Patterning of the Vertebrate Head in Time and Space by BMP Signaling
Abstract
1. Introduction
2. Materials and Methods
2.1. Microinjection
2.2. Whole Mount In Situ Hybridization
3. Results
3.1. Timed Anti-BMP Treatment Arrests Head Patterning at Different Positions
3.2. Timed Anti-BMP Treatment in Ventralized Embryos Rescued Different Portions of the Head
3.3. The Timing of A–P Markers Is Disrupted in smad6-Injected Embryos
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eyal-Giladi, H. Dynamic Aspects of Neural Induction in Amphibia. Arch. Biol. 1954, 65, 179–259. [Google Scholar]
- Gamse, J.; Sive, H. Vertebrate Anteroposterior Patterning: The Xenopus Neurectoderm as a Paradigm. Bioessays 2000, 22, 976–986. [Google Scholar] [CrossRef] [PubMed]
- Gamse, J.T.; Sive, H. Early Anteroposterior Division of the Presumptive Neurectoderm in Xenopus. Mech. Dev. 2001, 104, 21–36. [Google Scholar] [CrossRef]
- Nieuwkoop, P.D. Activation and Organization of the Central Nervous System in Amphibians. Part III. Synthesis of a New Working Hypothesis. J. Exp. Zool. 1952, 120, 83–108. [Google Scholar] [CrossRef]
- Stern, C.D.; Charite, J.; Deschamps, J.; Duboule, D.; Durston, A.J.; Kmita, M.; Nicolas, J.F.; Palmeirim, I.; Smith, J.C.; Wolpert, L. Head-Tail Patterning of the Vertebrate Embryo: One, Two or Many Unresolved Problems? Int. J. Dev. Biol. 2006, 50, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Durston, A.J.; Zhu, K. A Time Space Translation Hypothesis for Vertebrate Axial Patterning. Semin. Cell Dev. Biol. 2015, 42, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Wacker, S.A.; Jansen, H.J.; McNulty, C.L.; Houtzager, E.; Durston, A.J. Timed Interactions between the Hox Expressing Non-Organiser Mesoderm and the Spemann Organiser Generate Positional Information During Vertebrate Gastrulation. Dev. Biol. 2004, 268, 207–219. [Google Scholar] [CrossRef] [PubMed]
- Wacker, S.; McNulty, C.; Durston, A. The Initiation of Hox Gene Expression in Xenopus Laevis Is Controlled by Brachyury and Bmp-4. Dev. Biol. 2004, 266, 123–137. [Google Scholar] [CrossRef]
- Smith, W.C.; Harland, R.M. Expression Cloning of Noggin, a New Dorsalizing Factor Localized to the Spemann Organizer in Xenopus Embryos. Cell 1992, 70, 829–840. [Google Scholar] [CrossRef]
- Sasai, Y.; Lu, B.; Steinbeisser, H.; Geissert, D.; Gont, L.K.; De Robertis, E. Xenopus Chordin: A Novel Dorsalizing Factor. Activated by Organizer-Specific Homeobox Genes. Cell 1994, 79, 779–790. [Google Scholar]
- Smith, W.C.; Knecht, A.K.; Wu, M.; Harland, R.M. Secreted Noggin Protein Mimics the Spemann Organizer in Dorsalizing Xenopus Mesoderm. Nature 1993, 361, 547–549. [Google Scholar] [CrossRef] [PubMed]
- Khokha, M.K.; Yeh, J.; Grammer, T.C.; Harland, R.M. Depletion of Three Bmp Antagonists from Spemann’s Organizer Leads to a Catastrophic Loss of Dorsal Structures. Dev. Cell 2005, 8, 401–411. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.; Marikawa, Y.; Elinson, R.P. Ectopic Expression of Xenopus Noggin Rna Induces Complete Secondary Body Axes in Embryos of the Direct Developing Frog Eleutherodactylus Coqui. Dev. Genes Evol. 2000, 210, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Spemann, H.; Mangold, H. Über Induktion Von Embryonalagen Durch Implantation Artfremder Organisatoren. Roux’s Arch. F. Entw. Mech. 1924, 100, 599–638. [Google Scholar]
- Dias, A.S.; de Almeida, I.; Belmonte, J.M.; Glazier, J.A.; Stern, C.D. Somites without a Clock. Science 2014, 343, 791–795. [Google Scholar] [CrossRef]
- Kobayashi, M.; Toyama, R.; Takeda, H.; Dawid, I.B.; Kawakami, K. Overexpression of the Forebrain-Specific Homeobox Gene Six3 Induces Rostral Forebrain Enlargement in Zebrafish. Development 1998, 125, 2973–2982. [Google Scholar] [CrossRef]
- Li, Y.; Allende, M.L.; Finkelstein, R.; Weinberg, E.S. Expression of Two Zebrafish Orthodenticle-Related Genes in the Embryonic Brain. Mech. Dev. 1994, 48, 229–244. [Google Scholar] [CrossRef]
- Mori, H.; Miyazaki, Y.; Morita, T.; Nitta, H.; Mishina, M. Different Spatio-Temporal Expressions of Three Otx Homeoprotein Transcripts During Zebrafish Embryogenesis. Brain Res. Mol. Brain Res. 1994, 27, 221–231. [Google Scholar] [CrossRef]
- Rhinn, M.; Lun, K.; Amores, A.; Yan, Y.L.; Postlethwait, J.H.; Brand, M. Cloning, Expression and Relationship of Zebrafish Gbx1 and Gbx2 Genes to Fgf Signaling. Mech. Dev. 2003, 120, 919–936. [Google Scholar] [CrossRef]
- Alexandre, D.; Clarke, J.D.; Oxtoby, E.; Yan, Y.L.; Jowett, T.; Holder, N. Ectopic Expression of Hoxa-1 in the Zebrafish Alters the Fate of the Mandibular Arch Neural Crest and Phenocopies a Retinoic Acid-Induced Phenotype. Development 1996, 122, 735–746. [Google Scholar] [CrossRef]
- Hashiguchi, M.; Mullins, M.C. Anteroposterior and Dorsoventral Patterning Are Coordinated by an Identical Patterning Clock. Development 2013, 140, 1970–1980. [Google Scholar] [CrossRef] [PubMed]
- Tucker, J.A.; Mintzer, K.A.; Mullins, M.C. The Bmp Signaling Gradient Patterns Dorsoventral Tissues in a Temporally Progressive Manner Along the Anteroposterior Axis. Dev. Cell 2008, 14, 108–119. [Google Scholar] [CrossRef] [PubMed]
- Jacox, L.; Sindelka, R.; Chen, J.; Rothman, A.; Dickinson, A.; Sive, H. The Extreme Anterior Domain Is an Essential Craniofacial Organizer Acting through Kinin-Kallikrein Signaling. Cell Rep. 2014, 8, 596–609. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, A.; Sive, H. Positioning the Extreme Anterior in Xenopus: Cement Gland, Primary Mouth and Anterior Pituitary. Semin. Cell Dev. Biol. 2007, 18, 525–533. [Google Scholar]
- Sive, H.; Hattori, K.; Weintraub, H. Progressive Determination During Formation of the Anteroposterior Axis in Xenopus Laevis. Cell 1989, 58, 171–180. [Google Scholar] [CrossRef]
- Scharf, S.R.; Gerhart, J.C. Axis Determination in Eggs of Xenopus Laevis: A Critical Period before First Cleavage, Identified by the Common Effects of Cold, Pressure and Ultraviolet Irradiation. Dev. Biol. 1983, 99, 75–87. [Google Scholar] [CrossRef]
- Kao, K.R.; Elinson, R.P. The Entire Mesodermal Mantle Behaves as Spemann’s Organizer in Dorsoanterior Enhanced Xenopus Laevis Embryos. Dev. Biol. 1988, 127, 64–77. [Google Scholar] [CrossRef]
- Faber, J.; Nieuwkoop, P.D. Normal Table of Xenopus Laevis (Daudin): A Systematical and Chronological Survey of the Development from the Fertilized Egg Till the End of Metamorphosis; Garland Pub: New York, NY, USA, 1994. [Google Scholar]
- Cooke, J.; Smith, J. Gastrulation and Larval Pattern in Xenopus after Blastocoelic Injection of a Xenopus-Derived Inducing Factor: Experiments Testing Models for the Normal Organization of Mesoderm. Dev. Biol. 1989, 131, 383–400. [Google Scholar] [CrossRef]
- Nishimatsu, S.I.; Suzuki, A.; Shoda, A.; Murakami, K.; Ueno, N. Genes for Bone Morphogenetic Proteins Are Differentially Transcribed in Early Amphibian Embryos. Biochem. Biophys. Res. Commun. 1992, 186, 1487–1495. [Google Scholar] [CrossRef]
- Marom, K.; Levy, V.; Pillemer, G.; Fainsod, A. Temporal Analysis of the Early Bmp Functions Identifies Distinct Anti-Organizer and Mesoderm Patterning Phases. Dev. Biol. 2005, 282, 442–454. [Google Scholar] [CrossRef]
- Gammill, L.; Sive, H. Coincidence of Otx2 and Bmp4 Signaling Correlates with Xenopus Cement Gland Formation. Mech. Dev. 2000, 92, 217–226. [Google Scholar] [CrossRef]
- Kenyon, K.L.; Moody, S.A.; Jamrich, M. A Novel Fork Head Gene Mediates Early Steps During Xenopus Lens Formation. Development 1999, 126, 5107–5116. [Google Scholar] [CrossRef]
- Blitz, I.L.; Cho, K.W. Anterior Neurectoderm Is Progressively Induced During Gastrulation—The Role of the Xenopus Homeobox Gene Orthodenticle. Development 1995, 121, 993–1004. [Google Scholar] [CrossRef] [PubMed]
- Von Bubnoff, A.; Schmidt, J.E.; Kimelman, D. The Xenopus Laevis Homeobox Gene Xgbx-2 Is an Early Marker of Anteroposterior Patterning in the Ectoderm. Mech. Dev. 1996, 54, 149–160. [Google Scholar] [CrossRef]
- Sive, H.L.; Cheng, P.F. Retinoic Acid Perturbs the Expression of Xhox.Lab Genes and Alters Mesodermal Determination in Xenopus Laevis. Genes Dev. 1991, 5, 1321–1332. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, L.B.; De Jesús-Escobar, J.M.; Harland, R.M. The Spemann Organizer Signal Noggin Binds and Inactivates Bone Morphogenetic Protein 4. Cell 1996, 86, 599–606. [Google Scholar] [CrossRef]
- Clement, J.H.; Fettes, P.; Knöchel, S.; Lef, J.; Knöchel, W. Bone Morphogenetic Protein-2 in the Early Development of Xenopus-Laevis. Mech. Dev. 1995, 3, 357–370. [Google Scholar] [CrossRef] [PubMed]
- Dale, L.; Howes, G.; Price, B.M.; Smith, J.C. Bone Morphogenetic Protein 4: A Ventralizing Factor in Early Xenopus Development. Development 1992, 115, 573–585. [Google Scholar] [CrossRef]
- Jones, C.M.; Lyons, K.M.; Lapan, P.M.; Wright, C.V.; Hogan, B.L. Dvr-4 (Bone Morphogenetic Protein-4) as a Posterior-Ventralizing Factor in Xenopus Mesoderm Induction. Development 1992, 115, 639–647. [Google Scholar] [CrossRef]
- Schmidt, J.E.; Suzuki, A.; Ueno, N.; Kimelman, D. Localized Bmp-4 Mediates Dorsal/Ventral Patterning in the Early Xenopus Embryo. Dev. Biol. 1995, 169, 37–50. [Google Scholar] [CrossRef]
- Zhu, K.; Spaink, H.P.; Durston, A.J. Collinear Hox-Hox Interactions Are Involved in Patterning the Vertebrate Anteroposterior (a-P) Axis. PLoS ONE 2017, 12, e0175287. [Google Scholar] [CrossRef] [PubMed]
- Goto, K.; Kamiya, Y.; Imamura, T.; Miyazono, K.; Miyazawa, K. Selective Inhibitory Effects of Smad6 on Bone Morphogenetic Protein Type I Receptors. J. Biol. Chem. 2007, 282, 20603–20611. [Google Scholar] [CrossRef] [PubMed]
- Hata, A.; Lagna, G.; Massagué, J.; Hemmati-Brivanlou, A. Smad6 Inhibits Bmp/Smad1 Signaling by Specifically Competing with the Smad4 Tumor Suppressor. Genes Dev. 1998, 12, 186–197. [Google Scholar] [CrossRef] [PubMed]
- Imamura, T.; Takase, M.; Nishihara, A.; Oeda, E.; Hanai, J.; Kawabata, M.; Miyazono, K. Smad6 Inhibits Signalling by the Tgf-Beta Superfamily. Nature 1997, 389, 622–626. [Google Scholar] [CrossRef]
- Duboule, D.; Dollé, P. The Structural and Functional-Organization of the Murine Hox Gene Family Resembles That of Drosophila Homeotic Genes. EMBO J. 1989, 8, 1497–1505. [Google Scholar] [CrossRef] [PubMed]
- Graham, A.; Papalopulu, N.; Krumlauf, R. The Murine and Drosophila Homeobox Gene Complexes Have Common Features of Organization and Expression. Cell 1989, 57, 367–378. [Google Scholar] [CrossRef] [PubMed]
- Lewis, E.B. A Gene Complex Controlling Segmentation in Drosophila. Nature 1978, 276, 565–570. [Google Scholar] [CrossRef] [PubMed]
- Oliver, G.; Mailhos, A.; Wehr, R.; Copeland, N.G.; Jenkins, N.A.; Gruss, P. Six3, a Murine Homologue of the Sine Oculis Gene, Demarcates the Most Anterior Border of the Developing Neural Plate and Is Expressed During Eye Development. Development 1995, 121, 4045–4055. [Google Scholar] [CrossRef]
- Kessel, M.; Gruss, P. Homeotic Transformations of Murine Vertebrae and Concomitant Alteration of Hox Codes Induced by Retinoic Acid. Cell 1991, 67, 89–104. [Google Scholar] [CrossRef]
- Wellik, D.M.; Capecchi, M.R. Hox10 and Hox11 Genes Are Required to Globally Pattern the Mammalian Skeleton. Science 2003, 301, 363–367. [Google Scholar] [CrossRef]
- Tour, E.; Pillemer, G.; Gruenbaum, Y.; Fainsod, A. Gbx2 Interacts with Otx2 and Patterns the Anterior-Posterior Axis During Gastrulation in Xenopus. Mech. Dev. 2002, 2, 141–151. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, K.; Spaink, H.P.; Durston, A.J. Patterning of the Vertebrate Head in Time and Space by BMP Signaling. J. Dev. Biol. 2023, 11, 31. https://doi.org/10.3390/jdb11030031
Zhu K, Spaink HP, Durston AJ. Patterning of the Vertebrate Head in Time and Space by BMP Signaling. Journal of Developmental Biology. 2023; 11(3):31. https://doi.org/10.3390/jdb11030031
Chicago/Turabian StyleZhu, Kongju, Herman P. Spaink, and Antony J. Durston. 2023. "Patterning of the Vertebrate Head in Time and Space by BMP Signaling" Journal of Developmental Biology 11, no. 3: 31. https://doi.org/10.3390/jdb11030031
APA StyleZhu, K., Spaink, H. P., & Durston, A. J. (2023). Patterning of the Vertebrate Head in Time and Space by BMP Signaling. Journal of Developmental Biology, 11(3), 31. https://doi.org/10.3390/jdb11030031