1. Introduction
Urban sprawl is a phenomenon that is changing landscapes throughout Latin America [
1]. The physical expansion of cities occurs at the expense of agricultural, forest or natural areas without taking into account whether these lands were designated for urban land use or not, thereby deteriorating the natural resources that sustain the city [
2]. Increasing land consumption and relatively low population density have become features of the peri-urban areas of major cities [
3]. The transition from monocentric radial cities to cities that expand physically, economically and functionally is evident in the main urban areas of Latin America. They transform, forming both continuous and discontinuous morphologies that structure a new territorial and planning scale [
4].
This dynamic of urban growth implies changes in land use that respond to socio-economic, environmental and physical factors that promote urbanization [
5]. Land use planning attempts to reduce the negative impacts of such growth. It tries to influence the dynamics of land use changes so as to achieve configurations that balance the needs of all actors in a specific territory [
6]. Urban planners and decision-makers require accurate and detailed information on the urban growth potential, land use change processes, locations and spatial patterns to support their guidance functions, to evaluate and plan for future development and to prevent territorial conflicts [
7].
Simulated scenarios of future land use configurations allow us to know the impact of spatial policies on land use transformations. “Scenarios are fictional, they can serve as artificial case histories which illustrate the implications of policies which might be ignored if examples only from the past real world are considered” [
8]. Thus, simulation models based on possible scenarios that combine demands, regulations and the views of the main stakeholders allow the future to be analyzed in a more comprehensive and structured way and have become a fundamental planning tool [
9]. Currently, models are most widely developed and implemented in the United States, Asia, China and Europe. There is little application of these models in Latin America [
4,
9], especially for urban analysis. Most such models have focused on agricultural or forestry uses [
4,
10].
There are several benefits of using scenario modeling for decision making. First, scenarios provide heuristic support to explain events and their consequences [
11]. Facts and data, in themselves, do not make much sense until they are related within a framework that includes the interaction of social, economic, political and technological factors. Scenarios are an appropriate means to relate and understand isolated pieces of information within the same framework [
11]. Second, the description of a scenario requires a certain level of specificity (the who, what, where, when and why of an action). This enables decision-makers to consider factors that could be overlooked if only abstract principles and general statements were to be considered. Third, being fictitious or artificial constructions of future events and situations, scenarios illustrate and inform the political implications that could be ignored if only real-world examples or past evidence were considered. In short, scenarios provide a means to show and explore options to facilitate the discussion among planners, stakeholders, different professionals, disciplines and levels of management regarding future development options.
In this research, a simulation model is applied to the metropolitan area of Quito, Ecuador, to explain and analyze the dynamics of urban growth by 2050 based on two scenarios: trend and regulated. Both scenarios were validated based on relevant planning instruments and on the visions of main actors from local government agencies. The formation of the Quito metropolitan area is analyzed as a product of urban growth. Quito’s location in a narrow mountain valley at the foot of the active Pichincha volcano results in rather linear morphology that is more than 30 km long and from 5 to 8 km wide [
12]. Moreover, much growth occurs outside the administrative limits of Quito City, resulting in a conurbation incorporating the adjacent municipalities and increasing pressure on their natural and agricultural resources.
The ultimate purpose of this research is to answer the following question: Given the simulation of Quito’s urban dynamics, is it necessary to create a new metropolitan area for Quito? The simulation model effectively represents the magnitude and locations of possible land use changes and their spatial patterns [
9] based upon the opinions of local actors. They can more accurately evaluate and project the possible consequences of urban growth effects, and they can also plan for the sustainable development of Quito and its metropolitan area.
4. Discussion
The results from the trend and regulated scenarios reinforce the earlier findings on urban growth trends in Quito [
38,
39]. From the central metropolitan area of Quito, growth is projected towards the periphery, forming a conurbation with the neighboring cantons Pedro Moncayo and Cayambe (to the north) and Rumiñahui and Mejía (to the south). This particular case is a clear example of the process of metropolitan formation in Latin American [
40].
In the trend scenario, urban growth (23%) is lower than in the regulated scenario (25%), which is very unexpected. In the former, growth is directed normal towards the main road transportation routes and the zones with better services and facilities. It is a somewhat fragmented and dispersed growth, by way of urban patches that increasingly occupy more extensive areas beyond Quito’s administrative boundaries. The generation of urban corridors supported by a network of roads that facilitate mobility in search of goods and services in other territories is apparent.
By contrast, in the regulated scenario, the IEE’s proposals for urban expansion configure a large urban conurbation that expands eastwards (to where the new Quito airport is located), as well as to the northeast towards Pedro Moncayo and Cayambe. It also expands to Rumiñahui and to a lesser extent to Mejía. Therefore, urban expansion from the city to the periphery is subject to real estate speculation [
1] that attracts infrastructure, services and new road infrastructure (connecting roads with the new Quito airport), all acting as driving forces for urban growth [
24] analyzed in this paper.
This case confirms how urban growth replaces agricultural land uses, as in other Latin American cities such as Santiago [
4]. In both scenarios, urban expansion entails significant loss of agricultural areas (
Figure 9). This is important as the horticultural, fruit and milk production in Pedro Moncayo, Cayambe and Mejía cantons are main sources of food for the metropolis [
41] and one of the main economic activities of the country [
18]. However, the consequences of such conflicting land use transitions may not be fully appreciated and considered in spatial and other policies [
42].
In the regulated scenario, the use of two indicative layers corresponding to protected and hazardous areas (see
Section 2.1 for details) affects the expansion patterns. As a result, the regulated urban growth consumes the forest area corresponding to the eastern flank and green belt of Quito. To the north, the growth is limited by the presence of a national protected area (Pululahua), but it is also directed towards the northeast of the NAMQ where there is no significative presence of natural protected areas, except for the small Jerusalem Protected Forest in Pedro Moncayo canton. Unlike the trend scenario, regulated urban growth is more compact and it consumes less of the native vegetation, especially the forests (
Figure 10).
We also analyzed where regulated urban growth occurs and how it is directed towards the high-volcanic-risk areas declared by the Geophysical Institute (IGENP) and the National Risk and Emergency Management Service (SNGRE) on the western flanks towards the volcanos Pululahua, Guagua Pichincha, Ninahuilaca or Atacazo and on the eastern flank towards the Cayambe and Cotopaxi volcanos. A study published by the French Institute of Andean Studies (IFEA) corroborates how devastating a possible eruption of the Cotopaxi volcano would be for the southeast valleys (Valle de los Chillos) of Quito and parishes of Rumiñahui (Sangolqui, Pintag), especially due to the passage of lahars [
43]. Both urban zones and agricultural zones are in high risk areas. For example, the flower plantations in Cayambe canton are in a risk area due to the Cayambe volcano, while cultivation of cereals and flowers in Pedro Moncayo is exposed to a high risk due to the Pululahua volcano (
Figure 11).
The simulated land use maps of 2050 show that the trend scenario is more respectful of the agricultural and scrubland areas located in the north of Quito, in Pedro Moncayo or in Cayambe than the regulated scenario. In the regulated scenario scrub coverage disappears almost completely. There is only a small remnant of protected forest, which could produce a fragmentation of ecosystems and loss of biodiversity (the scrubland or dry forest houses unique species and is one of the ecosystems most threatened and altered by anthropogenic activities) as indicated by Ríofrio [
44]. Meanwhile, the regulated scenario respects native vegetation more and restricts urban expansion towards certain natural protected areas (declared by the Ministry of Environment) such as Pululahua, but it consumes the forests that form the green belt of Quito (
Figure 11). In short, the presence of natural protected areas neither prevents urban growth nor the conversion of agricultural land into urban land.
The regulated scenario promotes greater soil conversion than the trend scenario due to the IEE’s urban expansion proposal which allows urban development in forests areas, volcanic risk areas and agricultural production areas (
Figure 11). It is essential to review proposals for urban expansion that are consistent with natural heritage protection policies and are complemented with risk reduction policies due to volcanic threat. The new development policies starting in 2020 will discourage growth towards the periphery, reinforcing the old centralities indicated by Tapia [
45]. Similarly, more coordinated planning between the different governmental entities that is not limited to regulating the territory within an administrative boundary is necessary. That is, comprehensive planning that allows achieving sustainable urban development.
The knowledge gained from these simulations confirms the need to use planning laws and instruments not just for the DMQ, but also for the planning of newly developing areas beyond the current DMQ boundary. Increased regulation and control should be applied to a wider territory, the so-called NAQM, supported by policies and spatial plans that provide a framework and instruments to manage urban sprawl.
According to Castro [
46], a collaborative planning effort between the municipality of Quito and the cantons of the province of Pichincha, which together could be considered as the Quito conurbation, is anticipated. The two scenarios presented here are examples of how changes in land use, without a well-functioning land use planning and control system, might affect Quito’s progress toward greater sustainability and the need to consider scaling up the planning and management scale to the NAQM area.
5. Conclusions
This work has shown how the integration and evaluation of land use/cover trends and policies could be considered in a proposal for a new metropolitan area for Quito. The results obtained from the modeling of two growth scenarios through 2050, trend growth and regulated growth, foresee a substantial reduction of agricultural and natural areas as a result of urban expansion. The two scenarios allow the exploration of different results with different alternatives that can inform the debate on the desired development and planning of the territory.
Nevertheless, neither of the scenarios presents an ideal outcome. Both pay insufficient attention to nature conservation and the volcanic risk areas. Irrespective of their low legal status as development constraints, they are both important considerations for sustainability and for resilience. The lack of coordination and joint work between the governments of the cantonal municipalities and the municipality of the metropolitan area is confirmed. To this day, none of these municipalities has defined enough areas for urban expansion in their planning. As a result, urban development has long obeyed an inverse logic in which the first step is to inhabit the territory and then the later steps are to plan the city, which is why the regulations for land use planning and its instruments were created in Ecuador in 2016.
Urban planning instruments must cover the territory comprehensively. The results of this paper show that urban dynamics of Quito are not constrained by administrative limits. Planning based on a single geographical scale and space is therefore obsolete. Aspects such as globalization, natural risks, landscape quality, sustainability and urban resilience must be incorporated into the context and plan development processes.
Working with scenario modeling approaches can provide information to Latin American governments and metropolitan cities for designing desirable futures through simulations. Ex-ante modeling and evaluations support political decision-making and its spatial implications while creating opportunities to engage various agents involved in planning processes. In short, the planning of future development needs and land use conflict prevention must be inclusive, including policy makers, academics and local communities.