The Spatial Heterogeneity of Factors of Drug Dealing: A Case Study from ZG, China
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data Preparation
3. Methodology
3.1. GLM
3.2. GWPR
3.3. Spatial Autocorrelation and Multicollinearity
3.4. Measures of Goodness of Fit
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- UNODC. World Drug Report 2018; UN: New York, NY, USA, 2018. [Google Scholar] [CrossRef]
- Weir, R. Using geographically weighted regression to explore neighborhood-level predictors of domestic abuse in the UK. Trans. GIS 2019, 23, 1232–1250. [Google Scholar] [CrossRef]
- Braga, A.A.; Weisburd, D.L.; Waring, E.J.; Mazerolle, L.G.; Spelman, W.; Gajewski, F. Problem-oriented policing in violent crime places: A randomized controlled experiment. Criminology 1999, 37, 541–580. [Google Scholar] [CrossRef]
- Robinson, J.B.; Rengert, G.F. Illegal Drug Markets: The Geographic Perspective and Crime Propensity. West. Criminol. Rev. 2006, 7, 20–32. [Google Scholar]
- Weisburd, D.; Mazerolle, L.G. Crime and Disorder in Drug Hot Spots: Implications for Theory and Practice in Policing. Police Q. 2000, 2000. 3, 331–349. [Google Scholar] [CrossRef]
- Rengert, G.; Chakravorty, S.; Bole, T.; Henderson, K. A geographic analysis of illegal drug markets. Crime. Prev. Stud. 2000, 11, 219–239. [Google Scholar]
- Kennedy, L.W.; Caplan, J.M.; Piza, E. Risk Clusters, Hotspots, and Spatial Intelligence: Risk Terrain Modeling as an Algorithm for Police Resource Allocation Strategies. J. Quant. Criminol. 2011, 27, 339–362. [Google Scholar] [CrossRef] [Green Version]
- Taniguchi, T.A.; Ratcliffe, J.H.; Taylor, R.B. Gang Set Space, Drug Markets, and Crime around Drug Corners in Camden. J. Res. Crime Delinquency 2011, 48, 327–363. [Google Scholar] [CrossRef] [Green Version]
- Weisburd, D.; Green, L. Policing drug hot spots: The Jersey City drug market analysis experiment. Justice Q. 1995, 12, 711–735. [Google Scholar] [CrossRef]
- Eck, J. Preventing crime by controlling drug dealing on private rental property. Secur. J. 1998, 11, 37–43. [Google Scholar] [CrossRef]
- McCord, E.S.; Ratcliffe, J.H. A Micro-Spatial Analysis of the Demographic and Criminogenic Environment of Drug Markets in Philadelphia. Aust. N. Z. J. Criminol. 2007, 40, 43–63. [Google Scholar] [CrossRef] [Green Version]
- Bernasco, W.; Jacques, S. Where Do Dealers Solicit Customers and Sell Them Drugs? A Micro-Level Multiple Method Study. J. Contemp. Crim. Justice. 2015, 31, 376–408. [Google Scholar] [CrossRef]
- Barnum, J.D.; Campbell, W.L.; Trocchio, S.; Caplan, J.M.; Kennedy, L.W. Examining the Environmental Characteristics of Drug Dealing Locations. Crime Delinquency 2016, 63, 1731–1756. [Google Scholar] [CrossRef]
- Onat, I.; Akca, D.; Bastug, M.F. Risk Terrains of Illicit Drug Activities in Durham Region. Ontario. Can. J. Criminol. Crim. Justice 2018, 60, 1–29. [Google Scholar] [CrossRef]
- Escudero, J.A.; Ramírez, B. Risk terrain modeling for monitoring illicit drugs markets across Bogota, Colombia. Crime Sci. 2018, 7, 3. [Google Scholar] [CrossRef] [Green Version]
- Taniguchi, T.A.; Rengert, G.F.; McCord, E.S. Where Size Matters: Agglomeration Economies of Illegal Drug Markets in Philadelphia. Justice Q. 2009, 26, 670–694. [Google Scholar] [CrossRef]
- Johnson, L.T.; Taylor, R.B.; Ratcliffe, J.H. Need drugs, will travel? The distances to crime of illegal drug buyers. J. Crim. Justice 2013, 41, 178–187. [Google Scholar] [CrossRef]
- Lesage, J.P. Introduction to Spatial Econometrics; Chapman and Hall/CRC: New York, NY, USA, 2009. [Google Scholar]
- Fotheringham, A.; Brunsdon, C.; Charlton, M. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships. 2002; John Wiley & Sons: Chichester, UK; Hoboken, NJ, USA, 2003. [Google Scholar]
- Chen, J.; Liu, L.; Zhou, S.; Xiao, L.; Song, G.; Ren, F. Modeling Spatial Effect in Residential Burglary: A Case Study from ZG City, China. ISPRS Int. J. Geo-Inf. 2017, 6, 138. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Liu, L.; Zhou, S.; Xiao, L.; Jiang, C. Spatial Variation Relationship between Floating Population and Residential Burglary: A Case Study from ZG, China. ISPRS Int. J. Geo-Inf. 2017, 6, 246. [Google Scholar] [CrossRef] [Green Version]
- Sepúlveda Murillo, F.H.; Olmo, J.C.; de Cortázar, A.R.G. The spatial heterogeneity of factors of feminicide: The case of Antioquia-Colombia. Appl. Geogr. 2018, 92, 63–73. [Google Scholar] [CrossRef]
- UNODC. World Drug Report 2008; UN: New York, NY, USA, 2008. [Google Scholar] [CrossRef]
- China Statistics Bureau, China Statistical Yearbook; China Statistical Publishing House: Beijing, China, 2018.
- Chen, J.; Liu, L.; Xiao, L.; Xu, C.; Long, D. Integrative Analysis of Spatial Heterogeneity and Overdispersion of Crime with a Geographically Weighted Negative Binomial Model. ISPRS Int. J. Geo-Inf. 2020, 9, 60. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Feng, J.; Ren, F.; Xiao, L. Examining the relationship between neighborhood environment and residential locations of juvenile and adult migrant burglars in China. Cities 2018, 82, 10–18. [Google Scholar] [CrossRef]
- Wooditch, A.; Lawton, B.; Taxman, F.S. The Geography of Drug Abuse Epidemiology Among Probationers in Baltimore. J. Drug Issues 2013, 43, 231–249. [Google Scholar] [CrossRef]
- Willits, D.; Broidy, L.M.; Denman, K. Schools and Drug Markets: Examining the Relationship Between Schools and Neighborhood Drug Crime. Youth Soc. 2013, 47, 634–658. [Google Scholar] [CrossRef]
- Andreas, M.S. Spatial Analysis of Crime Using Gis-Based Data: Weighted Spatial Adaptive Filtering and Chaotic Cellular Forecasting with Applications to Street-Level Drug Markets. Ph.D. Dissertation, Carnegie Mellon University, Schenley Park Pittsburgh, PA, USA, 1997. [Google Scholar]
- Liu, L.; Jiang, C.; Zhou, S.; Liu, K.; Du, F. Impact of public bus system on spatial burglary patterns in a Chinese urban context. Appl. Geogr. 2017, 89, 142–149. [Google Scholar] [CrossRef]
- Song, G.; Liu, L.; Bernasco, W.; Xiao, L.; Zhou, S.; Liao, W. Testing Indicators of Risk Populations for Theft from the Person across Space and Time: The Significance of Mobility and Outdoor Activity. Ann. Am. Assoc. Geogr. 2018, 108, 1370–1388. [Google Scholar] [CrossRef]
- Song, G.; Liu, L.; Bernasco, W.; Zhou, S.; Xiao, L.; Long, D. Theft from the person in urban China: assessing the diurnal effects of opportunity and social ecology. Habitat Int. 2018, 78, 13–20. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Charlton, M.E.; Brunsdon, C. Spatial Variations in School Performance: A Local Analysis Using Geographically Weighted Regression. Geogr. Environ. Model. 2001, 5, 43–66. [Google Scholar] [CrossRef]
- Tobler, W.R. A Computer Movie Simulating Urban Growth in the Detroit Region. Econ. Geogr. 1970, 46, 234–240. [Google Scholar] [CrossRef]
- Moran, P.A.P. Notes on continuous stochastic phenomena. Biometrika 1950, 37, 17–23. [Google Scholar] [CrossRef]
- Anselin, L. Spatial Econometrics: Methods and Models; Kluwer Academic Publisher: Dordrecht, The Netherlands, 1988. [Google Scholar]
- Zheng, S.; Long, F.; Fan, C.; Gu, Y. Urban Villages in China: A 2008 Survey of Migrant Settlements in Beijing. Eurasian Geogr. Econ. 2009, 50, 425–446. [Google Scholar] [CrossRef] [Green Version]
- Curran, D.J. Economic Reform, the Floating Population, and Crime: The Transformation of Social Control in China. J. Contemp. Crim. Justice 1998, 14, 262–280. [Google Scholar] [CrossRef]
- Situ, Y.; Liu, W. Transient Population, Crime, and Solution: The Chinese Experience. International Journal of Offender Ther. Comp. Criminol. 1996, 40, 293–299. [Google Scholar] [CrossRef]
- Zhao Shukai, A.K. Criminality and the Policing of Migrant Workers. China J. 2000, 43, 101–110. [Google Scholar] [CrossRef]
- Caminha, C.; Furtado, V.; Pequeno, T.H.C.; Ponte, C.; Melo, H.P.M.; Oliveira, E.A.; Andrade, J.S. Human mobility in large cities as a proxy for crime. PLOS ONE 2017, 12, e0171609. [Google Scholar] [CrossRef] [Green Version]
- Mburu, L.; Helbich, M. Crime Risk Estimation with a Commuter- Harmonized Ambient Population. Ann. Am. Assoc. Geogr. 2016, 106, 1–15. [Google Scholar] [CrossRef]
- Konkel, R.; Hafemeister, A.; Daigle, L. The Effects of Risky Places, Motivated Offenders, and Social Disorganization on Sexual Victimization: A Microgeographic- and Neighborhood-Level Examination. J. Interpers. Violence 2019. [Google Scholar] [CrossRef]
- Feng, J.; Liu, L.; Long, D.; Liao, W. An Examination of Spatial Differences between Migrant and Native Offenders in Committing Violent Crimes in a Large Chinese City. ISPRS Int. J. Geo-Inf. 2019, 8, 119. [Google Scholar] [CrossRef] [Green Version]
- Davies, T.; Johnson, S.D. Examining the Relationship Between Road Structure and Burglary Risk Via Quantitative Network Analysis. J. Quant. Crim. 2015, 31, 481–507. [Google Scholar] [CrossRef] [Green Version]
- Xiao, L.; Liu, L.; Song, G.; Ruiter, S.; Zhou, S. Journey-to-Crime Distances of Residential Burglars in China Disentangled: Origin and Destination Effects. ISPRS Int. J. Geo-Inf. 2018, 7, 325. [Google Scholar] [CrossRef] [Green Version]
- Eck, J. Drug Markets and Drug Places: A case control study of the spatial structure of illicit drug dealing. Ph.D. Dissertation, University of Maryland, College Park, MD, USA, 1994. [Google Scholar]
- Lim, H.; Wilcox, P. Crime-Reduction Effects of Open-street CCTV: Conditionality Considerations. Justice Q. 2017, 34, 597–626. [Google Scholar] [CrossRef]
- Piza, E.L. The crime prevention effect of CCTV in public places: a propensity score analysis. J. Crim. Justice 2018, 41, 14–30. [Google Scholar] [CrossRef] [Green Version]
- Du, F.; Liu, L.; Jiang, C.; Long, D.; Lan, M. Discerning the Effects of Rural to Urban Migrants on Burglaries in ZG City with Structural Equation Modeling. Sustainability 2019, 11, 561. [Google Scholar] [CrossRef] [Green Version]
- Long, D.; Liu, L.; Feng, J.; Zhou, S.; Jing, F. Assessing the Influence of Prior on Subsequent Street Robbery Location Choices: A Case Study in ZG City, China. Sustainability 2018, 10, 1818. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Liu, L.; Lan, M.; Yang, B.; Wang, Z. Assessing the Impact of Nightlight Gradients on Street Robbery and Burglary in Cincinnati of Ohio State, USA. Rem. Sens. 2019, 11, 1958. [Google Scholar] [CrossRef] [Green Version]
- Hadayeghi, A.; Shalaby, A.S.; Persaud, B.N. Development of planning level transportation safety tools using Geographically Weighted Poisson Regression. Accid. Anal. Prev. 2010, 42, 676–688. [Google Scholar] [CrossRef]
- Xu, P.; Huang, H. Modeling crash spatial heterogeneity: Random parameter versus geographically weighting. Accid. Anal. Prev. 2015, 75, 16–25. [Google Scholar] [CrossRef]
- Openshaw, S. The modifiable areal unit problem, in Quantitative Geography: A British View; Wrigley, N., Bennett, R.J., Wrigley, N., Bennett, R.J., Eds.; Routledge & Kegan Paul: London, UK, 1981; pp. 60–69. [Google Scholar]
Variable | Description | Mean | S.D. | Min | Max |
---|---|---|---|---|---|
Dependent Variable | |||||
Drug dealing | Total number of drug dealings per PSMA | 84.43 | 57.52 | 0 | 311 |
Explanatory variables | |||||
Urban village | The proportion of the total urban village area in each PSMA | 5.57 | 6.21 | 0 | 24.29 |
HotelDen | The number of hotels per km2 in each PSMA | 7.79 | 8.66 | 0 | 38.69 |
FloatingPOP | Percent of the number of people without local hukou in each PSMA (%) | 37.92 | 21.19 | 0 | 87.28 |
BusStopDen | The number of bus stop per km2 in each PSMA | 0.56 | 0.38 | 0 | 2.19 |
MainRoad | Percent of main road length (%) | 3.23 | 3.24 | 0 | 17.92 |
BranchRoad | Percent of branch road length (%) | 32.75 | 17.29 | 0 | 80.46 |
Advanced degree | Percent of people with a bachelor degree or higher in each PSMA | 10.99 | 9.7 | 0 | 58.62 |
Urban village | HotelDen | FloatingPOP | BusStopDen | MainRoad | BranchRoad | Advanced Degree | |
---|---|---|---|---|---|---|---|
Urban village | 1 | ||||||
HotelDen | −0.435 * | 1 | |||||
FloatingPOP | 0.662 * | −0.438 * | 1 | ||||
BusStopDen | −0.281 * | 0.692 * | −0.312 * | 1 | |||
MainRoad | −0.007 | −0.156 | 0.163 | −0.029 | 1 | ||
BranchRoad | 0.581 * | −0.272 * | 0.479 * | −0.274 * | −0.091 | 1 | |
Advanced degree | −0.425 * | 0.253 * | −0.334 * | 0.118 | 0.058 | −0.317 * | 1 |
GLM | GWPR | ||||||
---|---|---|---|---|---|---|---|
Mean | Min | Lwr Quartile | Median | Upr Quartile | Max | ||
Urban village | 0.007 * | 0.0085 | −0.0495 | −0.008 | 0.0066 | 0.0213 | 0.0721 |
HotelDen | 0.0134 * | 0.0043 | −0.0688 | −0.0073 | 0.0099 | 0.0175 | 0.0304 |
FloatingPOP | 0.0046 * | −0.0007 | −0.0136 | −0.0053 | 0.0009 | 0.0037 | 0.0155 |
BusStopDen | 0.4687 * | 0.5807 | 0.0089 | 0.2933 | 0.5228 | 0.8208 | 1.8311 |
MainRoad | −0.0074 * | −0.0025 | −0.0714 | −0.0193 | −0.0019 | 0.0183 | 0.0606 |
BranchRoad | 0.0059 * | 0.0031 | −0.0168 | −0.0025 | 0.0032 | 0.0092 | 0.0168 |
Advanced degree | −0.0321 * | −0.0274 | −0.0513 | −0.0394 | −0.0314 | −0.0147 | 0.014 |
Intercept | −7.0477 | −6.8879 | −8.3962 | −7.1453 | −6.845 | −6.5296 | −5.8916 |
Moran’s I | 0.162 * | −0.0286 | |||||
MAD | 26.5314 | 21.0873 | |||||
Akaike’s Information Criterion (AIC) | 1815.8540 | 1247.9778 | |||||
Percent deviance explained | 0.445 | 0.638 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Liu, L.; Liu, H.; Long, D.; Xu, C.; Zhou, H. The Spatial Heterogeneity of Factors of Drug Dealing: A Case Study from ZG, China. ISPRS Int. J. Geo-Inf. 2020, 9, 205. https://doi.org/10.3390/ijgi9040205
Chen J, Liu L, Liu H, Long D, Xu C, Zhou H. The Spatial Heterogeneity of Factors of Drug Dealing: A Case Study from ZG, China. ISPRS International Journal of Geo-Information. 2020; 9(4):205. https://doi.org/10.3390/ijgi9040205
Chicago/Turabian StyleChen, Jianguo, Lin Liu, Huiting Liu, Dongping Long, Chong Xu, and Hanlin Zhou. 2020. "The Spatial Heterogeneity of Factors of Drug Dealing: A Case Study from ZG, China" ISPRS International Journal of Geo-Information 9, no. 4: 205. https://doi.org/10.3390/ijgi9040205
APA StyleChen, J., Liu, L., Liu, H., Long, D., Xu, C., & Zhou, H. (2020). The Spatial Heterogeneity of Factors of Drug Dealing: A Case Study from ZG, China. ISPRS International Journal of Geo-Information, 9(4), 205. https://doi.org/10.3390/ijgi9040205