Genes Related to Frontonasal Malformations Are Regulated by miR-338-5p, miR-653-5p, and miR-374-5p in O9-1 Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Gene Search
2.2. Bioinformatic Analysis
2.3. Cell Culture
2.4. Cell Proliferation Assay
2.5. Bromodeoxyuridine (BrdU) Incorporation Assay
2.6. Immunocytochemical Analysis
2.7. Terminal 2′-Deoxyuridine, 5′-Triphosphate (dUTP) Nick-End Labeling (TUNEL) Staining
2.8. Quantitative RT-PCR
2.9. Taqmann Assay
2.10. Statistical Analysis
3. Results
3.1. Identification of a Set of Genes Related to Frontonasal Malformations
3.2. Overexpression of miR-338-5p, miR-653-5p, and miR-374c-5p Inhibits Cell Proliferation and Suppresses Expression of Genes Related to Frontonasal Malformations in O9-1 Cells
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Twigg, S.R.; Wilkie, A.O. New insights into craniofacial malformations. Hum. Mol. Genet. 2015, 24, R50–R59. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Suzuki, A.; Sangani, D.R.; Ansari, A.; Iwata, J. Molecular mechanisms of midfacial developmental defects. Dev. Dyn. Off. Publ. Am. Assoc. Anat. 2016, 245, 276–293. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Iwaya, C.; Suzuki, A.; Iwata, J. MicroRNAs and Gene Regulatory Networks Related to Cleft Lip and Palate. Int. J. Mol. Sci. 2023, 24, 3552. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yankee, T.N.; Oh, S.; Winchester, E.W.; Wilderman, A.; Robinson, K.; Gordon, T.; Rosenfeld, J.A.; VanOudenhove, J.; Scott, D.A.; Leslie, E.J.; et al. Integrative analysis of transcriptome dynamics during human craniofacial development identifies candidate disease genes. Nat. Commun. 2023, 14, 4623. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chai, Y.; Maxson, R.E., Jr. Recent advances in craniofacial morphogenesis. Dev. Dyn. Off. Publ. Am. Assoc. Anat. 2006, 235, 2353–2375. [Google Scholar] [CrossRef] [PubMed]
- Minoux, M.; Rijli, F.M. Molecular mechanisms of cranial neural crest cell migration and patterning in craniofacial development. Development 2010, 137, 2605–2621. [Google Scholar] [CrossRef] [PubMed]
- Matsuyama, H.; Suzuki, H.I. Systems and Synthetic microRNA Biology: From Biogenesis to Disease Pathogenesis. Int. J. Mol. Sci. 2019, 21, 132. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stavast, C.J.; Erkeland, S.J. The Non-Canonical Aspects of MicroRNAs: Many Roads to Gene Regulation. Cells 2019, 8, 1465. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ha, M.; Kim, V.N. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 2014, 15, 509–524. [Google Scholar] [CrossRef] [PubMed]
- Sheehy, N.T.; Cordes, K.R.; White, M.P.; Ivey, K.N.; Srivastava, D. The neural crest-enriched microRNA miR-452 regulates epithelial-mesenchymal signaling in the first pharyngeal arch. Development 2010, 137, 4307–4316. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zehir, A.; Hua, L.L.; Maska, E.L.; Morikawa, Y.; Cserjesi, P. Dicer is required for survival of differentiating neural crest cells. Dev. Biol. 2010, 340, 459–467. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huang, T.; Liu, Y.; Huang, M.; Zhao, X.; Cheng, L. Wnt1-cre-mediated conditional loss of Dicer results in malformation of the midbrain and cerebellum and failure of neural crest and dopaminergic differentiation in mice. J. Mol. Cell Biol. 2010, 2, 152–163. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, A.; Yoshioka, H.; Summakia, D.; Desai, N.G.; Jun, G.; Jia, P.; Loose, D.S.; Ogata, K.; Gajera, M.V.; Zhao, Z.; et al. MicroRNA-124-3p suppresses mouse lip mesenchymal cell proliferation through the regulation of genes associated with cleft lip in the mouse. BMC Genom. 2019, 20, 852. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Suzuki, A.; Abdallah, N.; Gajera, M.; Jun, G.; Jia, P.; Zhao, Z.; Iwata, J. Genes and microRNAs associated with mouse cleft palate: A systematic review and bioinformatics analysis. Mech. Dev. 2018, 150, 21–27. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ge, S.X.; Jung, D.; Yao, R. ShinyGO: A graphical gene-set enrichment tool for animals and plants. Bioinformatics 2020, 36, 2628–2629. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Luo, W.; Brouwer, C. Pathview: An R/Bioconductor package for pathway-based data integration and visualization. Bioinformatics 2013, 29, 1830–1831. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kanehisa, M.; Furumichi, M.; Sato, Y.; Ishiguro-Watanabe, M.; Tanabe, M. KEGG: Integrating viruses and cellular organisms. Nucleic Acids Res. 2021, 49, D545–D551. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yan, F.; Simon, L.; Suzuki, A.; Iwaya, C.; Jia, P.; Iwata, J.; Zhao, Z. Spatiotemporal MicroRNA-Gene Expression Network Related to Orofacial Clefts. J. Dent. Res. 2022, 101, 1398–1407. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Otsuka-Tanaka, Y.; Oommen, S.; Kawasaki, M.; Kawasaki, K.; Imam, N.; Jalani-Ghazani, F.; Hindges, R.; Sharpe, P.; Ohazama, A. Oral lining mucosa development depends on mesenchymal microRNAs. J. Dent. Res. 2013, 92, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Nie, X.; Wang, Q.; Jiao, K. Dicer activity in neural crest cells is essential for craniofacial organogenesis and pharyngeal arch artery morphogenesis. Mech. Dev. 2011, 128, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Huang, M.; Tao, L.; Li, Y.; Kuang, Y.; Liu, G.; Zhao, S. Mesenchymal stem cells-derived exosomal miR-653-5p suppresses laryngeal papilloma progression by inhibiting BZW2. Clinics 2023, 78, 100129. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Qi, X.; Chen, D.; Yu, W.; Wang, L.; Liu, L.; Tao, X. Long non-coding RNA PRNCR1 promotes ovarian cancer cell proliferation, migration and invasion by targeting the miR-653-5p/ELF2 axis. Mol. Cell. Biochem. 2022, 477, 1463–1475. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Qi, Q.; Hou, S.; Chen, Z.; Jiang, N.; Zhang, L.; Lin, C. Exosomal circular RNA hsa_circ_007293 promotes proliferation, migration, invasion, and epithelial-mesenchymal transition of papillary thyroid carcinoma cells through regulation of the microRNA-653-5p/paired box 6 axis. Bioengineered 2021, 12, 10136–10149. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, L.; Qian, J.; Shen, Y.; Yu, X. Circular RNA AGFG1 motivates breast cancer cell proliferation, invasion, migration, and glycolysis by controlling microRNA-653-5p/14-3-3 protein epsilon. Acta Biochim. Pol. 2023, 70, 777–784. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Xu, J.; Gong, G.; Zhang, Y.; Wu, S. CircARL8B Contributes to the Development of Breast Cancer Via Regulating miR-653-5p/HMGA2 Axis. Biochem. Genet. 2021, 59, 1648–1665. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Wang, H.; Zhang, X.; Liu, F. miR-653-5p suppresses the growth and migration of breast cancer cells by targeting MAPK6. Mol. Med. Rep. 2021, 23, 200. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, Z.; Fan, H.; Chen, W.; Xiao, J.; Ma, X.; Ni, P.; Xu, Z.; Yang, L. MicroRNA-653-5p Promotes Gastric Cancer Proliferation and Metastasis by Targeting the SOCS6-STAT3 Pathway. Front. Mol. Biosci. 2021, 8, 655580. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, M.; Zhang, J.; Zeng, J.; Yu, Y.; Gu, C. Circular circRANGAP1 Contributes to Non-small Cell Lung Cancer Progression by Increasing COL11A1 Expression Through Sponging miR-653-5p. Biochem. Genet. 2023, 61, 2580–2598. [Google Scholar] [CrossRef] [PubMed]
- Zuo, T.; Jiang, P.; Fu, J.; Zhang, Y. LncRNA AFAP1-AS1 Induces Gefitinib Resistance of Lung Adenocarcinoma Through the miR-653-5p/AGR2 Axis. Ther. Clin. Risk Manag. 2023, 19, 1–13. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, G.; Xiog, Y.; Wang, G.; Li, W.; Tang, T.; Sun, J.; Li, J. miR-374c-5p regulates PTTG1 and inhibits cell growth and metastasis in hepatocellular carcinoma by regulating epithelial-mesenchymal transition. Mol. Med. Rep. 2022, 25, 148. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ding, B.; Lou, W.; Fan, W.; Pan, J. Exosomal miR-374c-5p derived from mesenchymal stem cells suppresses epithelial-mesenchymal transition of hepatocellular carcinoma via the LIMK1-Wnt/beta-catenin axis. Environ. Toxicol. 2023, 38, 1038–1052. [Google Scholar] [CrossRef] [PubMed]
Gene Symbol | References (PMID) | Chromosome | Description |
---|---|---|---|
Frontonasal hypoplasia (4 genes) | |||
Bmp4 | 24785830 | 14 | bone morphogenetic protein 4 |
Cdc42 | 28326341 | 4 | cell division cycle 42 |
Ndst1 | 16020517 | 18 | N-deacetylase/N-sulfotransferase (heparan glucosaminyl) 1 |
Rdh10 | 17473173 | 1 | retinol dehydrogenase 10 (all-trans) |
Frontonasal dysplasia (6 genes) | |||
Alx1 | 35127681 | 10 | ALX homeobox 1 |
Alx3 | 19409524 | 3 | aristaless-like homeobox 3 |
Alx4 | 25673119 | 2 | aristaless-like homeobox 4 |
Fgfr2 | 11274405 | 7 | fibroblast growth factor receptor 2 |
Ndst3 | 18385133 | 3 | N-deacetylase/N-sulfotransferase (heparan glucosaminyl) 3 |
Tcof1 | 16938878 | 18 | treacle ribosome biogenesis factor 1 |
Hypotelorism (15 genes) | |||
Boc | 21183473 | 16 | biregional cell adhesion molecule-related/downregulated by oncogenes (Cdon) binding protein |
Cdon | 21183473 | 9 | cell adhesion molecule-related/downregulated by oncogenes |
Disp1 | 15269168 | 1 | dispatched RND transporter family member 1 |
Ift27 | 25446516 | 15 | intraflagellar transport 27 |
Ift57 | 17027958 | 16 | intraflagellar transport 57 |
Lrp2 | 26107939 | 2 | low-density lipoprotein receptor-related protein 2 |
Nosip | 25546391 | 7 | nitric oxide synthase-interacting protein |
Pgap1 | 10529425 | 1 | post-GPI attachment to proteins 1 |
Shh and Sulf1 and Sulf2 | 18213582 | 5 | sonic hedgehog |
1 | sulfatase 1 | ||
2 | sulfatase 2 | ||
Shh and Six3 | 18694563 | 17 | sine oculis-related homeobox 3 |
Sirt1 | 28273169 | 10 | sirtuin 1 |
Wdr11 | 29263200 | 7 | WD repeat domain 11 |
Zic2 | 29992973 | 14 | zinc finger protein of the cerebellum 2 |
Enrichment FDR | Gene Number | Pathway Genes | Pathway | Genes |
---|---|---|---|---|
MGI enrichment | ||||
1.70 × 10−15 | 7 | 13 | MP:0006197 ocular hypotelorism | Ift27, Sirt1, Disp1, Ift57, Wdr11, Zic2, Pgap1 |
1.01 × 10−8 | 4 | 8 | MP:0009903 abnormal medial nasal prominence morphology | Tcof1, Rdh10, Wdr11, Pgap1 |
2.83 × 10−6 | 3 | 7 | MP:0004872 absent nasal septum | Tcof1, Rdh10, Lrp2 |
3.62 × 10−6 | 3 | 8 | MP:0011759 absent Rathke’s pouch | Bmp4, Fgfr2, Pgap1 |
3.62 × 10−6 | 3 | 8 | MP:0006290 proboscis | Ndst1, Zic2, Pgap1 |
3.84 × 10−9 | 5 | 20 | MP:0005163 cyclopia | Shh, Disp1, Wdr11, Zic2, Pgap1 |
1.50 × 10−6 | 4 | 27 | MP:0004592 small mandible | Ift27, Tcof1, Wdr11, Pgap1 |
1.01 × 10−12 | 8 | 60 | MP:0005157 holoprosencephaly | Shh, Lrp2, Disp1, Cdon, Six3, Wdr11, Zic2, Pgap1 |
1.64 × 10−7 | 5 | 47 | MP:0000107 abnormal frontal bone morphology | Shh, Tcof1, Disp1, Fgfr2, Alx4 |
5.49 × 10−7 | 5 | 61 | MP:0003052 omphalocele | Ift27, Bmp4, Lrp2, Alx4, Ndst1 |
8.23 × 10−7 | 5 | 67 | MP:0003743 abnormal facial morphology | Disp1, Fgfr2, Wdr11, Ndst1, Pgap1 |
9.08 × 10−12 | 9 | 141 | MP:0000783 abnormal forebrain morphology | Shh, Tcof1, Rdh10, Lrp2, Disp1, Alx1, Cdon, Wdr11, Pgap1 |
4.79 × 10−9 | 7 | 110 | MP:0003232 abnormal forebrain development | Bmp4, Tcof1, Lrp2, Six3, Ndst1, Zic2, Pgap1 |
2.87 × 10−6 | 5 | 89 | MP:0000433 microcephaly | Shh, Tcof1, Wdr11, Zic2, Pgap1 |
3.62 × 10−6 | 5 | 95 | MP:0000074 abnormal neurocranium morphology | Shh, Tcof1, Disp1, Fgfr2, Alx4 |
1.08 × 10−10 | 9 | 191 | MP:0001293 anophthalmia | Shh, Bmp4, Tcof1, Lrp2, Six3, Wdr11, Ndst1, Zic2, Pgap1 |
4.79 × 10−9 | 8 | 196 | MP:0000428 abnormal craniofacial morphology | Shh, Sirt1, Tcof1, Rdh10, Fgfr2, Cdon, Six3, Wdr11 |
1.64 × 10−7 | 7 | 200 | MP:0000438 abnormal cranium morphology | Shh, Cdc42, Tcof1, Fgfr2, Six3, Ndst1, Pgap1 |
2.05 × 10−8 | 8 | 246 | MP:0002092 abnormal eye morphology | Shh, Sirt1, Bmp4, Tcof1, Rdh10, Lrp2, Ndst1, Pgap1 |
6.25 × 10−9 | 9 | 324 | MP:0011090 perinatal lethality, incomplete penetrance | Shh, Ift27, Sirt1, Bmp4, Lrp2, Cdon, Alx4, Wdr11, Pgap1 |
KEGG enrichment | ||||
2.80 × 10−7 | 5 | 58 | Hedgehog signaling pathway | Shh, Boc, Lrp2, Disp1, Cdon |
8.51 × 10−3 | 2 | 24 | Glycosaminoglycan biosynthesis | Ndst3, Ndst1 |
2.93 × 10−2 | 2 | 63 | Basal cell carcinoma | Shh, Bmp4 |
1.87 × 10−2 | 3 | 181 | Axon guidance | Shh, Cdc42, Boc |
3.11 × 10−2 | 4 | 542 | Pathways in cancer | Shh, Cdc42, Bmp4, Fgfr2 |
GO enrichment (BP) | ||||
1.64 × 10−13 | 10 | 132 | Embryonic skeletal system development | Shh, Sulf2, Alx3, Sulf1, Bmp4, Rdh10, Fgfr2, Alx1, Alx4, Ndst1 |
2.84 × 10−9 | 7 | 98 | Embryonic skeletal system morphogenesis | Alx3, Bmp4, Rdh10, Fgfr2, Alx1, Alx4, Ndst1 |
4.78 × 10−8 | 7 | 156 | Appendage morphogenesis | Shh, Alx3, Sulf1, Bmp4, Rdh10, Alx1, Alx4 |
4.78 × 10−8 | 7 | 156 | Limb morphogenesis | Shh, Alx3, Sulf1, Bmp4, Rdh10, Alx1, Alx4 |
6.96 × 10−8 | 7 | 166 | Morphogenesis of embryonic epithelium | Shh, Sulf1, Bmp4, Rdh10, Lrp2, Ift57, Alx1 |
1.35 × 10−7 | 7 | 188 | Appendage development | Shh, Alx3, Sulf1, Bmp4, Rdh10, Alx1, Alx4 |
2.49 × 10−8 | 8 | 237 | Skeletal system morphogenesis | Alx3, Sulf1, Bmp4, Rdh10, Fgfr2, Alx1, Alx4, Ndst1 |
2.20 × 10−10 | 10 | 312 | Embryonic organ morphogenesis | Shh, Alx3, Bmp4, Rdh10, Fgfr2, Ift57, Alx1, Six3, Alx4, Ndst1 |
5.79 × 10−10 | 10 | 348 | Regionalization | Shh, Bmp4, Lrp2, Disp1, Ift57, Alx1, Cdon, Six3, Alx4, Pgap1 |
2.20 × 10−10 | 11 | 446 | Pattern specification proc. | Shh, Alx3, Bmp4, Lrp2, Disp1, Ift57, Alx1, Cdon, Six3, Alx4, Pgap1 |
1.08 × 10−8 | 10 | 478 | Embryonic organ development | Shh, Alx3, Bmp4, Rdh10, Fgfr2, Ift57, Alx1, Six3, Alx4, Ndst1 |
1.76 × 10−11 | 13 | 632 | Embryonic morphogenesis | Shh, Alx3, Sulf1, Bmp4, Rdh10, Lrp2, Fgfr2, Ift57, Alx1, Cdon, Six3, Alx4, Ndst1 |
1.80 × 10−8 | 10 | 508 | Skeletal system development | Shh, Sulf2, Alx3, Sulf1, Bmp4, Rdh10, Fgfr2, Alx1, Alx4, Ndst1 |
1.61 × 10−10 | 13 | 765 | Chordate embryonic development | Shh, Sulf2, Alx3, Sulf1, Bmp4, Tcof1, Rdh10, Lrp2, Fgfr2, Ift57, Alx1, Alx4, Ndst1 |
1.75 × 10−10 | 13 | 781 | Embryo development ending in birth or egg hatching | Shh, Sulf2, Alx3, Sulf1, Bmp4, Tcof1, Rdh10, Lrp2, Fgfr2, Ift57, Alx1, Alx4, Ndst1 |
1.11 × 10−7 | 10 | 639 | Tissue morphogenesis | Shh, Cdc42, Sulf1, Bmp4, Rdh10, Lrp2, Fgfr2, Ift57, Alx1, Six3 |
1.64 × 10−13 | 17 | 1169 | Embryo development | Shh, Sulf2, Alx3, Sulf1, Bmp4, Tcof1, Rdh10, Lrp2, Disp1, Fgfr2, Ift57, Alx1, Cdon, Six3, Alx4, Ndst1, Pgap1 |
1.76 × 10−11 | 15 | 1041 | Animal organ morphogenesis | Shh, Cdc42, Sulf2, Alx3, Sulf1, Bmp4, Rdh10, Lrp2, Fgfr2, Ift57, Alx1, Cdon, Six3, Alx4, Ndst1 |
1.24 × 10−7 | 12 | 1144 | Anatomical structure formation involved in morphogenesis | Shh, Cdc42, Sulf1, Sirt1, Bmp4, Tcof1, Rdh10, Lrp2, Fgfr2, Ift57, Alx1, Cdon |
2.49 × 10−8 | 15 | 1900 | Tissue development | Shh, Cdc42, Sulf2, Sulf1, Sirt1, Bmp4, Tcof1, Rdh10, Lrp2, Fgfr2, Ift57, Alx1, Cdon, Six3, Alx4 |
GO enrichment (CC) | ||||
1.50 × 10−2 | 2 | 20 | Intraciliary transport particle B | Ift27, Ift57 |
2.56 × 10−2 | 2 | 41 | Axonal growth cone | Boc, Lrp2 |
3.78 × 10−2 | 3 | 218 | Growth cone | Sirt1, Boc, Lrp2 |
3.78 × 10−2 | 3 | 225 | Site of polarized growth | Sirt1, Boc, Lrp2 |
3.78 × 10−2 | 4 | 502 | Golgi membrane | Cdc42, Ift27, Ndst3, Ndst1 |
2.48 × 10−5 | 11 | 1449 | Golgi apparatus | Shh, Cdc42, Sulf2, Ift27, Sulf1, Lrp2, Ndst3, Ift57, Alx1, Wdr11, Ndst1 |
1.60 × 10−2 | 6 | 926 | Cell surface | Shh, Sulf2, Sulf1, Lrp2, Fgfr2, Cdon |
GO enrichment (MF) | ||||
3.98 × 10−4 | 2 | 4 | N-acetylglucosamine-6-sulfatase activity | Sulf2, Sulf1 |
3.98 × 10−4 | 2 | 4 | [heparan sulfate]-glucosamine N-sulfotransferase activity | Ndst3, Ndst1 |
4.44 × 10−4 | 2 | 5 | Arylsulfatase activity | Sulf2, Sulf1 |
4.63 × 10−2 | 1 | 4 | Apolipoprotein A-I receptor binding | Cdc42 |
4.63 × 10−2 | 1 | 4 | HLH domain binding | Sirt1 |
4.63 × 10−2 | 1 | 4 | Keratin filament binding | Sirt1 |
1.94 × 10−3 | 2 | 12 | Sulfuric ester hydrolase activity | Sulf2, Sulf1 |
2.64 × 10−3 | 2 | 15 | Heparan sulfate sulfotransferase activity | Ndst3, Ndst1 |
3.98 × 10−4 | 3 | 35 | Deacetylase activity | Sirt1, Ndst3, Ndst1 |
3.12 × 10−2 | 2 | 61 | Sulfotransferase activity | Ndst3, Ndst1 |
4.63 × 10−2 | 2 | 82 | Transferase activity, transferring sulphur-containing groups | Ndst3, Ndst1 |
1.94 × 10−3 | 4 | 202 | Glycosaminoglycan binding | Shh, Sulf2, Sulf1, Bmp4 |
1.20 × 10−2 | 3 | 152 | Carboxylic ester hydrolase activity | Ndst3, Ndst1, Pgap1 |
2.11 × 10−2 | 5 | 742 | Hydrolase activity, acting on ester bonds | Sulf2, Sulf1, Ndst3, Ndst1, Pgap1 |
miRNA Family | q-Value Bonferroni | q-Value FDR B and H | Hit Count in Query List | Target Gene |
---|---|---|---|---|
miR-338-5p | 5.66 × 10−5 | 1.26 × 10−4 | 7 | Alx1, Boc, Cdon, Lrp2, Sirt1, Sulf1, Zic2 |
miR-653-5p | 8.68 × 10−4 | 9.98 × 10−3 | 5 | Fgfr2, Pgap1, Rdh10, Sirt1, Zic2 |
miR-374c-5p | 2.95 × 10−2 | 1.55 × 10−2 | 5 | Alx1, Cdc42, Cdon, Sirt1, Zic2 |
miR-543-3p | 1.15 × 10−2 | 2.64 × 10−2 | 4 | Fgfr2, Zlc2, Sirt1, Pgap1 |
miR-124-3p | 5.85 × 10−2 | 2.64 × 10−2 | 6 | Alx1, Cdon, Fgfr2, Shh, Sirt1, Pgap1 |
miR-6923-5p | 1.17 × 10−1 | 3.38 × 10−2 | 3 | Alx4, Pgap1, Sirt1 |
miR-3094-3p | 1.33 × 10−1 | 3.49 × 10−2 | 6 | Alx1, Alx4, Cdon, Sirt1, Tcof1, Zic2 |
miR-6380 | 2.30 × 10−1 | 3.77 × 10−2 | 3 | Alx4, Fgfr2, Pgap1 |
miR-369-3p | 2.81 × 10−1 | 4.17 × 10−2 | 4 | Fgfr2, Pgap1, Sirt1, Sulf1 |
miR-412-3p | 3.16 × 10−1 | 4.34 × 10−2 | 3 | Cdc42, Ift57, Sulf1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iwaya, C.; Yu, S.; Iwata, J. Genes Related to Frontonasal Malformations Are Regulated by miR-338-5p, miR-653-5p, and miR-374-5p in O9-1 Cells. J. Dev. Biol. 2024, 12, 19. https://doi.org/10.3390/jdb12030019
Iwaya C, Yu S, Iwata J. Genes Related to Frontonasal Malformations Are Regulated by miR-338-5p, miR-653-5p, and miR-374-5p in O9-1 Cells. Journal of Developmental Biology. 2024; 12(3):19. https://doi.org/10.3390/jdb12030019
Chicago/Turabian StyleIwaya, Chihiro, Sunny Yu, and Junichi Iwata. 2024. "Genes Related to Frontonasal Malformations Are Regulated by miR-338-5p, miR-653-5p, and miR-374-5p in O9-1 Cells" Journal of Developmental Biology 12, no. 3: 19. https://doi.org/10.3390/jdb12030019
APA StyleIwaya, C., Yu, S., & Iwata, J. (2024). Genes Related to Frontonasal Malformations Are Regulated by miR-338-5p, miR-653-5p, and miR-374-5p in O9-1 Cells. Journal of Developmental Biology, 12(3), 19. https://doi.org/10.3390/jdb12030019