Mesothelium and Malignant Mesothelioma
Abstract
:1. Introduction
2. Developmental Origin of the Mesothelial Structures
2.1. The Pleural Mesothelium
2.2. The Cardiac Mesothelium
2.3. The Serosal Mesothelium
3. Signaling Pathways and Transcriptional Control Involved in the Development of the Mesothelium
3.1. Wilms Tumor 1 (WT1)
3.2. Retinoic Acid (RA) and Retinaldehyde Dehydrogenases (RALDHs)
3.3. Insulin Growth Factor 1 and 2 (IGF1 and IGF2)
3.4. Fibroblast Growth Factor (FGF) Signaling
3.5. Hedgehog (Hh) Signaling
4. Molecular Characteristics and Markers of the Mesothelium
5. Pathological Conditions of Mesothelium-Derived Tissues
6. Malignant Pleural Mesothelioma and Its Etiologies
7. Mesothelioma, DNA Damage, Cell Cycle Regulation, and Apoptosis
8. Conclusions
Acknowledgments
Conflicts of Interest
References
- Neumann, V.; Loseke, S.; Nowak, D.; Herth, F.J.; Tannapfel, A. Malignant pleural mesothelioma: Incidence, etiology, diagnosis, treatment, and occupational health. Dtsch Arztebl Int. 2013, 110, 319–326. [Google Scholar] [PubMed]
- Robinson, B.M. Malignant pleural mesothelioma: An epidemiological perspective. Ann. Cardiothorac Surg. 2012, 1, 491–496. [Google Scholar]
- Boussios, S.; Moschetta, M.; Karathanasi, A.; Tsiouris, A.K.; Kanellos, F.S.; Tatsi, K.; Katsanos, K.H.; Christodoulou, D.K. Malignant peritoneal mesothelioma: Clinical aspects, and therapeutic perspectives. Ann. Gastroenterol. 2018, 31, 659–669. [Google Scholar] [CrossRef] [PubMed]
- Brenner, J.; Sordillo, P.P.; Magill, G.B.; Golbey, R.B. Malignant mesothelioma of the pleura: Review of 123 patients. Cancer 1982, 49, 2431–2435. [Google Scholar] [CrossRef] [Green Version]
- Winters, N.I.; Thomason, R.T.; Bader, D.M. Identification of a novel developmental mechanism in the generation of mesothelia. Development 2012, 139, 2926–2934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winters, N.I.; Williams, A.M.; Bader, D.M. Resident progenitors, not exogenous migratory cells, generate the majority of visceral mesothelium in organogenesis. Dev. Biol. 2014, 391, 125–132. [Google Scholar] [CrossRef] [Green Version]
- Winters, N.I.; Bader, D.M. Development of the serosal mesothelium. J. Dev. Biol. 2013, 1, 64–81. [Google Scholar] [CrossRef]
- Karl, J.; Capel, B. Sertoli cells of the mouse testis originate from the coelomic epithelium. Dev. Biol. 1998, 203, 323–333. [Google Scholar] [CrossRef]
- Koopmans, T.; Rinkevich, Y. Mesothelial to mesenchyme transition as a major developmental and pathological player in trunk organs and their cavities. Commun. Biol. 2018, 1, 170. [Google Scholar] [CrossRef] [PubMed]
- Mutsaers, S.E.; Prele, C.M.; Pengelly, S.; Herrick, S.E. Mesothelial cells and peritoneal homeostasis. Fertil. Steril. 2016, 106, 1018–1024. [Google Scholar] [CrossRef] [PubMed]
- Mutsaers, S.E.; Birnie, K.; Lansley, S.; Herrick, S.E.; Lim, C.B.; Prele, C.M. Mesothelial cells in tissue repair and fibrosis. Front. Pharmacol. 2015, 6, 113. [Google Scholar] [CrossRef]
- Di Paolo, N.; Sacchi, G.; Del Vecchio, M.T.; Nicolai, G.A.; Brardi, S.; Garosi, G. State of the art on autologous mesothelial transplant in animals and humans. Int. J. Artif. Organs 2007, 30, 456–476. [Google Scholar] [CrossRef]
- Herrick, S.E.; Mutsaers, S.E. Mesothelial progenitor cells and their potential in tissue engineering. Int. J. Biochem. Cell Biol. 2004, 36, 621–642. [Google Scholar] [CrossRef] [PubMed]
- Michailova, K.N.; Usunoff, K.G. Serosal membranes (pleura, pericardium, peritoneum): Normal structure, development and experimental pathology. In Advances in Anatomy, Embryology and Cell Biology; Springer: Berlin, Germany, 2006. [Google Scholar]
- Ariza, L.; Carmona, R.; Canete, A.; Cano, E.; Munoz-Chapuli, R. Coelomic epithelium-derived cells in visceral morphogenesis. Dev. Dyn. 2016, 245, 307–322. [Google Scholar] [CrossRef]
- Mutsaers, S.E.; Wilkosz, S. Structure and function of mesothelial cells. Cancer Treat. Res. 2007, 134, 1–19. [Google Scholar] [PubMed]
- Colvin, J.S.; White, A.C.; Pratt, S.J.; Ornitz, D.M. Lung hypoplasia and neonatal death in fgf9-null mice identify this gene as an essential regulator of lung mesenchyme. Development 2001, 128, 2095–2106. [Google Scholar]
- Dixit, R.; Ai, X.; Fine, A. Derivation of lung mesenchymal lineages from the fetal mesothelium requires hedgehog signaling for mesothelial cell entry. Development 2013, 140, 4398–4406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Que, J.; Wilm, B.; Hasegawa, H.; Wang, F.; Bader, D.; Hogan, B.L. Mesothelium contributes to vascular smooth muscle and mesenchyme during lung development. Proc. Natl. Acad. Sci. USA 2008, 105, 16626–16630. [Google Scholar] [CrossRef] [Green Version]
- Batra, H.; Antony, V.B. The pleural mesothelium in development and disease. Front. Physiol. 2014, 5, 284. [Google Scholar] [CrossRef]
- Cano, E.; Carmona, R.; Munoz-Chapuli, R. Evolutionary origin of the proepicardium. J. Dev. Biol. 2013, 1, 3–19. [Google Scholar] [CrossRef]
- Perez-Pomares, J.M.; Phelps, A.; Sedmerova, M.; Carmona, R.; Gonzalez-Iriarte, M.; Munoz-Chapuli, R.; Wessels, A. Experimental studies on the spatiotemporal expression of wt1 and raldh2 in the embryonic avian heart: A model for the regulation of myocardial and valvuloseptal development by epicardially derived cells (epdcs). Dev. Biol. 2002, 247, 307–326. [Google Scholar] [CrossRef]
- Wessels, A.; Perez-Pomares, J.M. The epicardium and epicardially derived cells (epdcs) as cardiac stem cells. Anat. Rec. A Discov. Mol. Cell Evol. Biol. 2004, 276, 43–57. [Google Scholar] [CrossRef]
- Viragh, S.; Challice, C.E. The origin of the epicardium and the embryonic myocardial circulation in the mouse. Anat. Rec. 1981, 201, 157–168. [Google Scholar] [CrossRef]
- Nahirney, P.C.; Mikawa, T.; Fischman, D.A. Evidence for an extracellular matrix bridge guiding proepicardial cell migration to the myocardium of chick embryos. Dev. Dyn. 2003, 227, 511–523. [Google Scholar] [CrossRef] [Green Version]
- Gittenberger-de Groot, A.C.; Vrancken Peeters, M.P.; Mentink, M.M.; Gourdie, R.G.; Poelmann, R.E. Epicardium-derived cells contribute a novel population to the myocardial wall and the atrioventricular cushions. Circ. Res. 1998, 82, 1043–1052. [Google Scholar] [CrossRef]
- Dettman, R.W.; Denetclaw, W., Jr.; Ordahl, C.P.; Bristow, J. Common epicardial origin of coronary vascular smooth muscle, perivascular fibroblasts, and intermyocardial fibroblasts in the avian heart. Dev. Biol. 1998, 193, 169–181. [Google Scholar] [CrossRef]
- Lockhart, M.M.; Phelps, A.L.; van den Hoff, M.J.; Wessels, A. The epicardium and the development of the atrioventricular junction in the murine heart. J. Dev. Biol. 2014, 2, 1–17. [Google Scholar] [CrossRef]
- Perez-Pomares, J.M.; Carmona, R.; Gonzalez-Iriarte, M.; Atencia, G.; Wessels, A.; Munoz-Chapuli, R. Origin of coronary endothelial cells from epicardial mesothelium in avian embryos. Int. J. Dev. Biol. 2002, 46, 1005–1013. [Google Scholar]
- Perez-Pomares, J.M.; Carmona, R.; Gonzalez-Iriarte, M.; Macias, D.; Guadix, J.A.; Munoz-Chapuli, R. Contribution of mesothelium-derived cells to liver sinusoids in avian embryos. Dev. Dyn. 2004, 229, 465–474. [Google Scholar] [CrossRef] [Green Version]
- Zhou, B.; von Gise, A.; Ma, Q.; Hu, Y.; Pu, W. Genetic fate mapping demonstrates contribution of epicardium-derived cells to the annulus fibrosis of the mammalian heart. Dev. Biol. 2010, 338, 251–261. [Google Scholar] [CrossRef]
- Wessels, A.; van den Hoff, M.J.; Adamo, R.F.; Phelps, A.L.; Lockhart, M.M.; Sauls, K.; Briggs, L.E.; Norris, R.A.; van Wijk, B.; Perez-Pomares, J.M.; et al. Epicardially derived fibroblasts preferentially contribute to the parietal leaflets of the atrioventricular valves in the murine heart. Dev. Biol. 2012, 366, 111–124. [Google Scholar] [CrossRef]
- Austin, A.F.; Compton, L.A.; Love, J.D.; Brown, C.B.; Barnett, J.V. Primary and immortalized mouse epicardial cells undergo differentiation in response to tgfbeta. Dev. Dyn. 2008, 237, 366–376. [Google Scholar] [CrossRef] [PubMed]
- DeLaughter, D.M.; Clark, C.R.; Christodoulou, D.C.; Seidman, C.E.; Baldwin, H.S.; Seidman, J.G.; Barnett, J.V. Transcriptional profiling of cultured, embryonic epicardial cells identifies novel genes and signaling pathways regulated by tgfbetar3 in vitro. PLoS ONE 2016, 11, e0159710. [Google Scholar] [CrossRef] [PubMed]
- Hill, C.R.; Sanchez, N.S.; Love, J.D.; Arrieta, J.A.; Hong, C.C.; Brown, C.B.; Austin, A.F.; Barnett, J.V. Bmp2 signals loss of epithelial character in epicardial cells but requires the type iii tgfbeta receptor to promote invasion. Cell Signal. 2012, 24, 1012–1022. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, N.S.; Barnett, J.V. Tgfbeta and bmp-2 regulate epicardial cell invasion via tgfbetar3 activation of the par6/smurf1/rhoa pathway. Cell Signal. 2012, 24, 539–548. [Google Scholar] [CrossRef]
- Sanchez, N.S.; Hill, C.R.; Love, J.D.; Soslow, J.H.; Craig, E.; Austin, A.F.; Brown, C.B.; Czirok, A.; Camenisch, T.D.; Barnett, J.V. The cytoplasmic domain of tgfbetar3 through its interaction with the scaffolding protein, gipc, directs epicardial cell behavior. Dev. Biol. 2011, 358, 331–343. [Google Scholar] [CrossRef]
- von Gise, A.; Pu, W.T. Endocardial and epicardial epithelial to mesenchymal transitions in heart development and disease. Circ. Res. 2012, 110, 1628–1645. [Google Scholar] [CrossRef] [Green Version]
- Mellgren, A.M.; Smith, C.L.; Olsen, G.S.; Eskiocak, B.; Zhou, B.; Kazi, M.N.; Ruiz, F.R.; Pu, W.T.; Tallquist, M.D. Platelet-derived growth factor receptor beta signaling is required for efficient epicardial cell migration and development of two distinct coronary vascular smooth muscle cell populations. Circ. Res. 2008, 103, 1393–1401. [Google Scholar] [CrossRef] [PubMed]
- Krainock, M.; Toubat, O.; Danopoulos, S.; Beckham, A.; Warburton, D.; Kim, R. Epicardial epithelial-to-mesenchymal transition in heart development and disease. J. Clin. Med. 2016, 5, 27. [Google Scholar] [CrossRef] [PubMed]
- Bronner, M.E.; LeDouarin, N.M. Development and evolution of the neural crest: An overview. Dev. Biol. 2012, 366, 2–9. [Google Scholar] [CrossRef] [Green Version]
- Wilm, B.; Ipenberg, A.; Hastie, N.D.; Burch, J.B.; Bader, D.M. The serosal mesothelium is a major source of smooth muscle cells of the gut vasculature. Development 2005, 132, 5317–5328. [Google Scholar] [CrossRef] [Green Version]
- Thomason, R.T.; Bader, D.M.; Winters, N.I. Comprehensive timeline of mesodermal development in the quail small intestine. Dev. Dyn. 2012, 241, 1678–1694. [Google Scholar] [CrossRef]
- Call, K.M.; Glaser, T.; Ito, C.Y.; Buckler, A.J.; Pelletier, J.; Haber, D.A.; Rose, E.A.; Kral, A.; Yeger, H.; Lewis, W.H.; et al. Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 wilms’ tumor locus. Cell 1990, 60, 509–520. [Google Scholar] [CrossRef]
- Park, S.; Schalling, M.; Bernard, A.; Maheswaran, S.; Shipley, G.C.; Roberts, D.; Fletcher, J.; Shipman, R.; Rheinwald, J.; Demetri, G.; et al. The wilms tumour gene wt1 is expressed in murine mesoderm-derived tissues and mutated in a human mesothelioma. Nat. Genet. 1993, 4, 415–420. [Google Scholar] [CrossRef]
- Scholz, H.; Kirschner, K.M. A role for the wilms’ tumor protein wt1 in organ development. Physiology (Bethesda) 2005, 20, 54–59. [Google Scholar] [CrossRef]
- Scharnhorst, V.; van der Eb, A.J.; Jochemsen, A.G. Wt1 proteins: Functions in growth and differentiation. Gene 2001, 273, 141–161. [Google Scholar] [CrossRef]
- Guadix, J.; Ruiz-Villalba, A.; Lettice, L.; Velecela, V.; Muñoz-Chápuli, R.; Hastie, N.; Pérez-Pomares, J.; Martínez-Estrada, O. Wt1 controls retinoic acid signalling in embryonic epicardium through transcriptional activation of raldh2. Development (Cambridge, England) 2011, 138, 1093–1097. [Google Scholar] [CrossRef]
- Moore, A.W.; McInnes, L.; Kreidberg, J.; Hastie, N.D.; Schedl, A. Yac complementation shows a requirement for wt1 in the development of epicardium, adrenal gland and throughout nephrogenesis. Development 1999, 126, 1845–1857. [Google Scholar]
- Moore, A.W.; Schedl, A.; McInnes, L.; Doyle, M.; Hecksher-Sorensen, J.; Hastie, N.D. Yac transgenic analysis reveals wilms’ tumour 1 gene activity in the proliferating coelomic epithelium, developing diaphragm and limb. Mech. Dev. 1998, 79, 169–184. [Google Scholar] [CrossRef]
- Martinez-Estrada, O.M.; Lettice, L.A.; Essafi, A.; Guadix, J.A.; Slight, J.; Velecela, V.; Hall, E.; Reichmann, J.; Devenney, P.S.; Hohenstein, P.; et al. Wt1 is required for cardiovascular progenitor cell formation through transcriptional control of snail and e-cadherin. Nat. Genet. 2010, 42, 89–93. [Google Scholar] [CrossRef]
- Dharnidharka, V.R.; Ruteshouser, E.C.; Rosen, S.; Kozakewich, H.; Harris, H.W., Jr.; Herrin, J.T.; Huff, V. Pulmonary dysplasia, denys-drash syndrome and wilms tumor 1 gene mutation in twins. Pediatr. Nephrol. 2001, 16, 227–231. [Google Scholar] [CrossRef]
- Loo, C.K.; Algar, E.M.; Payton, D.J.; Perry-Keene, J.; Pereira, T.N.; Ramm, G.A. Possible role of wt1 in a human fetus with evolving bronchial atresia, pulmonary malformation and renal agenesis. Pediatr. Dev. Pathol. 2012, 15, 39–44. [Google Scholar] [CrossRef]
- Carmona, R.; Canete, A.; Cano, E.; Ariza, L.; Rojas, A.; Munoz-Chapuli, R. Conditional deletion of wt1 in the septum transversum mesenchyme causes congenital diaphragmatic hernia in mice. Elife 2016, 5, e16009. [Google Scholar] [CrossRef]
- Kumar-Singh, S.; Segers, K.; Rodeck, U.; Backhovens, H.; Bogers, J.; Weyler, J.; Van Broeckhoven, C.; Van Marck, E. Wt1 mutation in malignant mesothelioma and wt1 immunoreactivity in relation to p53 and growth factor receptor expression, cell-type transition, and prognosis. J. Pathol. 1997, 181, 67–74. [Google Scholar] [CrossRef]
- Onitsuka, I.; Tanaka, M.; Miyajima, A. Characterization and functional analyses of hepatic mesothelial cells in mouse liver development. Gastroenterology 2010, 138, 1525–1535. [Google Scholar] [CrossRef]
- Ijpenberg, A.; Perez-Pomares, J.M.; Guadix, J.A.; Carmona, R.; Portillo-Sanchez, V.; Macias, D.; Hohenstein, P.; Miles, C.M.; Hastie, N.D.; Munoz-Chapuli, R. Wt1 and retinoic acid signaling are essential for stellate cell development and liver morphogenesis. Dev. Biol. 2007, 312, 157–170. [Google Scholar] [CrossRef] [Green Version]
- Duester, G. Involvement of alcohol dehydrogenase, short-chain dehydrogenase/reductase, aldehyde dehydrogenase, and cytochrome p450 in the control of retinoid signaling by activation of retinoic acid synthesis. Biochemistry 1996, 35, 12221–12227. [Google Scholar] [CrossRef]
- Niederreither, K.; Fraulob, V.; Garnier, J.M.; Chambon, P.; Dolle, P. Differential expression of retinoic acid-synthesizing (raldh) enzymes during fetal development and organ differentiation in the mouse. Mech. Dev. 2002, 110, 165–171. [Google Scholar] [CrossRef]
- Stuckmann, I.; Evans, S.; Lassar, A.B. Erythropoietin and retinoic acid, secreted from the epicardium, are required for cardiac myocyte proliferation. Dev. Biol. 2003, 255, 334–349. [Google Scholar] [CrossRef] [Green Version]
- Brade, T.; Kumar, S.; Cunningham, T.J.; Chatzi, C.; Zhao, X.; Cavallero, S.; Li, P.; Sucov, H.M.; Ruiz-Lozano, P.; Duester, G. Retinoic acid stimulates myocardial expansion by induction of hepatic erythropoietin which activates epicardial igf2. Development 2011, 138, 139–148. [Google Scholar] [CrossRef]
- Desai, T.J.; Chen, F.; Lu, J.; Qian, J.; Niederreither, K.; Dolle, P.; Chambon, P.; Cardoso, W.V. Distinct roles for retinoic acid receptors alpha and beta in early lung morphogenesis. Dev. Biol. 2006, 291, 12–24. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Cavallero, S.; Gu, Y.; Chen, T.H.; Hughes, J.; Hassan, A.B.; Bruning, J.C.; Pashmforoush, M.; Sucov, H.M. Igf signaling directs ventricular cardiomyocyte proliferation during embryonic heart development. Development 2011, 138, 1795–1805. [Google Scholar] [CrossRef]
- Hind, M.; Corcoran, J.; Maden, M. Alveolar proliferation, retinoid synthesizing enzymes, and endogenous retinoids in the postnatal mouse lung. Different roles for aldh-1 and raldh-2. Am. J. Respir. Cell Mol. Biol. 2002, 26, 67–73. [Google Scholar] [CrossRef]
- Lee, T.C.; Zhang, Y.; Aston, C.; Hintz, R.; Jagirdar, J.; Perle, M.A.; Burt, M.; Rom, W.N. Normal human mesothelial cells and mesothelioma cell lines express insulin-like growth factor i and associated molecules. Cancer Res. 1993, 53, 2858–2864. [Google Scholar]
- Itoh, N.; Ornitz, D.M. Functional evolutionary history of the mouse fgf gene family. Dev. Dyn. 2008, 237, 18–27. [Google Scholar] [CrossRef]
- Lavine, K.J.; Yu, K.; White, A.C.; Zhang, X.; Smith, C.; Partanen, J.; Ornitz, D.M. Endocardial and epicardial derived fgf signals regulate myocardial proliferation and differentiation in vivo. Dev. Cell 2005, 8, 85–95. [Google Scholar] [CrossRef]
- Yin, Y.; Wang, F.; Ornitz, D.M. Mesothelial- and epithelial-derived fgf9 have distinct functions in the regulation of lung development. Development 2011, 138, 3169–3177. [Google Scholar] [CrossRef]
- Weaver, M.; Batts, L.; Hogan, B.L. Tissue interactions pattern the mesenchyme of the embryonic mouse lung. Dev. Biol. 2003, 258, 169–184. [Google Scholar] [CrossRef] [Green Version]
- Colvin, J.S.; Feldman, B.; Nadeau, J.H.; Goldfarb, M.; Ornitz, D.M. Genomic organization and embryonic expression of the mouse fibroblast growth factor 9 gene. Dev. Dyn. 1999, 216, 72–88. [Google Scholar] [CrossRef]
- Geske, M.J.; Zhang, X.; Patel, K.K.; Ornitz, D.M.; Stappenbeck, T.S. Fgf9 signaling regulates small intestinal elongation and mesenchymal development. Development 2008, 135, 2959–2968. [Google Scholar] [CrossRef] [Green Version]
- Ingham, P.W.; McMahon, A.P. Hedgehog signaling in animal development: Paradigms and principles. Genes Dev. 2001, 15, 3059–3087. [Google Scholar] [CrossRef]
- Bellusci, S.; Furuta, Y.; Rush, M.G.; Henderson, R.; Winnier, G.; Hogan, B.L. Involvement of sonic hedgehog (shh) in mouse embryonic lung growth and morphogenesis. Development 1997, 124, 53–63. [Google Scholar]
- Pepicelli, C.V.; Lewis, P.M.; McMahon, A.P. Sonic hedgehog regulates branching morphogenesis in the mammalian lung. Curr. Biol. 1998, 8, 1083–1086. [Google Scholar] [CrossRef] [Green Version]
- Cano, E.; Carmona, R.; Munoz-Chapuli, R. Wt1-expressing progenitors contribute to multiple tissues in the developing lung. Am. J. Physiol. Lung Cell Mol. Physiol. 2013, 305, L322–L332. [Google Scholar] [CrossRef]
- Wada, A.M.; Smith, T.K.; Osler, M.E.; Reese, D.E.; Bader, D.M. Epicardial/mesothelial cell line retains vasculogenic potential of embryonic epicardium. Circ. Res. 2003, 92, 525–531. [Google Scholar] [CrossRef]
- Kawaguchi, M.; Bader, D.M.; Wilm, B. Serosal mesothelium retains vasculogenic potential. Dev. Dyn. 2007, 236, 2973–2979. [Google Scholar] [CrossRef]
- van Tuyn, J.; Atsma, D.E.; Winter, E.M.; van der Velde-van Dijke, I.; Pijnappels, D.A.; Bax, N.A.; Knaan-Shanzer, S.; Gittenberger-de Groot, A.C.; Poelmann, R.E.; van der Laarse, A.; et al. Epicardial cells of human adults can undergo an epithelial-to-mesenchymal transition and obtain characteristics of smooth muscle cells in vitro. Stem Cells 2007, 25, 271–278. [Google Scholar] [CrossRef]
- Tsukui, T.; Capdevila, J.; Tamura, K.; Ruiz-Lozano, P.; Rodriguez-Esteban, C.; Yonei-Tamura, S.; Magallon, J.; Chandraratna, R.A.; Chien, K.; Blumberg, B.; et al. Multiple left-right asymmetry defects in shh(−/−) mutant mice unveil a convergence of the shh and retinoic acid pathways in the control of lefty-1. Proc. Natl. Acad. Sci. USA 1999, 96, 11376–11381. [Google Scholar] [CrossRef]
- Kolterud, A.; Grosse, A.S.; Zacharias, W.J.; Walton, K.D.; Kretovich, K.E.; Madison, B.B.; Waghray, M.; Ferris, J.E.; Hu, C.; Merchant, J.L.; et al. Paracrine hedgehog signaling in stomach and intestine: New roles for hedgehog in gastrointestinal patterning. Gastroenterology 2009, 137, 618–628. [Google Scholar] [CrossRef]
- Carmona, R.; Cano, E.; Mattiotti, A.; Gaztambide, J.; Munoz-Chapuli, R. Cells derived from the coelomic epithelium contribute to multiple gastrointestinal tissues in mouse embryos. PLoS ONE 2013, 8, e55890. [Google Scholar] [CrossRef]
- Lockhart, M.M.; Boukens, B.J.; Phelps, A.; Brown, C.-L.M.; Toomer, K.A.; Burns, T.A.; Mukherjee, R.D.; Norris, R.A.; Trusk, T.C.; van den Hoff, M.J.B.; et al. Alk3 mediated bmp signaling controls the contribution of epicardially derived cells to the tissues of the atrioventricular junction. Developmental Biology 2014, 396, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Cai, C.L.; Martin, J.C.; Sun, Y.; Cui, L.; Wang, L.; Ouyang, K.; Yang, L.; Bu, L.; Liang, X.; Zhang, X.; et al. A myocardial lineage derives from tbx18 epicardial cells. Nature 2008, 454, 104–108. [Google Scholar] [CrossRef]
- Oda, H.; Takeichi, M. Evolution: Structural and functional diversity of cadherin at the adherens junction. J. Cell Biol. 2011, 193, 1137–1146. [Google Scholar] [CrossRef] [PubMed]
- Lessan, K.; Aguiar, D.J.; Oegema, T.; Siebenson, L.; Skubitz, A.P. Cd44 and β1 integrin mediate ovarian carcinoma cell adhesion to peritoneal mesothelial cells. Am. J. Pathol. 1999, 154, 1525–1537. [Google Scholar] [CrossRef]
- Chhieng, D.C.; Yee, H.; Cangiarella, J.F.; Symmans, W.F.; Cohen, J.M. Use of e-cadherin and cd44 aids in the differentiation between reactive mesothelial cells and carcinoma cells in pelvic washings. Cancer 2000, 90, 299–306. [Google Scholar] [CrossRef]
- Stahel, R.A.; O’Hara, C.J.; Waibel, R.; Martin, A. Monoclonal antibodies against mesothelial membrane antigen discriminate between malignant mesothelioma and lung adenocarcinoma. Int J. Cancer 1988, 41, 218–223. [Google Scholar] [CrossRef]
- Kocjan, G.; Sweeney, E.; Miller, K.D.; Bobrow, L. Aua1: New immunocytochemical marker for detecting epithelial cells in body cavity fluids. J. Clin. Pathol. 1992, 45, 358–359. [Google Scholar] [CrossRef]
- Radford, H.; Wilson, A.P. A comparison of immunohistochemical staining of human cultured mesothelial cells and ovarian tumour cells using epithelial and mesothelial cell markers. Anal. Cell Pathol. 1996, 11, 173–182. [Google Scholar]
- Davidson, B.; Nielsen, S.; Christensen, J.; Asschenfeldt, P.; Berner, A.; Risberg, B.; Johansen, P. The role of desmin and n-cadherin in effusion cytology: A comparative study using established markers of mesothelial and epithelial cells. Am. J. Surg. Pathol. 2001, 25, 1405–1412. [Google Scholar] [CrossRef]
- Barberis, M.C.; Faleri, M.; Veronese, S.; Casadio, C.; Viale, G. Calretinin. A selective marker of normal and neoplastic mesothelial cells in serous effusions. Acta Cytol 1997, 41, 1757–1761. [Google Scholar] [CrossRef]
- Ho-dac-Pannekeet, M.M.; Hiralall, J.K.; Struijk, D.G.; Krediet, R.T. Markers of peritoneal mesothelial cells during treatment with peritoneal dialysis. Adv. Perit Dial. 1997, 13, 17–22. [Google Scholar]
- Ho-dac-Pannekeet, M.M. Peritoneal fluid markers of mesothelial cells and function. Adv. Ren Replace Ther 1998, 5, 205–211. [Google Scholar] [CrossRef]
- Chang, K.; Pastan, I. Molecular cloning of mesothelin, a differentiation antigen present on mesothelium, mesotheliomas, and ovarian cancers. Proc. Natl. Acad. Sci. USA 1996, 93, 136–140. [Google Scholar] [CrossRef] [PubMed]
- Ordonez, N.G. Value of mesothelin immunostaining in the diagnosis of mesothelioma. Mod. Pathol. 2003, 16, 192–197. [Google Scholar] [CrossRef]
- Ordonez, N.G. The immunohistochemical diagnosis of mesothelioma: A comparative study of epithelioid mesothelioma and lung adenocarcinoma. Am. J. Surg. Pathol. 2003, 27, 1031–1051. [Google Scholar] [CrossRef] [PubMed]
- Scherpereel, A.; Grigoriu, B.; Conti, M.; Gey, T.; Gregoire, M.; Copin, M.C.; Devos, P.; Chahine, B.; Porte, H.; Lassalle, P. Soluble mesothelin-related peptides in the diagnosis of malignant pleural mesothelioma. Am. J. Respir. Crit. Care Med. 2006, 173, 1155–1160. [Google Scholar] [CrossRef] [PubMed]
- Kachali, C.E.I.; Horton, D.; Chhieng, D.C. Use of mesothelin as a marker for mesothelial cells in cytologic specimens. Semin Diagn Pathol. 2006, 23, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Connell, N.D.; Rheinwald, J.G. Regulation of the cytoskeleton in mesothelial cells: Reversible loss of keratin and increase in vimentin during rapid growth in culture. Cell 1983, 34, 245–253. [Google Scholar] [CrossRef]
- LaRocca, P.J.; Rheinwald, J.G. Coexpression of simple epithelial keratins and vimentin by human mesothelium and mesothelioma in vivo and in culture. Cancer Res. 1984, 44, 2991–2999. [Google Scholar] [PubMed]
- Cury, P.M.; Butcher, D.N.; Fisher, C.; Corrin, B.; Nicholson, A.G. Value of the mesothelium-associated antibodies thrombomodulin, cytokeratin 5/6, calretinin, and cd44h in distinguishing epithelioid pleural mesothelioma from adenocarcinoma metastatic to the pleura. Mod. Pathol. 2000, 13, 107–112. [Google Scholar] [CrossRef]
- Gonzalez-Lois, C.; Ballestin, C.; Sotelo, M.T.; Lopez-Rios, F.; Garcia-Prats, M.D.; Villena, V. Combined use of novel epithelial (moc-31) and mesothelial (hbme-1) immunohistochemical markers for optimal first line diagnostic distinction between mesothelioma and metastatic carcinoma in pleura. Histopathology 2001, 38, 528–534. [Google Scholar] [CrossRef]
- Kennedy, A.D.; King, G.; Kerr, K.M. Hbme-1 and antithrombomodulin in the differential diagnosis of malignant mesothelioma of pleura. J. Clin. Pathol. 1997, 50, 859–862. [Google Scholar] [CrossRef]
- McLaren, L.; Boyle, S.; Mason, J.O.; Bard, J.B. Expression and genomic characterization of protein phosphatase inhibitor-1: A novel marker for mesothelium in the mouse. Mech. Dev. 2000, 96, 237–241. [Google Scholar] [CrossRef]
- Bononi, I.; Comar, M.; Puozzo, A.; Stendardo, M.; Boschetto, P.; Orecchia, S.; Libener, R.; Guaschino, R.; Pietrobon, S.; Ferracin, M.; et al. Circulating micrornas found dysregulated in ex-exposed asbestos workers and pleural mesothelioma patients as potential new biomarkers. Oncotarget 2016, 7, 82700–82711. [Google Scholar] [CrossRef]
- Micolucci, L.; Akhtar, M.M.; Olivieri, F.; Rippo, M.R.; Procopio, A.D. Diagnostic value of micrornas in asbestos exposure and malignant mesothelioma: Systematic review and qualitative meta-analysis. Oncotarget 2016, 7, 58606–58637. [Google Scholar] [CrossRef]
- Smith, B.; Agarwal, P.; Bhowmick, N.A. Microrna applications for prostate, ovarian and breast cancer in the era of precision medicine. Endocr. Relat Cancer 2017, 24, R157–R172. [Google Scholar] [CrossRef]
- Kopcinovic, L.M.; Culej, J. Pleural, peritoneal and pericardial effusions—A biochemical approach. Biochem Med. (Zagreb) 2014, 24, 123–137. [Google Scholar] [CrossRef]
- Bintcliffe, O.J.; Hooper, C.E.; Rider, I.J.; Finn, R.S.; Morley, A.J.; Zahan-Evans, N.; Harvey, J.E.; Skyrme-Jones, A.P.; Maskell, N.A. Unilateral pleural effusions with more than one apparent etiology. A prospective observational study. Ann. Am. Thorac. Soc. 2016, 13, 1050–1056. [Google Scholar] [CrossRef]
- Giarnieri, E.; Bellipanni, G.; Macaluso, M.; Mancini, R.; Holstein, A.C.; Milanese, C.; Giovagnoli, M.R.; Giordano, A.; Russo, G. Review: Cell dynamics in malignant pleural effusions. J. Cell Physiol. 2015, 230, 272–277. [Google Scholar] [CrossRef]
- Kremer, R.; Best, L.A.; Savulescu, D.; Gavish, M.; Nagler, R.M. Pleural fluid analysis of lung cancer vs benign inflammatory disease patients. Br. J. Cancer 2010, 102, 1180–1184. [Google Scholar] [CrossRef] [Green Version]
- Thomas, J.M.; Musani, A.I. Malignant pleural effusions: A review. Clin. Chest Med. 2013, 34, 459–471. [Google Scholar] [CrossRef]
- Jeon, D. Tuberculous pleurisy: An update. Tuberc Respir. Dis (Seoul) 2014, 76, 153–159. [Google Scholar] [CrossRef]
- Wessman, D.E.; Stafford, C.M. The postcardiac injury syndrome: Case report and review of the literature. South. Med. J. 2006, 99, 309–314. [Google Scholar] [CrossRef]
- Chakrabarti, B.; Davies, P.D. Pleural tuberculosis. Monaldi Arch. Chest Dis. 2006, 65, 26–33. [Google Scholar] [CrossRef]
- Huggins, J.T.; Sahn, S.A. Drug-induced pleural disease. Clin. Chest Med. 2004, 25, 141–153. [Google Scholar] [CrossRef]
- Vincze, K.; Odler, B.; Muller, V. Pulmonary manifestations in systemic lupus erythematosus. Orv Hetil 2016, 157, 1154–1160. [Google Scholar] [CrossRef]
- Petrilli, V.; Dostert, C.; Muruve, D.A.; Tschopp, J. The inflammasome: A danger sensing complex triggering innate immunity. Curr. Opin. Immunol. 2007, 19, 615–622. [Google Scholar] [CrossRef]
- Dostert, C.; Petrilli, V.; Van Bruggen, R.; Steele, C.; Mossman, B.T.; Tschopp, J. Innate immune activation through nalp3 inflammasome sensing of asbestos and silica. Science 2008, 320, 674–677. [Google Scholar] [CrossRef]
- Hillegass, J.M.; Miller, J.M.; MacPherson, M.B.; Westbom, C.M.; Sayan, M.; Thompson, J.K.; Macura, S.L.; Perkins, T.N.; Beuschel, S.L.; Alexeeva, V.; et al. Asbestos and erionite prime and activate the nlrp3 inflammasome that stimulates autocrine cytokine release in human mesothelial cells. Part. Fibre Toxicol. 2013, 10, 39. [Google Scholar] [CrossRef]
- Sayan, M.; Mossman, B.T. The nlrp3 inflammasome in pathogenic particle and fibre-associated lung inflammation and diseases. Part. Fibre Toxicol. 2016, 13, 51. [Google Scholar] [CrossRef]
- Bakhshayesh Karam, M.; Karimi, S.; Mosadegh, L.; Chaibakhsh, S. Malignant mesothelioma versus metastatic carcinoma of the pleura: A ct challenge. Iran. J. Radiol. 2016, 13, e10949. [Google Scholar] [CrossRef]
- Ambroggi, M.; Orlandi, E.; Foroni, R.P.; Cavanna, L. Malignant pleural mesothelioma metastatic to the submandibular salivary gland, simulating glandular hypertrophy, diagnosed by fine-needle aspiration biopsy: A case report and literature review. World J. Surg. Oncol. 2014, 12, 129. [Google Scholar] [CrossRef]
- King, J.A.; Tucker, J.A.; Wong, S.W. Mesothelioma: A study of 22 gases. South. Med. J. 1997, 90, 199–205. [Google Scholar] [CrossRef]
- Miller, A.C.; Miettinen, M.; Schrump, D.S.; Hassan, R. Malignant mesothelioma and central nervous system metastases. Report of two cases, pooled analysis, and systematic review. Ann. Am. Thorac. Soc. 2014, 11, 1075–1081. [Google Scholar] [CrossRef]
- Thompson, J.K.; MacPherson, M.B.; Beuschel, S.L.; Shukla, A. Asbestos-induced mesothelial to fibroblastic transition is modulated by the inflammasome. Am. J. Pathol. 2017, 187, 665–678. [Google Scholar] [CrossRef]
- Bianchi, C.; Bianchi, T. Malignant mesothelioma: Global incidence and relationship with asbestos. Ind. Health 2007, 45, 379–387. [Google Scholar] [CrossRef]
- Teta, M.J.; Mink, P.J.; Lau, E.; Sceurman, B.K.; Foster, E.D. Us mesothelioma patterns 1973-2002: Indicators of change and insights into background rates. Eur. J. Cancer Prev. 2008, 17, 525–534. [Google Scholar] [CrossRef]
- Leigh, J.; Driscoll, T. Malignant mesothelioma in australia, 1945–2002. Int J. Occup. Environ. Health 2003, 9, 206–217. [Google Scholar] [CrossRef]
- Wagner, J.C.; Sleggs, C.A.; Marchand, P. Diffuse pleural mesothelioma and asbestos exposure in the north western cape province. Br. J. Ind. Med. 1960, 17, 260–271. [Google Scholar] [CrossRef]
- Delgermaa, V.; Takahashi, K.; Park, E.K.; Le, G.V.; Hara, T.; Sorahan, T. Global mesothelioma deaths reported to the world health organization between 1994 and 2008. Bull. World Health Organ. 2011, 89, 716–724. [Google Scholar] [CrossRef]
- Hilliard, A.K.; Lovett, J.K.; McGavin, C.R. The rise and fall in incidence of malignant mesothelioma from a british naval dockyard, 1979–1999. Occup. Med. (Lond) 2003, 53, 209–212. [Google Scholar] [CrossRef] [PubMed]
- Hyland, R.A.; Ware, S.; Johnson, A.R.; Yates, D.H. Incidence trends and gender differences in malignant mesothelioma in new south wales, australia. Scand. J. Work Environ. Health 2007, 33, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Lanphear, B.P.; Buncher, C.R. Latent period for malignant mesothelioma of occupational origin. J. Occup. Med. 1992, 34, 718–721. [Google Scholar]
- Reid, A.; de Klerk, N.H.; Magnani, C.; Ferrante, D.; Berry, G.; Musk, A.W.; Merler, E. Mesothelioma risk after 40 years since first exposure to asbestos: A pooled analysis. Thorax 2014, 69, 843–850. [Google Scholar] [CrossRef]
- Carbone, M.; Kratzke, R.A.; Testa, J.R. The pathogenesis of mesothelioma. Semin. Oncol. 2002, 29, 2–17. [Google Scholar] [CrossRef] [PubMed]
- Marsh, G.M.; Riordan, A.S.; Keeton, K.A.; Benson, S.M. Non-occupational exposure to asbestos and risk of pleural mesothelioma: Review and meta-analysis. Occup. Environ. Med. 2017, 74, 838–846. [Google Scholar] [CrossRef]
- Rodelsperger, K.; Woitowitz, H.J.; Bruckel, B.; Arhelger, R.; Pohlabeln, H.; Jockel, K.H. Dose-response relationship between amphibole fiber lung burden and mesothelioma. Cancer Detect. Prev. 1999, 23, 183–193. [Google Scholar] [CrossRef]
- Davis, J.M. A review of experimental evidence for the carcinogenicity of man-made vitreous fibers. Scand. J. Work Environ. Health 1986, 12 (Suppl. 1), 12–17. [Google Scholar]
- Donaldson, K.; Golyasnya, N. Cytogenetic and pathogenic effects of long and short amosite asbestos. J. Pathol. 1995, 177, 303–307. [Google Scholar] [CrossRef]
- Boulanger, G.; Andujar, P.; Pairon, J.C.; Billon-Galland, M.A.; Dion, C.; Dumortier, P.; Brochard, P.; Sobaszek, A.; Bartsch, P.; Paris, C.; et al. Quantification of short and long asbestos fibers to assess asbestos exposure: A review of fiber size toxicity. Environ. Health 2014, 13, 59. [Google Scholar] [CrossRef]
- Miserocchi, G.; Sancini, G.; Mantegazza, F.; Chiappino, G. Translocation pathways for inhaled asbestos fibers. Environ. Health 2008, 7, 4. [Google Scholar] [CrossRef]
- Donaldson, K.; Murphy, F.A.; Duffin, R.; Poland, C.A. Asbestos, carbon nanotubes and the pleural mesothelium: A review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part. Fibre Toxicol. 2010, 7, 5. [Google Scholar] [CrossRef]
- Robinson, B.W.; Lake, R.A. Advances in malignant mesothelioma. N Engl. J. Med. 2005, 353, 1591–1603. [Google Scholar] [CrossRef]
- Robinson, B.W.; Musk, A.W.; Lake, R.A. Malignant mesothelioma. Lancet 2005, 366, 397–408. [Google Scholar] [CrossRef]
- Jaurand, M.C.; Bignon, J.; Gaudichet, A.; Magne, L.; Oblin, A. Biological effects of chrysotile after so2 sorption. Ii. Effects on alveolar macrophages and red blood cells. Environ. Res. 1978, 17, 216–227. [Google Scholar] [CrossRef]
- Liu, W.; Ernst, J.D.; Broaddus, V.C. Phagocytosis of crocidolite asbestos induces oxidative stress, DNA damage, and apoptosis in mesothelial cells. Am. J. Respir. Cell Mol. Biol. 2000, 23, 371–378. [Google Scholar] [CrossRef]
- Jaurand, M.C.; Kaplan, H.; Thiollet, J.; Pinchon, M.C.; Bernaudin, J.F.; Bignon, J. Phagocytosis of chrysotile fibers by pleural mesothelial cells in culture. Am. J. Pathol. 1979, 94, 529–538. [Google Scholar]
- Huang, S.X.; Jaurand, M.C.; Kamp, D.W.; Whysner, J.; Hei, T.K. Role of mutagenicity in asbestos fiber-induced carcinogenicity and other diseases. J. Toxicol. Environ. Health B Crit. Rev. 2011, 14, 179–245. [Google Scholar] [CrossRef]
- Yegles, M.; Saint-Etienne, L.; Renier, A.; Janson, X.; Jaurand, M.C. Induction of metaphase and anaphase/telophase abnormalities by asbestos fibers in rat pleural mesothelial cells in vitro. Am. J. Respir. Cell Mol. Biol. 1993, 9, 186–191. [Google Scholar] [CrossRef]
- Chew, S.H.; Toyokuni, S. Malignant mesothelioma as an oxidative stress-induced cancer: An update. Free Radic. Biol. Med. 2015, 86, 166–178. [Google Scholar] [CrossRef]
- Xu, A.; Zhou, H.; Yu, D.Z.; Hei, T.K. Mechanisms of the genotoxicity of crocidolite asbestos in mammalian cells: Implication from mutation patterns induced by reactive oxygen species. Environ. Health Perspect. 2002, 110, 1003–1008. [Google Scholar] [CrossRef] [PubMed]
- Gruys, E.; Toussaint, M.J.; Niewold, T.A.; Koopmans, S.J. Acute phase reaction and acute phase proteins. J. Zhejiang Univ. Sci. B 2005, 6, 1045–1056. [Google Scholar] [CrossRef] [PubMed]
- Popa, C.; Netea, M.G.; van Riel, P.L.; van der Meer, J.W.; Stalenhoef, A.F. The role of tnf-alpha in chronic inflammatory conditions, intermediary metabolism, and cardiovascular risk. J. Lipid Res. 2007, 48, 751–762. [Google Scholar] [CrossRef]
- Reimold, A.M. New indications for treatment of chronic inflammation by tnf-alpha blockade. Am. J. Med. Sci. 2003, 325, 75–92. [Google Scholar] [PubMed]
- Strieter, R.M.; Kunkel, S.L.; Bone, R.C. Role of tumor necrosis factor-alpha in disease states and inflammation. Crit. Care Med. 1993, 21, S447–S463. [Google Scholar] [CrossRef]
- Yang, H.; Bocchetta, M.; Kroczynska, B.; Elmishad, A.G.; Chen, Y.; Liu, Z.; Bubici, C.; Mossman, B.T.; Pass, H.I.; Testa, J.R.; et al. Tnf-alpha inhibits asbestos-induced cytotoxicity via a nf-kappab-dependent pathway, a possible mechanism for asbestos-induced oncogenesis. Proc. Natl. Acad. Sci. USA 2006, 103, 10397–10402. [Google Scholar] [CrossRef]
- Zucali, P.A.; Ceresoli, G.L.; De Vincenzo, F.; Simonelli, M.; Lorenzi, E.; Gianoncelli, L.; Santoro, A. Advances in the biology of malignant pleural mesothelioma. Cancer Treat. Rev. 2011, 37, 543–558. [Google Scholar] [CrossRef]
- Carbone, M.; Ly, B.H.; Dodson, R.F.; Pagano, I.; Morris, P.T.; Dogan, U.A.; Gazdar, A.F.; Pass, H.I.; Yang, H. Malignant mesothelioma: Facts, myths, and hypotheses. J. Cell Physiol. 2012, 227, 44–58. [Google Scholar] [CrossRef] [PubMed]
- Qi, F.; Okimoto, G.; Jube, S.; Napolitano, A.; Pass, H.I.; Laczko, R.; Demay, R.M.; Khan, G.; Tiirikainen, M.; Rinaudo, C.; et al. Continuous exposure to chrysotile asbestos can cause transformation of human mesothelial cells via hmgb1 and tnf-alpha signaling. Am. J. Pathol. 2013, 183, 1654–1666. [Google Scholar] [CrossRef] [PubMed]
- Zanella, C.L.; Posada, J.; Tritton, T.R.; Mossman, B.T. Asbestos causes stimulation of the extracellular signal-regulated kinase 1 mitogen-activated protein kinase cascade after phosphorylation of the epidermal growth factor receptor. Cancer Res. 1996, 56, 5334–5338. [Google Scholar] [PubMed]
- Coussens, L.M.; Werb, Z. Inflammation and cancer. Nature 2002, 420, 860–867. [Google Scholar] [CrossRef] [PubMed]
- Dalgleish, A.G.; O’Byrne, K. Inflammation and cancer: The role of the immune response and angiogenesis. Cancer Treat. Res. 2006, 130, 1–38. [Google Scholar] [PubMed]
- Eiro, N.; Vizoso, F.J. Inflammation and cancer. World J. Gastrointest. Surg. 2012, 4, 62–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodelsperger, K.; Bruckel, B. The carcinogenicity of who fibers of silicon carbide: Sic whiskers compared to cleavage fragments of granular sic. Inhal Toxicol. 2006, 18, 623–631. [Google Scholar] [CrossRef]
- Carthew, P.; Hill, R.J.; Edwards, R.E.; Lee, P.N. Intrapleural administration of fibres induces mesothelioma in rats in the same relative order of hazard as occurs in man after exposure. Hum. Exp. Toxicol. 1992, 11, 530–534. [Google Scholar] [CrossRef]
- Nagai, H.; Okazaki, Y.; Chew, S.H.; Misawa, N.; Yamashita, Y.; Akatsuka, S.; Ishihara, T.; Yamashita, K.; Yoshikawa, Y.; Yasui, H.; et al. Diameter and rigidity of multiwalled carbon nanotubes are critical factors in mesothelial injury and carcinogenesis. Proc. Natl. Acad. Sci. USA 2011, 108, E1330–E1338. [Google Scholar] [CrossRef] [Green Version]
- Poland, C.A.; Duffin, R.; Kinloch, I.; Maynard, A.; Wallace, W.A.; Seaton, A.; Stone, V.; Brown, S.; Macnee, W.; Donaldson, K. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat. Nanotechnol. 2008, 3, 423–428. [Google Scholar] [CrossRef]
- Ryman-Rasmussen, J.P.; Cesta, M.F.; Brody, A.R.; Shipley-Phillips, J.K.; Everitt, J.I.; Tewksbury, E.W.; Moss, O.R.; Wong, B.A.; Dodd, D.E.; Andersen, M.E.; et al. Inhaled carbon nanotubes reach the subpleural tissue in mice. Nat. Nanotechnol. 2009, 4, 747–751. [Google Scholar] [CrossRef]
- Metintas, S.; Metintas, M.; Ucgun, I.; Oner, U. Malignant mesothelioma due to environmental exposure to asbestos: Follow-up of a turkish cohort living in a rural area. Chest 2002, 122, 2224–2229. [Google Scholar] [CrossRef]
- Roushdy-Hammady, I.; Siegel, J.; Emri, S.; Testa, J.R.; Carbone, M. Genetic-susceptibility factor and malignant mesothelioma in the cappadocian region of turkey. Lancet 2001, 357, 444–445. [Google Scholar] [CrossRef]
- Dogan, A.U.; Baris, Y.I.; Dogan, M.; Emri, S.; Steele, I.; Elmishad, A.G.; Carbone, M. Genetic predisposition to fiber carcinogenesis causes a mesothelioma epidemic in turkey. Cancer Res. 2006, 66, 5063–5068. [Google Scholar] [CrossRef]
- Metintas, M.; Hillerdal, G.; Metintas, S.; Dumortier, P. Endemic malignant mesothelioma: Exposure to erionite is more important than genetic factors. Arch. Environ. Occup. Health 2010, 65, 86–93. [Google Scholar] [CrossRef]
- Cutrone, R.; Lednicky, J.; Dunn, G.; Rizzo, P.; Bocchetta, M.; Chumakov, K.; Minor, P.; Carbone, M. Some oral poliovirus vaccines were contaminated with infectious sv40 after 1961. Cancer Res. 2005, 65, 10273–10279. [Google Scholar] [CrossRef]
- Leithner, K.; Leithner, A.; Clar, H.; Weinhaeusel, A.; Radl, R.; Krippl, P.; Rehak, P.; Windhager, R.; Haas, O.A.; Olschewski, H. Mesothelioma mortality in europe: Impact of asbestos consumption and simian virus 40. Orphanet. J. Rare Dis. 2006, 1, 44. [Google Scholar] [CrossRef]
- Carbone, M.; Pass, H.I.; Miele, L.; Bocchetta, M. New developments about the association of sv40 with human mesothelioma. Oncogene 2003, 22, 5173–5180. [Google Scholar] [CrossRef]
- Gazdar, A.F.; Butel, J.S.; Carbone, M. Sv40 and human tumours: Myth, association or causality? Nat. Rev. Cancer 2002, 2, 957–964. [Google Scholar] [CrossRef]
- Carbone, M.; Pass, H.I.; Rizzo, P.; Marinetti, M.; Di Muzio, M.; Mew, D.J.; Levine, A.S.; Procopio, A. Simian virus 40-like DNA sequences in human pleural mesothelioma. Oncogene 1994, 9, 1781–1790. [Google Scholar]
- Testa, J.R.; Carbone, M.; Hirvonen, A.; Khalili, K.; Krynska, B.; Linnainmaa, K.; Pooley, F.D.; Rizzo, P.; Rusch, V.; Xiao, G.H. A multi-institutional study confirms the presence and expression of simian virus 40 in human malignant mesotheliomas. Cancer Res. 1998, 58, 4505–4509. [Google Scholar]
- Mayall, F.; Barratt, K.; Shanks, J. The detection of simian virus 40 in mesotheliomas from new zealand and england using real time fret probe pcr protocols. J. Clin. Pathol. 2003, 56, 728–730. [Google Scholar] [CrossRef]
- Hirvonen, A.; Mattson, K.; Karjalainen, A.; Ollikainen, T.; Tammilehto, L.; Hovi, T.; Vainio, H.; Pass, H.I.; Di Resta, I.; Carbone, M.; et al. Simian virus 40 (sv40)-like DNA sequences not detectable in finnish mesothelioma patients not exposed to sv40-contaminated polio vaccines. Mol. Carcinog. 1999, 26, 93–99. [Google Scholar] [CrossRef]
- van Kaick, G.; Dalheimer, A.; Hornik, S.; Kaul, A.; Liebermann, D.; Luhrs, H.; Spiethoff, A.; Wegener, K.; Wesch, H. The german thorotrast study: Recent results and assessment of risks. Radiat. Res. 1999, 152, S64–S71. [Google Scholar] [CrossRef]
- Chirieac, L.R.; Barletta, J.A.; Yeap, B.Y.; Richards, W.G.; Tilleman, T.; Bueno, R.; Baldini, E.H.; Godleski, J.; Sugarbaker, D.J. Clinicopathologic characteristics of malignant mesotheliomas arising in patients with a history of radiation for hodgkin and non-hodgkin lymphoma. J. Clin. Oncol. 2013, 31, 4544–4549. [Google Scholar] [CrossRef]
- Huncharek, M. Non-asbestos related diffuse malignant mesothelioma. Tumori 2002, 88, 1–9. [Google Scholar]
- Goodman, J.E.; Nascarella, M.A.; Valberg, P.A. Ionizing radiation: A risk factor for mesothelioma. Cancer Causes Control. 2009, 20, 1237–1254. [Google Scholar] [CrossRef]
- Sanders, C.L.; Jackson, T.A. Induction of mesotheliomas and sarcomas from “hot spots” of 239 puo 2 activity. Health Phys. 1972, 22, 755–759. [Google Scholar] [CrossRef]
- Rihn, B.H.; Mohr, S.; McDowell, S.A.; Binet, S.; Loubinoux, J.; Galateau, F.; Keith, G.; Leikauf, G.D. Differential gene expression in mesothelioma. FEBS Lett. 2000, 480, 95–100. [Google Scholar] [CrossRef] [Green Version]
- Kettunen, E.; Nissen, A.M.; Ollikainen, T.; Taavitsainen, M.; Tapper, J.; Mattson, K.; Linnainmaa, K.; Knuutila, S.; El-Rifai, W. Gene expression profiling of malignant mesothelioma cell lines: Cdna array study. Int. J. Cancer 2001, 91, 492–496. [Google Scholar] [CrossRef]
- Taguchi, T.; Jhanwar, S.C.; Siegfried, J.M.; Keller, S.M.; Testa, J.R. Recurrent deletions of specific chromosomal sites in 1p, 3p, 6q, and 9p in human malignant mesothelioma. Cancer Res. 1993, 53, 4349–4355. [Google Scholar]
- Christensen, B.C.; Houseman, E.A.; Poage, G.M.; Godleski, J.J.; Bueno, R.; Sugarbaker, D.J.; Wiencke, J.K.; Nelson, H.H.; Marsit, C.J.; Kelsey, K.T. Integrated profiling reveals a global correlation between epigenetic and genetic alterations in mesothelioma. Cancer Res. 2010, 70, 5686–5694. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, S.V.; Miller, J.; Lucito, R.; Tang, C.; Ivanova, A.V.; Pei, J.; Carbone, M.; Cruz, C.; Beck, A.; Webb, C.; et al. Genomic events associated with progression of pleural malignant mesothelioma. Int J. Cancer 2009, 124, 589–599. [Google Scholar] [CrossRef] [Green Version]
- Jean, D.; Thomas, E.; Manie, E.; Renier, A.; de Reynies, A.; Lecomte, C.; Andujar, P.; Fleury-Feith, J.; Galateau-Salle, F.; Giovannini, M.; et al. Syntenic relationships between genomic profiles of fiber-induced murine and human malignant mesothelioma. Am. J. Pathol. 2011, 178, 881–894. [Google Scholar] [CrossRef]
- Krismann, M.; Muller, K.M.; Jaworska, M.; Johnen, G. Molecular cytogenetic differences between histological subtypes of malignant mesotheliomas: DNA cytometry and comparative genomic hybridization of 90 cases. J. Pathol. 2002, 197, 363–371. [Google Scholar] [CrossRef]
- Lindholm, P.M.; Salmenkivi, K.; Vauhkonen, H.; Nicholson, A.G.; Anttila, S.; Kinnula, V.L.; Knuutila, S. Gene copy number analysis in malignant pleural mesothelioma using oligonucleotide array cgh. Cytogenet Genome Res. 2007, 119, 46–52. [Google Scholar] [CrossRef]
- Takeda, M.; Kasai, T.; Enomoto, Y.; Takano, M.; Morita, K.; Kadota, E.; Iizuka, N.; Maruyama, H.; Nonomura, A. Genomic gains and losses in malignant mesothelioma demonstrated by fish analysis of paraffin-embedded tissues. J. Clin. Pathol. 2012, 65, 77–82. [Google Scholar] [CrossRef]
- Taniguchi, T.; Karnan, S.; Fukui, T.; Yokoyama, T.; Tagawa, H.; Yokoi, K.; Ueda, Y.; Mitsudomi, T.; Horio, Y.; Hida, T.; et al. Genomic profiling of malignant pleural mesothelioma with array-based comparative genomic hybridization shows frequent non-random chromosomal alteration regions including jun amplification on 1p32. Cancer Sci. 2007, 98, 438–446. [Google Scholar] [CrossRef]
- Ruas, M.; Peters, G. The p16ink4a/cdkn2a tumor suppressor and its relatives. Biochim. Biophys. Acta 1998, 1378, F115–F177. [Google Scholar] [CrossRef]
- Yu, F.X.; Guan, K.L. The hippo pathway: Regulators and regulations. Genes Dev. 2013, 27, 355–371. [Google Scholar] [CrossRef]
- Yokoyama, T.; Osada, H.; Murakami, H.; Tatematsu, Y.; Taniguchi, T.; Kondo, Y.; Yatabe, Y.; Hasegawa, Y.; Shimokata, K.; Horio, Y.; et al. Yap1 is involved in mesothelioma development and negatively regulated by merlin through phosphorylation. Carcinogenesis 2008, 29, 2139–2146. [Google Scholar] [CrossRef]
- Murakami, H.; Mizuno, T.; Taniguchi, T.; Fujii, M.; Ishiguro, F.; Fukui, T.; Akatsuka, S.; Horio, Y.; Hida, T.; Kondo, Y.; et al. Lats2 is a tumor suppressor gene of malignant mesothelioma. Cancer Res. 2011, 71, 873–883. [Google Scholar] [CrossRef]
- Miyanaga, A.; Masuda, M.; Tsuta, K.; Kawasaki, K.; Nakamura, Y.; Sakuma, T.; Asamura, H.; Gemma, A.; Yamada, T. Hippo pathway gene mutations in malignant mesothelioma: Revealed by rna and targeted exon sequencing. J. Thorac. Oncol. 2015, 10, 844–851. [Google Scholar] [CrossRef]
- Altomare, D.A.; You, H.; Xiao, G.H.; Ramos-Nino, M.E.; Skele, K.L.; De Rienzo, A.; Jhanwar, S.C.; Mossman, B.T.; Kane, A.B.; Testa, J.R. Human and mouse mesotheliomas exhibit elevated akt/pkb activity, which can be targeted pharmacologically to inhibit tumor cell growth. Oncogene 2005, 24, 6080–6089. [Google Scholar] [CrossRef]
- Suzuki, Y.; Murakami, H.; Kawaguchi, K.; Tanigushi, T.; Fujii, M.; Shinjo, K.; Kondo, Y.; Osada, H.; Shimokata, K.; Horio, Y.; et al. Activation of the pi3k-akt pathway in human malignant mesothelioma cells. Mol. Med. Rep. 2009, 2, 181–188. [Google Scholar]
- Watzka, S.B.; Posch, F.; Pass, H.I.; Huflejt, M.; Bernhard, D.; Hannigan, G.E.; Muller, M.R. Detection of integrin-linked kinase in the serum of patients with malignant pleural mesothelioma. J. Thorac. Cardiovasc. Surg. 2011, 142, 384–389. [Google Scholar] [CrossRef] [Green Version]
- Cedres, S.; Montero, M.A.; Martinez, P.; Martinez, A.; Rodriguez-Freixinos, V.; Torrejon, D.; Gabaldon, A.; Salcedo, M.; Ramon, Y.C.S.; Felip, E. Exploratory analysis of activation of pten-pi3k pathway and downstream proteins in malignant pleural mesothelioma (mpm). Lung Cancer 2012, 77, 192–198. [Google Scholar] [CrossRef]
- Opitz, I.; Soltermann, A.; Abaecherli, M.; Hinterberger, M.; Probst-Hensch, N.; Stahel, R.; Moch, H.; Weder, W. Pten expression is a strong predictor of survival in mesothelioma patients. Eur. J. Cardiothorac Surg. 2008, 33, 502–506. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hiriart, E.; Deepe, R.; Wessels, A. Mesothelium and Malignant Mesothelioma. J. Dev. Biol. 2019, 7, 7. https://doi.org/10.3390/jdb7020007
Hiriart E, Deepe R, Wessels A. Mesothelium and Malignant Mesothelioma. Journal of Developmental Biology. 2019; 7(2):7. https://doi.org/10.3390/jdb7020007
Chicago/Turabian StyleHiriart, Emilye, Raymond Deepe, and Andy Wessels. 2019. "Mesothelium and Malignant Mesothelioma" Journal of Developmental Biology 7, no. 2: 7. https://doi.org/10.3390/jdb7020007
APA StyleHiriart, E., Deepe, R., & Wessels, A. (2019). Mesothelium and Malignant Mesothelioma. Journal of Developmental Biology, 7(2), 7. https://doi.org/10.3390/jdb7020007