ. Space 2018, 50, 1147–1170. [Google Scholar] [CrossRef]
- Dodds, R.; Butler, R. Overtourism: Issues, Realities and Solutions; Walter De Gruyter: Berlin, Germany, 2019. [Google Scholar]
- Bourdeau, P.; François, H.; Bensahel, L. Fin (?) et Confins du Tourisme: Interroger le Statut et les Pratiques de la Récréation Contemporaine; L’Harmattan: Paris, France, 2013. [Google Scholar]
- Cechini, A. I’m Not a Tourist. I Live Here; Publica: Alghero, Italy, 2016. [Google Scholar]
- Russo, A.P.; Richards, G. Reinventing the Local in Tourism: Producing, Consuming and Negotiating Place; Channel View Publications: Bristol, UK, 2016. [Google Scholar]
- Ritzier, G. Globalization; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Lew, A. Tourism planning and place making: Place-making or placemaking? Tour. Geogr. 2017, 19, 448–466. [Google Scholar] [CrossRef]
- Seraphin, H.; Sheeran, P.; Pilato, M. Over-tourism and the fall of Venice as a destination. J. Destin. Mark. Manag. 2018, 9, 374–376. [Google Scholar] [CrossRef]
- Bourdeau, L.; Gravari-Barbas, M. World Heritage, Tourism and Identity: Inscription and Co-Production; Routledge: London, UK, 2016. [Google Scholar]
- Crouch, G.I. Destination competitiveness: An analysis of determinant attributes. J. Travel Res. 2011, 50, 27–45. [Google Scholar] [CrossRef]
- Bimonte, S.; Faralla, V. Does residents’ perceived life satisfaction vary with tourist season? A two-step survey in a Mediterranean destination. Tour. Manag. 2016, 55, 199–208. [Google Scholar] [CrossRef]
- Lin, Z.; Chen, Y.; Filieri, R. Resident-tourist value co-creation: The role of residents’ perceived tourism impacts and life satisfaction. Tour. Manag. 2017, 61, 436–442. [Google Scholar] [CrossRef] [Green Version]
- Caldeira, A.M.; Kastenholz, E. Tourists’ spatial behaviour in urban destinations: The effect of prior destination experience. J. Vacat. Mark. 2017, 24, 247–260. [Google Scholar] [CrossRef]
- Ashworth, G.J.; Page, S.J. Urban tourism research: Recent progress and current paradoxes. Tour. Manag. 2011, 32, 1–15. [Google Scholar] [CrossRef]
- Bauder, M. Using GPS Supported Speed Analysis to Determine Spatial Visitor Behaviour. Int. J. Tour. Res. 2015, 17, 337–346. [Google Scholar] [CrossRef]
- Pearce, D.G. An integrative framework for urban tourism research. Ann. Tour. Res. 2001, 28, 926–946. [Google Scholar] [CrossRef]
- Domènech, A.; Gutiérrez, A.; Anton Clavé, S. Cruise passengers’ spatial behaviour and expenditure levels at destination. Tour. Plan. Dev. 2020, 17, 17–36. [Google Scholar] [CrossRef]
- McKercher, B.; Lau, G. Movement patterns of tourists within a destination. Tour. Geogr. 2008, 10, 355–374. [Google Scholar] [CrossRef]
- Hawelka, B.; Sitko, I.; Beinat, E.; Sobolevsky, S.; Kazakopoulos, P.; Ratti, C. Geo-located Twitter as proxy for global mobility patterns. Cartogr. Geogr. Inf. Sci. 2014, 41, 260–271. [Google Scholar] [CrossRef] [Green Version]
- Solís, E.; Escudero, L.A.; Ruiz-Apilánez, B. Los retos de la ciudad compacta desde la perspectiva de los cascos históricos con fuerte actividad turística. El caso de Toledo. Estud. Geogr. 2020, 81, 35. [Google Scholar] [CrossRef]
- Zárate, M.A. Toledo, planeamiento y especulación en ciudades históricas. Anales de Geografía. Univ. Complut. 2007, 27, 151–175. [Google Scholar] [CrossRef]
- Paül i Agustí, D. Characterizing the location of tourist images in cities. Differences in user-generated images (Instagram), official tourist brochures and travel guides. Ann. Tour. Res. 2018, 73, 103–115. [Google Scholar] [CrossRef]
- Jansen-Verbeke, M. Inner-city tourism: Resources, tourists and promoters. Ann. Tour. Res. 1986, 13, 79–100. [Google Scholar] [CrossRef]
- Domènech, A.; Gutiérrez, A.; Anton Clavé, S. Built environment and urban cruise tourists’ mobility. Ann. Tour. Res. 2020, 81, 102889. [Google Scholar] [CrossRef]
- Girardin, F.; Blat, J.; Calabrese, F.; Dal Fiore, F.; Ratti, C. Digital Footprinting: Uncovering Tourists with User-Generated Content. IEEE Pervasive Comput. 2008, 7, 36–43. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Fan, H.; Bakillah, M.; Zipf, A. Road-based travel recommendation using geo-tagged images. Comput. Environ. Urban Syst. 2015, 53, 110–122. [Google Scholar] [CrossRef]
- Zheng, Y.T.; Zha, Z.J.; Chua, T.S. Mining Travel Patterns from Geotagged Photos. ACM Trans. Intell. Syst. Technol. 2012, 3, 1–18. [Google Scholar] [CrossRef]
- Aranburu, I.; Plaza, B.; Esteban, M. Sustainable cultural tourism in urban destinations: Does space matter? Sustainability 2016, 8, 699. [Google Scholar] [CrossRef] [Green Version]
- Iaquinto, B.L. Tourist as vector: Viral mobilities of COVID-19. Dialogues Hum. Geogr. 2020, 10, 174–177. [Google Scholar] [CrossRef]
- Caust, J.; Vecco, M. Is UNESCO World Heritage recognition a blessing or burden? Evidence from developing Asian countries. J. Cult. Herit. 2017, 27, 1–9. [Google Scholar] [CrossRef]
- De Luca, G.; Dastgerdi, A.S.; Francini, C.; Liberatore, G. Sustainable cultural heritage planning and management of overtourism in art cities: Lessons from Atlas World Heritage. Sustainability 2020, 12, 3929. [Google Scholar] [CrossRef]
- UNWTO. ‘Overtourism’? Understanding and Managing Urban Tourism Growth Beyond Perceptions; UNWTO: Madrid, Spain, 2018. [Google Scholar]
- Richards, G. Tourism attraction systems. Ann. Tour. Res. 2002, 29, 1048–1064. [Google Scholar] [CrossRef] [Green Version]
- Dredge, D. Destination place and planning. Ann. Tour. Res. 1999, 26, 772–779. [Google Scholar] [CrossRef]
- Jaakson, R. Beyond the tourist bubble?: Cruisership passengers in port. Ann. Tour. Res. 2004, 31, 44–60. [Google Scholar] [CrossRef]
- Zillinger, M. Tourist Routes: A time-geographical approach on German car-tourists in Sweden. Tour. Geogr. 2007, 9, 64–83. [Google Scholar] [CrossRef]
- Hardy, A.; Hyslop, S.; Booth, K.; Robards, B.; Aryal, J.; Gretzel, U.; Eccleston, R. Tracking tourists’ travel with smartphone-based GPS technology: A methodological discussion. Inf. Technol. Tour. 2017, 17, 255–274. [Google Scholar] [CrossRef]
- Shoval, N.; Isaacson, M. Tracking tourists in the digital age. Ann. Tour. Res. 2007, 34, 141–159. [Google Scholar] [CrossRef]
- Wu, C.L.; Carson, D. Spatial and temporal tourist dispersal analysis in multiple destination travel. J. Travel Res. 2008, 46, 311–317. [Google Scholar] [CrossRef] [Green Version]
- Birenboim, A.; Anton Clavé, S.; Russo, A.P.; Shoval, N. Temporal activity patterns of theme park visitors. Tour. Geogr. 2013, 15, 601–619. [Google Scholar] [CrossRef]
- Md Khairi, N.D.; Ismail, H.N.; Syed Jaafar, S.M.R. Tourist behaviour through consumption in Melaka World Heritage Site. Curr. Issues Tour. 2018, 22, 582–600. [Google Scholar] [CrossRef]
- Tchetchik, A.; Fleischer, A.; Shoval, N. Segmentation of Visitors to a Heritage Site Using High-resolution Time-space Data. J. Travel Res. 2009, 48, 216–229. [Google Scholar] [CrossRef]
- Versichele, M.; de Groote, L.; Claeys Bouuaert, M.; Neutens, T.; Moerman, I.; van de Weghe, N. Pattern mining in tourist attraction visits through association rule learning on Bluetooth tracking data: A case study of Ghent, Belgium. Tour. Manag. 2014, 44, 67–81. [Google Scholar] [CrossRef] [Green Version]
- Calabrese, F.; Colonna, M.; Lovisolo, P.; Parata, D.; Ratti, C. Real-Time Urban Monitoring Using Cell Phones: A Case Study in Rome. IEEE Trans. Intell. Transp. Syst. 2011, 12. [Google Scholar] [CrossRef]
- Phithakkitnukoon, S.; Horanont, T.; Witayangkurn, A.; Siri, R.; Sekimoto, Y.; Shibasaki, R. Understanding tourist behavior using large-scale mobile sensing approach: A case study of mobile phone users in Japan. Pervasive Mob. Comput. 2015, 18, 18–39. [Google Scholar] [CrossRef]
- Mizzi, C.; Fabbri, A.; Rambaldi, S.; Bertini, F.; Curti, N.; Snigardi, S.; Luzi, R.; Venturi, G.; Davide, M.; Muratore, G.; et al. Unraveling pedestrian mobility on a road network using ICTs data during great tourist events. EPJ Data Sci. 2018, 7, 44. [Google Scholar] [CrossRef] [Green Version]
- Mamei, M.; Colonna, M. Analysis of tourist classification from cellular network data. J. Locat. Based Serv. 2018, 12, 19–39. [Google Scholar] [CrossRef]
- Chareyron GDa-Rugna, J.; Branchet, B. Mining tourist routes using Flickr traces. In Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013), Niagara Falls, ON, Canada, 25–28 August 2013; pp. 1488–1489. [Google Scholar] [CrossRef]
- Önder, I.; Koerbitz, W.; Hubmann-Haidvogel, A.C. Tracing tourists by their digital footprints: The case of Austria. J. Travel Res. 2013, 55, 566–573. [Google Scholar] [CrossRef]
- Yuan, Y.; Medel, M. Characterizing international travel behavior from geotagged photos: A case study of Flickr. PLoS ONE 2016, 11, e0154885. [Google Scholar] [CrossRef] [PubMed]
- Jaffe, A.; Naaman, M.; Tassa, T.; Davis, M. Generating summaries and visualization for large collections of geo-referenced photographs. In Proceedings of the ACM SIGMM International Workshop on Multimedia Information Retrieval, New York, NY, USA, 23–27 October 2006; pp. 89–98. [Google Scholar] [CrossRef] [Green Version]
- Yin, Z.; Cao, L.; Han, J.; Luo, J.; Huan, T. Diversified trajectory pattern ranking in geo-tagged social media. In Proceedings of the 2011 SIAM International Conference on Data Mining, Mesa, AZ, USA, 28–30 April 2011; pp. 980–991. [Google Scholar] [CrossRef] [Green Version]
- Cao, L.; Luo, J.; Gallagher, A.; Jin, X.; Han, J.; Huang, T. A worldwide tourism recommendation system based on geotagged web photos. In Proceedings of the IEEE International Conference on Acoustics 2010 Spech and Signal Processing, Dallas, TX, USA, 14–19 March 2010; pp. 2274–2277. [Google Scholar] [CrossRef]
- Kurashima, T.; Iwata, T.; Irie, G.; Fujimura, K. Travel route recommendation using geotagged photos. Knowl. Inf. Syst. 2013, 37, 37–60. [Google Scholar] [CrossRef]
- Okuyama, K.; Yanai, K. A travel planning system based on travel trajectories extracted from a large number of geotagged photos on the web. In The Era of Interactive Media; Jin, J.S., Xu, C., Xu, M., Eds.; Springer: New York, NY, USA, 2013; pp. 657–670. [Google Scholar] [CrossRef]
- Li, D.; Zhou, X.; Wang, M. Analyzing and visualizing the spatial interactions between tourists and locals: A Flickr study in ten US cities. Cities 2018, 74, 249–258. [Google Scholar] [CrossRef]
- Chae, J.; Cui, Y.; Jang, Y.; Wang, G.; Malik, A.; Ebert, D.S. Trajectory-based visual analytics for anomalous human movement analysis using social media. In EuroVis Workshop on Visual Analytics; Bertini, E., Roberts, J.C., Eds.; Eurographics Association: Darmstadt, Germany, 2015. [Google Scholar]
- Andrienko, G.; Andrienko, N.; Bosch, H.; Ertl, T.; Fuchs, G.; Jankowski, P.; Thom, D. Thematic Patterns in Georeferenced Tweets through Space-Time Visual Analytics. Comput. Sci. Eng. 2013, 15, 72–82. [Google Scholar] [CrossRef]
- Wakamiya, S.; Lee, R.; Sumiya, K. Urban Area Characterization Based on Semantics of Crowd Activities in Twitter. In Proceedings of the International Conference on GeoSpatial Sematics, Brest, France, 12–13 May 2011; Claramunt, C., Levashkin, S., Bertolotto, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 6631. [Google Scholar] [CrossRef]
- García-Palomares, J.C.; Gutiérrez, J.; Mínguez, C. Identification of tourist hot spots based on social networks: A comparative analysis of European metropolises using photo-sharing services and GIS. Appl. Geogr. 2015, 63, 408–417. [Google Scholar] [CrossRef]
- Riederer, C.; Zimmeck, S.; Phanord, C.; Chaintreau, A.; Bellovin, S.M. I don’t have a photograph, but you can have my footprints—Revealing the demographics of location data. In Proceedings of the 9th international AAAI Conference on Weblogs and Social Media, Oxford, UK, 26–29 May 2015; pp. 185–195. [Google Scholar]
- Hecht, B.; Hong, L.; Suh, B.; Chi, E.H. Tweets from Justin Bieber’s heart: The dynamics of the location field in user profiles. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Vancouver, BC, Canada, 7–12 May 2011; pp. 237–246. [Google Scholar] [CrossRef]
- Malik, A.; Dhir, A.; Nieminen, M. Uses and gratifications of digital photo sharing on Facebook. Telemat. Inform. 2015, 33, 129–138. [Google Scholar] [CrossRef] [Green Version]
- Arase, Y.; Xie, X.; Hara, T.; Nishio, S. Mining people’s trips from large scale geo-tagged photos. In Proceedings of the 18th ACM international conference on Multimedia, New York, NY, USA, 25–29 October 2010; pp. 133–142. [Google Scholar] [CrossRef]
- Comito, C.; Falcone, D.; Talia, D. Mining human mobility patterns from social geo-tagged data. Pervasive Mob. Comput. 2016, 33, 91–107. [Google Scholar] [CrossRef]
- Kádár, B. Differences in the spatial patterns of urban tourism in Vienna and Prague. Urbani Izziv 2013, 24, 96–111. [Google Scholar] [CrossRef] [Green Version]
- Orsi, F.; Geneletti, D. Using geotagged photographs and GIS analysis to estimate visitor flows in natural areas. J. Nat. Conserv. 2013, 21, 359–368. [Google Scholar] [CrossRef]
- Encalada, L.; Boavida-Portugal, I.; Cardoso, C.; Rocha, J. Identifying tourist places of interest based on digital imprints: Towards a sustainable smart city. Sustainability 2017, 9, 2317. [Google Scholar] [CrossRef] [Green Version]
- Salas-Olmedo, M.H.; Moya-Gómez, B.; García-Palomares, J.C.; Gutiérrez, J. Tourists’ digital footprint in cities: Comparing Big Data sources. Tour. Manag. 2018, 66, 13–25. [Google Scholar] [CrossRef] [Green Version]
- INE. Encuesta de Ocupación Hotelera; Instituto Nacional de Estadística: Madrid, Spain, 2018. [Google Scholar]
- Europa Press. Toledo Prevé Superar los 4 Millones de Turistas al año con Puy du Fou. 2019. Available online: https://www.europapress.es/turismo/destino-espana/turismo-urbano/noticia-toledo-preve-superar-millones-turistas-ano-llegada-puy-du-fou-20190327132117.html (accessed on 28 October 2020).
- Escudero, L.A. Realities and problems of a major cultural tourist destination in Spain, Toledo. Pasos. Rev. Tur. Patrim. Cult. 2018, 16, 617–636. [Google Scholar] [CrossRef]
- Toledo. Sociedad, Patrimonio y Cultura. Manifesto Fundacional. 2019. Available online: https://toledosociedadypatrimonio.blogspot.com/p/quienes-somos.html (accessed on 28 October 2020).
- La voz del Tajo. La Ciudad Histórica de Toledo, en la Lista del Patrimonio Mundial en Peligro. 2020. Available online: https://www.lavozdeltajo.com/noticia/45424/provincia/la-ciudad-historica-de-toledo-en-la-lista-del-patrimonio-mundial-en-peligro.html (accessed on 28 October 2020).
- Barros, C.; Moya-Gómez, B.; Gutiérrez, J. Using geotagged photographs and GPS tracks from social networks to analyse visitor behaviour in national parks. Curr. Issues Tour. 2020, 23, 1291–1319. [Google Scholar] [CrossRef]
- ArcGIS. About Network Analysis with Hierarchy. 2020. Available online: https://desktop.arcgis.com/en/arcmap/latest/extensions/network-analyst/network-analysis-with-hierarchy.htm (accessed on 28 October 2020).
- Shannon, C.E. A mathematical theory of communications. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- McKercher, B.; Shoval, N.; Ng, E.; Birenboim, A. First and Repeat Visitor Behaviour: GPS Tracking and GIS Analysis in Hong Kong. Tour. Geogr. 2012, 14, 147–161. [Google Scholar] [CrossRef]
- Donaire, J.A. Turismo Cultural. Entre la Experiencia y el Ritual; Editorial Vitel·la: Girona, Spain, 2012. [Google Scholar]
- Lew, A.; McKercher, B. Modeling Tourist Movements: A local Destination Analysis. Ann. Tour. Res. 2006, 33, 403–423. [Google Scholar] [CrossRef]
- Lo, I.S.; McKercher, B.; Lo, A.; Cheung, C.; Law, R. Tourism and online photography. Tour. Manag. 2011, 32, 725–731. [Google Scholar] [CrossRef]
- Boy, J.D.; Uitermark, J. Reassembling the cigty through Instagram. Trans. Inst. Br. Geogr. 2017, 42, 612–624. [Google Scholar] [CrossRef]
- De Waal, M. The City as Interface: How Media are Changing the City; Nai010 Publishers: Rotterdam, The Netherlands, 2014. [Google Scholar]
Type of User | Months active/ Year 1 | Days difference (max–min) 2 | Years active 3 |
---|---|---|---|
No overnight stay: | |||
First-time visitor | 1 | 0 | 1 |
Repeat visitor | 1 | 0 | >1 |
One overnight stay: | |||
First-time tourist | 1 | 1 | 1 |
Repeat tourist | 1 | 1 | >1 |
More than one overnight stay: | |||
First-time tourist | 1 | >1 | 1 |
Repeat tourist | 1 | >1 | >1 |
Local: | >1 | - | >=1 |
Accounts | Photos | |||
---|---|---|---|---|
N | % | n | % | |
No overnight stay: | 1139 | 72.8 | 17,514 | 53.0 |
First-time | 1040 | 66.5 | 16,007 | 48.4 |
Repeat | 99 | 6.3 | 1507 | 4.6 |
One overnight: | 243 | 15.5 | 7372 | 22.3 |
First-time | 218 | 13.9 | 5948 | 18.0 |
Repeat | 25 | 1.6 | 1424 | 4.3 |
More than one overnight: | 183 | 11.7 | 8165 | 24.7 |
First-time | 151 | 9.7 | 6621 | 20.0 |
Repeat | 32 | 2.0 | 1544 | 4.7 |
Total visitors | 1565 | 100.0 | 33,051 | 100.0 |
Potential STT 1 | Sequence Error | Insufficient SV 2 | Reconstructed STT | ||
---|---|---|---|---|---|
n | % | ||||
No overnight stay: | 1276 | 31 | 623 | 622 | 49 |
First-time | 1140 | 30 | 544 | 566 | 50 |
Repeat | 136 | 1 | 79 | 56 | 41 |
One overnight stay: | 381 | 8 | 161 | 212 | 56 |
First-time | 322 | 8 | 141 | 173 | 54 |
Repeat | 59 | 0 | 20 | 39 | 66 |
More than one overnight stay: | 446 | 17 | 215 | 214 | 48 |
First-time | 371 | 16 | 181 | 174 | 47 |
Repeat | 75 | 1 | 34 | 40 | 53 |
Total | 2103 | 56 | 999 | 1048 | 50 |
N Accounts | STTs | Average Length (km) | Standard Deviation | |
---|---|---|---|---|
No overnight stay: | 565 | 622 | 4.6 | 5.5 |
First-time | 525 | 566 | 4.6 | 5.4 |
Repeat | 40 | 56 | 4.4 | 5.9 |
One overnight stay: | 148 | 212 | 5.7 | 12.0 |
First-time | 132 | 173 | 5.4 | 13.2 |
Repeat | 16 | 39 | 4.1 | 3.4 |
More than one overnight stay: | 107 | 214 | 5.2 | 13.1 |
First-time | 89 | 174 | 5.4 | 13.0 |
Repeat | 18 | 40 | 7.1 | 13.7 |
Total | 820 | 1048 | 4.9 | 9.1 |
Tourist Sites Order | Tourist Sites | |
---|---|---|
Primary attractions | 1st order (>30% STT) |
|
2nd order (20.1–30.0% STT) |
| |
Secondary attractions | (10.1–20.0% STT) |
|
Complementary attractions | (2.6–10.0% STT) |
|
Off the beaten track | (<2.5% STT) |
|
Land Use Variable | m2 Per Street (%) | m2 Per Street (Total) |
---|---|---|
Warehouse—Parking | 0.097 * | 0.164 *** |
Residential | −0.259 *** | 0.302 *** |
Offices | 0.271 *** | 0.280 *** |
Retail and commerce | 0.416 *** | 0.457 *** |
Hospitality and leisure | 0.223 *** | 0.230 *** |
Cultural | 0.159 *** | 0.162 *** |
Religious | 0.089 * | 0.093 * |
Singular buildings | 0.097 * | 0.100 * |
Shannon index (entropy) | 0.403 *** |
Model 1 (%) | Model 2 (m2) | |||
---|---|---|---|---|
β (Std.Dev) | Std. β | β (Std.Dev) | Std. β | |
Retail and commerce | 2.978 (0.508) | 0.294 *** | 0.067 (0.009) | 0.371 *** |
Residential | −0.403 (0.125) | −0.162 *** | ||
Singular building | 0.005 (0.001) | 0.219 *** | ||
Religious | 0.004 (0.001) | 0.133 *** | ||
Intercept | 67.125 (9.966) | 34.069 (4.235) | ||
Diagnostic | ||||
R2 | 0.119 | 0.196 | ||
Max VIF | 1.014 | 1.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domènech, A.; Mohino, I.; Moya-Gómez, B. Using Flickr Geotagged Photos to Estimate Visitor Trajectories in World Heritage Cities. ISPRS Int. J. Geo-Inf. 2020, 9, 646. https://doi.org/10.3390/ijgi9110646
Domènech A, Mohino I, Moya-Gómez B. Using Flickr Geotagged Photos to Estimate Visitor Trajectories in World Heritage Cities. ISPRS International Journal of Geo-Information. 2020; 9(11):646. https://doi.org/10.3390/ijgi9110646
Chicago/Turabian StyleDomènech, Antoni, Inmaculada Mohino, and Borja Moya-Gómez. 2020. "Using Flickr Geotagged Photos to Estimate Visitor Trajectories in World Heritage Cities" ISPRS International Journal of Geo-Information 9, no. 11: 646. https://doi.org/10.3390/ijgi9110646