Mapping Submerged Aquatic Vegetation along the Central Vietnamese Coast Using Multi-Source Remote Sensing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Materials
2.2.1. Satellite Data
2.2.2. Data Collection
2.3. Methods
2.3.1. Field Surveys
2.3.2. SAV Spatial Distribution and Area Change Mapping
DII13 = Ln (B1) − 0.831672* Ln (B3); R2 = 0.895
DII14 = Ln (B1) − 2.793626* Ln (B4); R2 = 0.587
DII23 = Ln (B2) − 0.786978* Ln (B3); R2 = 0.941
DII24 = Ln (B2) − 3.058009* Ln (B4); R2 = 0.469
DII34 = Ln (B3) − 4.075378* Ln (B4); R2 = 0.536
3. Results
3.1. Assessing the Accuracy of Classification Results
3.2. Spatial Distribution of SAV in Selected Sections of the Khanh Hoa Coastal Area
3.3. Assessment of the Temporal Changes to SAV in the Khanh Hoa Area
4. Discussion
4.1. Assessing the Accuracy
4.2. Factors Influencing Interpretation Processes
4.3. Temporal Changes to SAV Distribution
4.4. Temporal Changes in SAV Extent
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Evaluation Accuracy after Classification
Layers | SAV | Sand | Deep Water | Mud | Rock–Coral | Total | UA |
---|---|---|---|---|---|---|---|
SAV | 103 | 0 | 0 | 16 | 1 | 120 | 85.83 |
Sand | 0 | 130 | 4 | 0 | 0 | 134 | 97.01 |
Deep water | 0 | 0 | 106 | 4 | 6 | 116 | 91.38 |
Mud | 30 | 0 | 6 | 92 | 3 | 131 | 70.23 |
Rock–Coral | 11 | 3 | 0 | 2 | 90 | 106 | 84.91 |
Total | 144 | 133 | 116 | 114 | 100 | 607 | |
PA | 71.53 | 97.74 | 91.38 | 98.57 | 80.36 | OA 85.83 |
Layers | SAV | Sand | Deep Water | Mud | Rock–Coral | Total | UA |
---|---|---|---|---|---|---|---|
SAV | 113 | 2 | 3 | 21 | 6 | 145 | 77.93 |
Sand | 0 | 135 | 0 | 1 | 0 | 136 | 99.26 |
Deep water | 0 | 0 | 115 | 0 | 0 | 115 | 100.00 |
Mud | 25 | 1 | 0 | 90 | 0 | 116 | 77.59 |
Rock–Coral | 5 | 0 | 0 | 0 | 87 | 92 | 94.57 |
Total | 143 | 138 | 118 | 112 | 93 | 604 | |
PA | 79.02 | 97.83 | 97.46 | 80.36 | 93.55 | OA 89.40 |
Layer | SAV | Sand | Deep Water | Mud | Rock–Coral | Total | UA |
---|---|---|---|---|---|---|---|
SAV | 113 | 0 | 0 | 7 | 3 | 123 | 91.87 |
Sand | 4 | 130 | 2 | 0 | 7 | 143 | 90.91 |
Deep water | 0 | 0 | 108 | 6 | 0 | 114 | 94.74 |
Mud | 22 | 0 | 4 | 95 | 0 | 121 | 78.51 |
Rock–Coral | 3 | 8 | 4 | 0 | 88 | 103 | 85.44 |
Total | 142 | 138 | 118 | 108 | 98 | 604 | |
PA | 79.58 | 94.20 | 91.53 | 87.96 | 89.85 | OA 88.41 |
Layers | SAV | Sand | Deep Water | Mud | Rock–Coral | Total | UA |
---|---|---|---|---|---|---|---|
SAV | 115 | 2 | 0 | 6 | 2 | 125 | 92.00 |
Sand | 3 | 130 | 0 | 2 | 3 | 138 | 94.20 |
Deep water | 3 | 0 | 105 | 7 | 3 | 118 | 88.98 |
Mud | 18 | 0 | 3 | 94 | 3 | 118 | 79.66 |
Rock–Coral | 5 | 8 | 10 | 0 | 88 | 112 | 79.28 |
Total | 144 | 140 | 118 | 109 | 99 | 610 |
References
- Dai, N.H. Seagrass in Vietnam. In Seagrasses: Resource Status and Trends in Indonesia, Japan, Malaysia, Thailand and Vietnam; Seizando-Shoten: Tokyo, Japan, 2011; pp. 12–53. [Google Scholar]
- Nguyen, V.T.; Nguyen, D.T.; Nguyen, H.D. Vietnamese Seagrasses and Seaweeds (in Vietnamese); The Sciences and Technology Press: Ha Noi, Vietnam, 2005. [Google Scholar]
- Huynh, Q.N.; Nguyen, H.D. The seaweed resources of Vietnam. In Seaweed Resources of the World; Critchley, A.T., Ohno, M., Eds.; Japan International Cooperation Agency: Yokosuka, Japan, 1998; pp. 62–69. [Google Scholar]
- Lobban, S.; Harrison, P.J. Seaweed Ecology and Physiology; Cambridge University Press: Vancouver, BC, Canada, 1977. [Google Scholar]
- Mark, D.S.; Susan, R.; Carmen, L.; Imen, M.; Lynne, Z.H.; Christine, C.S.; Michael, W.B. The role of ecosystems in coastal protection: Adapting to climate change and coastal hazards. Ocean Coast. Manag. 2014, 90, 50–57. [Google Scholar]
- Tien, N.V. Resources of Vietnamese Seagrass (in Vietnamese); Hanoi University of Science and Technology: Ha Noi, Vietnam, 2013. [Google Scholar]
- Trang, T.T.M.; Ha, N.T.N.; Thanh, T.D. Position resources in the coastal area of Khanh Hoa province: Potential and prospects. J. Mar. Sci. Technol. 2015, 15, 13–24. [Google Scholar] [CrossRef]
- Dai, N.H.; Tri, P.H.; Linh, N.T.; Vy, N.X. The degradation of seagrass beds in Khanh Hoa province and the ability of restoration of these meadows (in Vietnamese). In Proceedings of the Scientific Conference of “BIEN DONG-2002”, Nha Trang, Vietnam, 16–19 December 2002. [Google Scholar]
- Hoa, N.X.; Thuy, N.N.N.; Hieu, N.T. Current status of mangroves and seagrasses in Thuy Trieu lagoon, Khanh Hoa province (in Vietnamese). In Proceedings of the Fifth National Scientific Conference on Ecology and Biological Resources, Ha Noi, Vietnam, 18 October 2013; pp. 488–496. [Google Scholar]
- Hoa, N.X.; Thuy, N.N.N. Current status and trends of mangroves and seagrasses in Van Phong Bay, Khanh Hoa province (in Vietnamese). Collect. Mar. Res. Work. 2014, 20, 135–147. [Google Scholar]
- Kerr, J.T.; Ostrovsky, M. From space to species: Ecological applications for remote sensing. Trends Ecol. Evol. 2003, 18, 299–305. [Google Scholar] [CrossRef]
- Edwards, A.J. Remote Sensing 2004: Handbook for Tropical Coastal Management; United Nations Educational, Scientific and Cultural Organization: Paris, France, 2004. [Google Scholar]
- Green, E.P.; Mumby, P.J.; Edwards, A.J.; Clark, C.D. A review of remote sensing for the assessment and management of tropical coastal resources. Coast. Manag. 1996, 24, 1–40. [Google Scholar] [CrossRef]
- Hashim, M.; Abdullah, A.; Rasib, A.W. Integration of remote sensing-GIS techniques for mapping seagrass and ocean colour off Malaysian Coasts. In Proceedings of the Asian Conference on Remote Sensing, Kuala Lumpur, Malaysia, 20–24 October 1997. [Google Scholar]
- Hoa, N.X.; Thuy, N.N.N.; Hieu, N.T. Current status and trends of mangroves and seagrasses in Nha Trang Bay, Khanh Hoa province (in Vietnamese). Collect. Mar. Res. Work. 2015, 21, 201–211. [Google Scholar]
- Qihao, W. Remote Sensing and GIS Integration, Theories, Methods and Applications; The McGraw-Hill Companies: New York, NY, USA, 2010. [Google Scholar]
- Koedsin, W.; Intararuang, W.; Ritchie, R.J.; Huete, A. An Integrated Field and Remote Sensing Method for Mapping Seagrass Species, Cover, and Biomass in Southern Thailand. Remote Sens. 2016, 8, 292. [Google Scholar] [CrossRef] [Green Version]
- Gullström, M.; Lundén, B.; Bodin, M.; Kangwe, J.; Öhman, M.C.; Mtolera, M.S.; Björk, M. Assessment of changes in the seagrass-dominated submerged vegetation of tropical Chwaka Bay (Zanzibar) using satellite remote sensing. Estuar. Coast. Shelf Sci. 2006, 67, 399–408. [Google Scholar] [CrossRef]
- Phinn, S.; Chris, R.; Arnold, D.; Vittoro, B.; Janet, A. Mapping seagrass species, cover and biomass in shallow waters: An assessment of satellite multi-spectral and airborne hyper-spectral imaging systems in Moreton Bay (Australia). Remote Sens. Environ. 2008, 112, 3413–3425. [Google Scholar] [CrossRef]
- Noiraksar, T.; Sawayama, S.; Phauk, S.; Komatsu, T. Mapping Sargassum bedsoff the coast of Chon Buri Province, Thailand, using ALOS AVNIR-2 satellite imagery. Bot. Mar. 2012, 57, 367–377. [Google Scholar]
- Hoang, T.C.; O’Leary, M.J.; Fotedar, R.K. Remote-sensed mapping of Sargassum spp. distribution around Rottnest Island, Western Australia, using high-spatial resolution WorldView-2 satellite data. J. Coast. Res. 2016, 32, 1310–1321. [Google Scholar]
- Manuputty, A.; Gaol, J.L.; Agus, S.B.; Nurjaya, I.W. The utilization of Depth Invariant Index and Principle Component Analysis for mapping seagrass ecosystem of Kotok Island and Karang Bongkok, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2017, 54, 012083. [Google Scholar] [CrossRef] [Green Version]
- Hoang, T.C.; Phap, H.T.; Tuan, N.Q.; Son, T.P.H. Application of remote sensing and Geographical Information System (GIS) techniques in assessing the existing situation of seagrass meadow at coastal wetland in Huong Phong commune, Huong Tra district, Thua Thien Hue province. J. Sci. Hue Univ. 2011, 65, 231–239. [Google Scholar]
- Nguyen, H.Q.; Luong, V.T.; Ho, D.D. Study on spatial distribution of coral reefs in Ly Son Island using GIS and remote sensing technique. J. Mar. Sci. Technol. 2015, 15, 264–272. [Google Scholar]
- Thang, H.N.; Son, T.P.H. Applying techniques of calculating depth invariant index in mapping the distribution of seagrass beds. Hue Univ. J. Sci. 2014, 92, 93–104. [Google Scholar]
- Chen, C.F.; Lau, V.K.; Chang, N.B.; Nguyen, T.S.; Tong, P.H.S.; Chiang, S.H. Multi-temporal change detection of seagrass beds using integrated Landsat TM/ETM+/OLI imageries in Cam Ranh Bay, Vietnam. Ecol. Inform. 2016, 35, 43–54. [Google Scholar] [CrossRef]
- Konstantinos, T.; Spyridon, C.S.; Apostolos, P.; Nikolaos, S. The use of Sentinel-2 imagery for seagrass mapping: Kalloni Gulf (Lesvos Island, Greece) case study, Proc. SPIE 9688. In Proceedings of the Fourth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2016), Paphos, Cyprus, 4–6 April 2016. [Google Scholar]
- Eva, K.C.R.; Mitchell, L.; Shihu, Z.; Stuart, P. Seagrass habitat mapping: How do Landsat 8 OLI, Sentinel-2, ZY-3A, and Worldview-3 perform. Remote Sens. Lett. 2018, 9, 686–695. [Google Scholar]
- Khanh Hoa People’s Committee. Khanh Hoa Geographic Atlat; National Political Publishing House of Vietnam: Ha Noi, Vietnam, 2003; Volume 8, p. 609.
- U.S. Geological Survey; U.S. Department of the Interior. Landsat- Earth Observation Satellites. Fact Sheet 2015–3081, ver. 1.1, August 2016 Supersedes USGS Fact Sheets 2012–3072 and 2013–3060; Earth Resources Observation and Science Center: Su Falls, SD, USA, 2016.
- Ilori, C.O.P.N.; Knudby, A. Analyzing Performances of Different Atmospheric Correction Techniques for Landsat 8: Application for Coastal Remote Sensing. Remote Sens. 2019, 11, 469. [Google Scholar] [CrossRef] [Green Version]
- Pham, Q.V.; Ha, N.T.T.; Pahlevan, N.; Oanh, L.T.; Nguyen, T.B.; Nguyen, N.T. Using Landsat-8 Images for Quantifying Suspended Sediment Concentration in Red River (Northern Vietnam). Remote Sens. 2018, 10, 1841. [Google Scholar] [CrossRef] [Green Version]
- Sentinel-2A Satellite Sensor. Available online: https://www.satimagingcorp.com/satellite-sensors/other-satellite-sensors/sentinel-2a/ (accessed on 21 November 2019).
- Hung, L.V.; Manh, V.P.; Chuc, D.M.; Hung, Q.B.; Thanh, T.N. Comparison of various image fusion methods for impervious surface classification from VNREDSat-1. Int. J. Adv. Cult. Technol. 2016, 4, 1–6. [Google Scholar]
- Tan, D.N. Space technology institute and VNredsat-1. In Proceedings of the First Steering Committee of The Sentinel Asia Step 3, Ha Noi, Vietnam, 13–15 October 2015. [Google Scholar]
- Thao, N.V. Assessment of Wetland Ecosystems with Remote Sensing Data, Apply the Test to VNREDSat-1 Satellite; State Science and Technology Program on Space Technology 2012–2015: Ha Noi, Vietnam, 2015.
- Todd, A.S.; Warren, B.C.; Conghe, S.; Morton, J.C.; Zhiqiang, Y. Radiometric correction of multi-temporal Landsat data for characterization of early successional forest patterns in western. Remote Sens. Environ. 2006, 103, 16–26. [Google Scholar]
- Moran, M.S.; Ray, D.J.; Philip, N.S.; Philippe, M.T. Evaluation of simplified procedures for retrieval of land surface reflectance factors from satellite sensor output. Remote Sens. Environ. 1992, 41, 169–184. [Google Scholar] [CrossRef]
- ENVI. FLAASH User’s Guide; Version 4.7; ENVI: Boulder, CO, USA, 2009. [Google Scholar]
- Lyzenga, D.R. Passive remote sensing techniques for mapping water depth and bottom features. Appl. Opt. 1978, 17, 179–338. [Google Scholar] [CrossRef] [PubMed]
- Lyzenga, D.R. Remote sensing of bottom reflectance and water attenuation parameters in shallow water using aircraft and Landsat data. Int. J. Remote Sens. 1981, 1, 71–82. [Google Scholar] [CrossRef]
- Blakey, T.; Melesse, A.; Hall, M. Supervised classification of benthic reflectance in shallow subtropical waters using a generalized pixel-based classifier across a time series. Remote Sens. 2015, 7, 5098–5116. [Google Scholar] [CrossRef] [Green Version]
- Setyawidati, N.; Kaimuddin, A.H.; Wati, I.P.; Helmi, M.; Widowati, I.; Rossi, N.; Liabot, P.O.; Stiger-Pouvreau, V. Percentage cover, biomass, distribution, and potential habitat mapping of natural macroalgae, based on high-resolution satellite data and in situ monitoring, at Libukang Island, Malasoro Bay, Indonesia. J. Appl. Phycol. 2017, 30, 159–171. [Google Scholar] [CrossRef]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices; Lewis Publishers: Boca Raton, FL, USA, 1999. [Google Scholar]
- Congalton, R.G. A review of assessing the accuracy of classification of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Yang, Y.T.; Yang, C.Y. Detection of seagrass distribution changes from 1991 to 2006 in Xincun Bay, Hainan, with satellite remote sensing. Sensors 2009, 9, 830–844. [Google Scholar] [CrossRef]
- L Heidi, M.D.; Richard, C.Z. Ocean color remote sensing of seagrass and bathymetry in the Bahamas Banks by high-resolution airborne imager. Limnol. Oceanogr. 2003, 48, 444–455. [Google Scholar]
- Aljenaid, S.; Ghoneim, E.; Abido, M.; AlWedhai, K.; Khadim, G.; Mansoor, S.; Mohd, W.E.D.; Hameed, N.A. Integrating remote sensing and field survey to map shallow water benthic habitat for the Kingdom of Bahrain. J. Environ. Sci. Eng. 2017, B6, 176–200. [Google Scholar] [CrossRef] [Green Version]
- Thach, N.N. The Principles of Remote Sensing, Geographic Information Systems and Global Positioning Systems; Ha Noi National University; University of Natural Sciences: Ha Noi, Vietnam, 2011. [Google Scholar]
- Sánchez, C.N.; Rodríguez, P.D.; Couñago, E.; Aceña, S.; Freire, J. Using vertical Sidescan Sonar as a tool for seagrass cartography. Estuar. Coast. Shelf Sci. 2012, 115, 334–344. [Google Scholar] [CrossRef]
- Braun, A.; Hochschild, V. Potential and Limitations of Radar Remote Sensing for Humanitarian Operations. J. Geogr. Inf. Sci. 2017, 1, 228–243. [Google Scholar] [CrossRef]
- Komatsu, T.; Igararashi, C.; Tatsukawa, K.I.; Nakaoka, M.; Hiraishi, T.; Taira, A. Mapping of seagrass and seaweed beds using hydro-acoustic methods. Fish. Sci. 2002, 68, 580–583. [Google Scholar] [CrossRef] [Green Version]
- May-Lin, B.Y.; Ching-Lee, W. Seasonal growth rate of Sargassum species at Teluk Kemang, Port Dickson, Malaysia. J. Appl. Phycol. 2013, 25, 805–814. [Google Scholar] [CrossRef]
- Pham, H.T.; Nguyen, H.D.; Nguyen, X.H.; Nguyen, T.L. Study on the variation of seagrass population in coastal waters of Khanh Hoa province, Vietnam. Coast. Mar. Sci. 2006, 30, 167–173. [Google Scholar]
- Ha, N.T.; Manley, H.M.; Pham, T.D.; Hawes, I. A Comparative Assessment of Ensemble-Based Machine Learning and Maximum Likelihood Methods for Mapping Seagrass Using Sentinel-2 Imagery in Tauranga Harbor, New Zealand. Remote Sens. 2020, 12, 355. [Google Scholar] [CrossRef] [Green Version]
- Ha, N.T.; Kunihiko, Y.; Son, H.P.T. Seagrass mapping using ALOS AVNIR-2 data in Lap An Lagoon, Thua Thien Hue, Viet Nam. In Proceedings of the SPIE—The International Society for Optical Engineering, Washington, DC, USA, 21 November 2012. [Google Scholar]
- Pham, T.D.; Xia, J.; Ha, N.T.; Bui, D.T.; Le, N.N.; Tekeuchi, W. A Review of Remote Sensing Approaches for Monitoring Blue Carbon Ecosystems: Mangroves, Seagrassesand Salt Marshes during 2010–2018. Sensors 2019, 19, 1933. [Google Scholar] [CrossRef] [Green Version]
- The Prime Minister of Vietnam. Decision No. 61/QD-TTg, the Socio Economic Development of Central Coast Vietnam Up to 2020 (Vietnamese); The Prime Minister: Ha Noi, Vietnam, 2008.
Spectrum | Landsat 8 | Sentinel-2A | VNREDSat-1 | ||||||
---|---|---|---|---|---|---|---|---|---|
Band | Center Wavelength (µm) | Spatial Resolution (m) | Band | Center Wavelength (µm) | Spatial Resolution (m) | Band | Center Wavelength (µm) | Spatial Resolution (m) | |
Coastal | B1 | 0.433 | 30 | B1 | 0.443 | 60 | - | - | - |
Blue | B2 | 0.483 | 30 | B2 | 0.490 | 10 | B1 | 0.490 | 10 |
Green | B3 | 0.560 | 30 | B3 | 0.560 | 10 | B2 | 0.550 | 10 |
PAN | B8 | 0.640 | 15 | - | - | - | - | - | |
Red | B4 | 0.660 | B4 | 0.665 | 10 | B3 | 0.660 | 10 | |
Red edge 1 | - | - | - | B5 | 0.705 | 20 | - | - | - |
Red edge 2 | - | - | - | B6 | 0.740 | 20 | - | - | - |
Red edge 3 | - | - | - | B7 | 0.783 | 20 | - | - | - |
NIR | B5 | 0.865 | 30 | B8 | 0.840 | 10 | B4 | 0.830 | 10 |
Red edge 4 | - | - | - | B8a | 0.865 | 20 | - | - | - |
Water aerosol | - | - | - | B9 | 0.945 | 60 | - | - | - |
SWIR-1 | B6 | 1.650 | 30 | B10 | 1.375 | 60 | - | - | - |
SWIR-2 | B7 | 2.200 | 30 | B11 | 1.610 | 20 | - | - | - |
SWIR-3 | - | B12 | 2.190 | 20 | - | - | - | ||
Cirrus | B9 | 1.375 | 30 | - | - | - | - | - | - |
Year | Satellite Sensor | No | Image ID | Acquired Date | Time (GMT time) | Spatial Resolution (m) |
---|---|---|---|---|---|---|
2008 | Landsat-5 | 1 | LT05_L1TP_123051_20080717_20161030_01_T1 | 17/07/2008 | 02:47 | 30 × 30 |
2 | LT05_L1TP_123052_20080717_20161030_01_T1 | 17/07/2008 | 02:48 | 30 × 30 | ||
2015 | VNREDSat-1 | 1 | VNREDSAT_1_2015218_11982_3074_MS.lv0_ V20150806_031919X_1A | 06/08/2015 | 03:19 | 10 × 10 |
2 | VNREDSAT_1_2015218_11982_3074_MS.lv0_ V20150814_032202X_1A | 14/08/2015 | 03:22 | 10 × 10 | ||
2017 | VNREDSat-1 | 3 | VNREDSAT_1_2017191_22274_3076_MS.lv0_ V20170710_031455_X1A | 10/07/2017 | 03:14 | 10 × 10 |
4 | VNREDSAT_1_2017191_22274_3076_MS.lv0_ V20170710_031457_X1A | 10/07/2017 | 03:14 | 10 × 10 | ||
5 | VNREDSAT_1_2017191_22274_3076_MS.lv0_V20170710_031500_X1A | 10/07/2017 | 03:15 | 10 × 10 | ||
6 | VNREDSAT_1_2017191_22274_3076_MS.lv0_V20170710_031502_X1A | 10/07/2017 | 03:15 | 10 × 10 | ||
7 | VNREDSAT_1_2017191_22274_3076_MS.lv0_V20170710_031505_X1A | 10/07/2017 | 03:15 | 10 × 10 | ||
8 | VNREDSAT_1_2017191_22274_3076_MS.lv0_V20170710_031507_X1A | 10/07/2017 | 03:15 | 10 × 10 | ||
9 | VNREDSAT_1_2017191_22274_3076_MS.lv0_V20170710_031510_X1A | 10/07/2017 | 03:15 | 10 × 10 | ||
2018 | Landsat-8 | 1 | LC08_L1TP_123051_20180510_20180517_01_T1 | 10/05/2018 | 03:00 | 30 × 30 |
2 | LC08_L1TP_123052_20180510_20180517_01_T1 | 10/05/2018 | 03:00 | 30 × 30 | ||
2019 | Sentinel-2A | 1 | L1C_T49PBP_A018805_ 20190128T031602 | 28/01/2019 | 06:07 | 10 × 10 |
2 | L1C_T49PCQ_A018805_20190128T031602 | 28/01/2019 | 06:07 | 10 × 10 | ||
3 | L1C_T49PCP_A018805_20190128T031602 | 28/01/2019 | 06:07 | 10 × 10 |
Layers | Images | Locations | Characteristics |
---|---|---|---|
Deep water | Nha Trang Bay | The area was covered with water > 10 m deep | |
SAV | Van Phong Bay | Plants here grew completely underwater, including seagrass and seaweed | |
Sandy bottom | Bip island | Sandy bottom area. SAV species were not found on this bottom type, which was < 10 m deep | |
Mud–sandy bottom | Thuy Trieu lagoon | These areas have muddy or mixed mud and sand substrates. SAV species were not found on this bottom type, which was < 10 m deep | |
Rock–coral bottom | My Giang | The area included corals or rocks, and was < 10 m deep; SAV were found on this bottom type, with < 5% coverage |
Ki/Kj | VNREDSat-1 | Landsat-8 | Sentinel-2 |
---|---|---|---|
K1K2 | 1.06517 | 1.13717 | |
K1K3 | 0.83167 | 1.47007 | |
K1K4 | 2.79363 | 1.46777 | |
K2K3 | 0.78698 | 1.28919 | 0.84158 |
K2K4 | 3.05801 | 1.27390 | 2.94201 |
K3K4 | 4.07538 | 0.97352 | 1.53698 |
Bands | Reflectance Spectrum Correlation Coefficient (R2) | ||
---|---|---|---|
Landsat-8 | Sentinel-2 | VNREDSat-1 | |
b1b2 | 0.925 | - | 0.941 |
b1b3 | 0.965 | - | 0.895 |
b1b4 | 0.855 | - | 0.587 |
b2b3 | 0.948 | 0.934 | 0.941 |
b2b4 | 0.918 | 0.561 | 0.469 |
b3b4 | 0.922 | 0.703 | 0.536 |
Object Classes | Class 1 | Class 2 | Class 3 | Total (xi+) | User accuracy (%) |
---|---|---|---|---|---|
Class 1 | x11 | x12 | x13 | x1+ | =(x11/x1+)*100 |
Class 2 | x21 | x22 | x23 | x2+ | =(x22/x2+)*100 |
Class k | x31 | x32 | x33 | x3+ | = (x33/x3+)*100 |
Total (x+i) | x+1 | x+2 | x+3 | N = x1+ + x2+ + x3+ | |
Producer accuracy (%) | = (x11/x+1)*100 | = (x22/ x+2)*100 | = (x33/ x+3)*100 |
Image | Kappa Coefficient (Ҡ) | Overall Accuracy (OA) |
---|---|---|
VNREDSat-1 | 0.87 | 89.40 |
Landsat-8 | 0.85 | 88.27 |
Sentinel-2 | 0.84 | 87.21 |
Classes | VNREDSat-1 | Landsat-8 | Sentinel-2 | |||
---|---|---|---|---|---|---|
Pa (%) | Ua (%) | Pa (%) | Ua (%) | Pa (%) | Ua (%) | |
SAV | 79.02 | 77.93 | 79.58 | 91.87 | 79.86 | 92.00 |
Sandy bottom | 97.83 | 99.26 | 95.45 | 88.98 | 92.86 | 94.20 |
Deep water | 97.46 | 100.00 | 91.53 | 94.74 | 88.98 | 88.98 |
Mud–sandy bottom | 80.36 | 77.59 | 87.38 | 77.59 | 86.24 | 79.66 |
Rock–coral bottom | 93.55 | 94.57 | 89.80 | 88.00 | 88.89 | 79.28 |
Location | Submerged Aquatic Vegetation Areas (ha) | ||
---|---|---|---|
VNREDSat-1 (2017) | Landsat-8 (2018) | Sentinel-2 (2019) | |
Van Phong Bay | 390.2 | 270.2 | 324.2 |
Nha Phu Lagoon | 70.1 | 63.6 | 62.6 |
Nha Trang Bay | 49.6 | 49.8 | 63.4 |
Thuy Trieu Lagoon | 155.5 | 209.2 | 155.3 |
Cam Ranh Bay | 144.4 | 178.4 | 193.9 |
Total | 809.8 | 771.2 | 799.4 |
Location | Submerged Aquatic Vegetation Area (ha) | |||||
---|---|---|---|---|---|---|
Landsat-5 (2008) | Landsat-8 (2018) | Unchanged | Gained SAV | Lost SAV | Average Lost (ha/year) | |
Van Phong Bay | 424.5 | 270.2 | 85.9 | 184.2 | 338.5 | 33.9 |
Nha Phu lagoon | 144.3 | 63.6 | 15.3 | 48.3 | 129.0 | 12.9 |
Nha Trang Bay | 110.2 | 49.8 | 16.1 | 33.7 | 94.1 | 9.4 |
Thuy Trieu lagoon | 345.3 | 209.2 | 120.2 | 89.0 | 225.1 | 22.5 |
Cam Ranh Bay | 282.7 | 178.4 | 100.1 | 78.3 | 182.6 | 18.3 |
Total | 1307.0 | 771.2 | 337.7 | 433.5 | 969.3 | 97 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khanh Ni, T.N.; Tin, H.C.; Thach, V.T.; Jamet, C.; Saizen, I. Mapping Submerged Aquatic Vegetation along the Central Vietnamese Coast Using Multi-Source Remote Sensing. ISPRS Int. J. Geo-Inf. 2020, 9, 395. https://doi.org/10.3390/ijgi9060395
Khanh Ni TN, Tin HC, Thach VT, Jamet C, Saizen I. Mapping Submerged Aquatic Vegetation along the Central Vietnamese Coast Using Multi-Source Remote Sensing. ISPRS International Journal of Geo-Information. 2020; 9(6):395. https://doi.org/10.3390/ijgi9060395
Chicago/Turabian StyleKhanh Ni, Tran Ngoc, Hoang Cong Tin, Vo Trong Thach, Cédric Jamet, and Izuru Saizen. 2020. "Mapping Submerged Aquatic Vegetation along the Central Vietnamese Coast Using Multi-Source Remote Sensing" ISPRS International Journal of Geo-Information 9, no. 6: 395. https://doi.org/10.3390/ijgi9060395
APA StyleKhanh Ni, T. N., Tin, H. C., Thach, V. T., Jamet, C., & Saizen, I. (2020). Mapping Submerged Aquatic Vegetation along the Central Vietnamese Coast Using Multi-Source Remote Sensing. ISPRS International Journal of Geo-Information, 9(6), 395. https://doi.org/10.3390/ijgi9060395