Evolution of the Polyphenol and Terpene Content, Antioxidant Activity and Plant Morphology of Eight Different Fiber-Type Cultivars of Cannabis sativa L. Cultivated at Three Sowing Densities
Abstract
:1. Introduction
2. Results
2.1. Effect of Ripening and Sowing Density on the Plant Morphology
2.2. Cannabinoid Acids Content of the Studied Cultivars
2.3. Total Phenolic Content and Antioxidant Activity
2.4. Flavonoids Composition
2.5. Terpenes Composition
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Plant Material and Agricultural Conditions
4.3. Harvests
4.4. Hemp Extraction for TPC, Antioxidant Activity and HPLC-MS/MS Analysis
4.5. Total Phenolic Content
4.6. Antioxidant Activity
4.7. HPLC-MS/MS Analysis of Flavonoids
4.8. Plant Extraction for GC-MS and GC-FID Analysis of Terpenes
4.9. GC-MS Analysis of Terpenes
4.10. GC-FID Quantification of Terpenes
4.11. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Giroud, C.; Broillet, A.; Augsburger, M.; Bernhard, W.; Rivier, L.; Mangin, P. Brief history of recent hemp cultivation in Switzerland and subsequent medico-legal problems resulting from hemp cultivation. Praxis 1999, 88, 113–121. [Google Scholar] [PubMed]
- EUR-Lex—01999R1251-20040701—EN—EUR-Lex. Available online: https://eur-lex.europa.eu/eli/reg/1999/1251/2004-07-01 (accessed on 5 August 2020).
- EU Plant Variety Database (v.3.2.1). Available online: https://ec.europa.eu/food/plant/plant_propagation_material/plant_variety_catalogues_databases/search/public/index.cfm?event=SearchVariety&ctl_type=A&species_id=240&variety_name=&listed_in=0&show_current=on&show_deleted= (accessed on 29 April 2020).
- Hazekamp, A.; Fischedick, J.T.; Díez, M.L.; Lubbe, A.; Ruhaak, R.L. 3.24—Chemistry of Cannabis. In Comprehensive Natural Products II; Liu, H.-W., Mander, L., Eds.; Elsevier: Oxford, UK, 2010; pp. 1033–1084. ISBN 978-0-08-045382-8. [Google Scholar]
- Andre, C.M.; Hausman, J.-F.; Guerriero, G. Cannabis sativa: The Plant of the Thousand and One Molecules. Front. Plant Sci. 2016, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flores-Sanchez, I.J.; Verpoorte, R. Secondary metabolism in cannabis. Phytochem. Rev. 2008, 7, 615–639. [Google Scholar] [CrossRef]
- E Middleton, M.D., Jr. Biological Properties of Plant Flavonoids: An Overview. Int. J. Pharmacogn. 1996, 34, 344–348. [Google Scholar] [CrossRef]
- Silva, S.; Ferreira, M.; Oliveira, A.S.; Magalhaes, C.; Sousa, M.E.; Pinto, M.; Sousa Lobo, J.M.; Almeida, I.F. Evolution of the use of antioxidants in anti-ageing cosmetics. Int. J. Cosmet. Sci. 2019, 41, 378–386. [Google Scholar] [CrossRef] [PubMed]
- Mudge, E.M.; Brown, P.N.; Murch, S.J. The Terroir of Cannabis: Terpene Metabolomics as a Tool to Understand Cannabis sativa Selections. Planta Med. 2019, 85, 781–796. [Google Scholar] [CrossRef] [Green Version]
- Burczyk, H.; Grabowska, L.; Strybe, M.; Konczewicz, W. Effect of Sowing Density and Date of Harvest on Yields of Industrial Hemp. J. Nat. Fibers 2009, 6, 204–218. [Google Scholar] [CrossRef]
- Deng, G.; Du, G.; Yang, Y.; Bao, Y.; Liu, F. Planting Density and Fertilization Evidently Influence the Fiber Yield of Hemp (Cannabis sativa L.). Agronomy 2019, 9, 368. [Google Scholar] [CrossRef] [Green Version]
- Schäfer, T.; Honermeier, B. Effect of sowing date and plant density on the cell morphology of hemp (Cannabis sativa L.). Ind. Crops Prod. 2006, 23, 88–98. [Google Scholar] [CrossRef]
- Meier, C.; Mediavilla, V. Factors influencing the yield and the quality of hemp essential oil. J. Int. Hemp Assoc. 1998, 5, 16–20. [Google Scholar]
- Roseberg, R.J.; Jeliazkov, V.D.; Angima, S. Soil, Seedbed Preparation and Seeding for Hemp in Oregon; EM (Oregon State University. Extension Service); Oregon State University Extension Service: Corvallis, OR, USA, 2019. [Google Scholar]
- Amaducci, S.; Errani, M.; Venturi, G. Plant Population Effects on Fibre Hemp Morphology and Production. J. Ind. Hemp 2002, 7, 33–60. [Google Scholar] [CrossRef]
- Taura, F.; Sirikantaramas, S.; Shoyama, Y.; Yoshikai, K.; Shoyama, Y.; Morimoto, S. Cannabidiolic-acid synthase, the chemotype-determining enzyme in the fiber-type Cannabis sativa. FEBS Lett. 2007, 581, 2929–2934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pellati, F.; Borgonetti, V.; Brighenti, V.; Biagi, M.; Benvenuti, S.; Corsi, L. Cannabis sativa L. and Nonpsychoactive Cannabinoids: Their Chemistry and Role against Oxidative Stress, Inflammation, and Cancer. BioMed Res. Int. 2018, 2018, 1691428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aizpurua-Olaizola, O.; Soydaner, U.; Öztürk, E.; Schibano, D.; Simsir, Y.; Navarro, P.; Etxebarria, N.; Usobiaga, A. Evolution of the Cannabinoid and Terpene Content during the Growth of Cannabis sativa Plants from Different Chemotypes. J. Nat. Prod. 2016, 79, 324–331. [Google Scholar] [CrossRef]
- Drinić, Z.; Vidović, S.; Vladić, J.; Koren, A.; Kiprovski, B.; Sikora, V. Effect of extraction solvent on total polyphenols content and antioxidant activity of Cannabis sativa L. Lek. Sirovine 2018, 38, 17–21. [Google Scholar] [CrossRef]
- Irakli, M.; Tsaliki, E.; Kalivas, A.; Kleisiaris, F.; Sarrou, E.; Cook, C.M. Effect οf Genotype and Growing Year on the Nutritional, Phytochemical, and Antioxidant Properties of Industrial Hemp (Cannabis sativa L.) Seeds. Antioxidants 2019, 8, 491. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Jiang, W.; Cao, J.; Li, Y. Changes in Extractable and Non-extractable Polyphenols and Their Antioxidant Properties during Fruit On-tree Ripening in Five Peach Cultivars. Hortic. Plant J. 2019, 5, 137–144. [Google Scholar] [CrossRef]
- Gruz, J.; Ayaz, F.A.; Torun, H.; Strnad, M. Phenolic acid content and radical scavenging activity of extracts from medlar (Mespilus germanica L.) fruit at different stages of ripening. Food Chem. 2011, 124, 271–277. [Google Scholar] [CrossRef]
- Pourcel, L.; Routaboul, J.-M.; Cheynier, V.; Lepiniec, L.; Debeaujon, I. Flavonoid oxidation in plants: From biochemical properties to physiological functions. Trends Plant Sci. 2007, 12, 29–36. [Google Scholar] [CrossRef]
- Cuyckens, F.; Claeys, M. Mass spectrometry in the structural analysis of flavonoids. J. Mass Spectrom. 2004, 39, 1–15. [Google Scholar] [CrossRef]
- Cuyckens, F.; Ma, Y.L.; Pocsfalvi, G.; Claeysi, M. Tandem mass spectral strategies for the structural characterization of flavonoid glycosides. Analusis 2000, 28, 888–895. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.-Z.; Harnly, J.M. A Screening Method for the Identification of Glycosylated Flavonoids and Other Phenolic Compounds Using a Standard Analytical Approach for All Plant Materials. J. Agric. Food Chem. 2007, 55, 1084–1096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanhoenacker, G.; Van Rompaey, P.; De Keukeleire, D.; Sandra, P. Chemotaxonomic features associated with flavonoids of cannabinoid-free cannabis (Cannabis sativa subsp. sativa L.) in relation to hops (Humulus lupulus L.). Nat. Prod. Lett. 2002, 16, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Ross, S.A.; ElSohly, M.A.; Sultana, G.N.N.; Mehmedic, Z.; Hossain, C.F.; Chandra, S. Flavonoid glycosides and cannabinoids from the pollen of Cannabis sativa L. Phytochem. Anal. 2005, 16, 45–48. [Google Scholar] [CrossRef] [PubMed]
- Hollman, P.C.; Katan, M.B. Dietary flavonoids: Intake, health effects and bioavailability. Food Chem. Toxicol. 1999, 37, 937–942. [Google Scholar] [CrossRef]
- Benelli, G.; Pavela, R.; Petrelli, R.; Cappellacci, L.; Santini, G.; Fiorini, D.; Sut, S.; Dall’Acqua, S.; Canale, A.; Maggi, F. The essential oil from industrial hemp (Cannabis sativa L.) by-products as an effective tool for insect pest management in organic crops. Ind. Crops Prod. 2018, 122, 308–315. [Google Scholar] [CrossRef]
- Benelli, G.; Pavela, R.; Lupidi, G.; Nabissi, M.; Petrelli, R.; Ngahang Kamte, S.L.; Cappellacci, L.; Fiorini, D.; Sut, S.; Dall’Acqua, S.; et al. The crop-residue of fiber hemp cv. Futura 75: From a waste product to a source of botanical insecticides. Environ. Sci. Pollut. Res. 2018, 25, 10515–10525. [Google Scholar] [CrossRef]
- Pellati, F.; Brighenti, V.; Sperlea, J.; Marchetti, L.; Bertelli, D.; Benvenuti, S. New Methods for the Comprehensive Analysis of Bioactive Compounds in Cannabis sativa L. (hemp). Molecules 2018, 23, 2639. [Google Scholar] [CrossRef] [Green Version]
- Vuerich, M.; Ferfuia, C.; Zuliani, F.; Piani, B.; Sepulcri, A.; Baldini, M. Yield and Quality of Essential Oils in Hemp Varieties in Different Environments. Agronomy 2019, 9, 356. [Google Scholar] [CrossRef] [Green Version]
- Pavlovic, R.; Panseri, S.; Giupponi, L.; Leoni, V.; Citti, C.; Cattaneo, C.; Cavaletto, M.; Giorgi, A. Phytochemical and Ecological Analysis of Two Varieties of Hemp (Cannabis sativa L.) Grown in a Mountain Environment of Italian Alps. Front. Plant Sci. 2019, 10. [Google Scholar] [CrossRef]
- Rop, O.; Sochor, J.; Jurikova, T.; Zitka, O.; Skutkova, H.; Mlcek, J.; Salas, P.; Krska, B.; Babula, P.; Adam, V.; et al. Effect of Five Different Stages of Ripening on Chemical Compounds in Medlar (Mespilus germanica L.). Molecules 2010, 16, 74–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Habauzit, V.; Morand, C. Evidence for a protective effect of polyphenols-containing foods on cardiovascular health: An update for clinicians. Ther. Adv. Chronic. Dis. 2012, 3, 87–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tungmunnithum, D.; Thongboonyou, A.; Pholboon, A.; Yangsabai, A. Flavonoids and Other Phenolic Compounds from Medicinal Plants for Pharmaceutical and Medical Aspects: An Overview. Medicines 2018, 5, 93. [Google Scholar] [CrossRef]
- Fernandes, E.S.; Passos, G.; Medeiros, R.; Da Cunha, F.; Ferreira, J.; Campos, M.; Pianowski, L.; Calixto, J. Anti-inflammatory effects of compounds alpha-humulene and (−)-trans-caryophyllene isolated from the essential oil of Cordia verbenacea. Eur. J. Pharmacol. 2007, 569, 228–236. [Google Scholar] [CrossRef]
- Bahi, A.; Al Mansouri, S.; Al Memari, E.; Al Ameri, M.; Nurulain, S.M.; Ojha, S. β-Caryophyllene, a CB2 receptor agonist produces multiple behavioral changes relevant to anxiety and depression in mice. Physiol. Behav. 2014, 135, 119–124. [Google Scholar] [CrossRef]
- Briggs, D.E.; Boulton, C.A.; Brookes, P.A.; Stevens, R. (Eds.) 7—Hops. In Brewing; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Sawston, UK, 2004; pp. 227–254. ISBN 978-1-85573-490-6. [Google Scholar]
- 8—The chemistry of hop constituents. In Brewing; Woodhead Publishing Series in Food Science, Technology and Nutrition; Briggs, D.E.; Boulton, C.A.; Brookes, P.A.; Stevens, R. (Eds.) Woodhead Publishing: Sawston, UK, 2004; pp. 255–305. ISBN 978-1-85573-490-6. [Google Scholar]
- Mozny, M.; Tolasz, R.; Nekovar, J.; Sparks, T.; Trnka, M.; Zalud, Z. The impact of climate change on the yield and quality of Saaz hops in the Czech Republic. Agric. For. Meteorol. 2009, 149, 913–919. [Google Scholar] [CrossRef]
- Dalton, R. Climate troubles brewing for beer makers. Nature 2008. [Google Scholar] [CrossRef]
- Mishchenko, S.; Mokher, J.; Laiko, I.; Burbulis, N.; Kyrychenko, H.; Dudukova, S. Phenological growth stages of hemp (Cannabis sativa L.): Codification and description according to the BBCH scale. Žemės Ūkio Mokslai 2017, 24. [Google Scholar] [CrossRef] [Green Version]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144. [Google Scholar]
- Pedan, V.; Fischer, N.; Rohn, S. An online NP-HPLC-DPPH method for the determination of the antioxidant activity of condensed polyphenols in cocoa. Food Res. Int. 2016, 89, 890–900. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienne, Austria, 2017. [Google Scholar]
Hemp Cultivar | Sowing Density | Date of Harvest/Flowering Stage | THCA Concentration (mg/g hemp) | CBDA Concentration (mg/g hemp) | CBGA Concentration (mg/g hemp) |
---|---|---|---|---|---|
Finola ♀ | 300 | 11.08.2019 b | 0.08 ± 0.001 | 1.99 ± 0.04 | ND |
Felina 32 | 300 | 10.09.2019 b | 0.11 ± 0.012 | 3.41 ± 0.37 | ND |
Fibror 79 | 300 | 10.09.2019 a | 0.13 ± 0.006 | 3.54 ± 0.10 | 0.067 ± 0.004 |
Futura 75 | 300 | 10.09.2019 b | 0.12 ± 0.005 | 3.38 ± 0.16 | 0.055 ± 0.001 |
KC Virtus ♂ | 300 | 27.08.2019 | 0.09 ± 0.001 | 2.48 ± 0.02 | 0.057 ± 0.004 |
KC Virtus ♀ | 300 | 10.09.2019 a | 0.10 ± 0.033 | 2.72 ± 0.09 | 0.039 ± 0.003 |
Santhica 27 | 300 | 10.09.2019 b | ND | 0.04 ± 0.001 * | 1.536 ± 0.044 * |
Santhica 70 | 300 | 10.09.2019 b | ND | 0.16 ± 0.001 * | 1.240 ± 0.010 * |
Fedora 17 | 150 | 10.09.2019 b | 0.09 ± 0.008 | 2.54 ± 0.12 | 0.061 ± 0.009 |
Cultivar Harvest date | Indication of Phenological Phase | Sowing Density | TPC [mg GEA/g sample] | % of DPPH Radical Scavenging Activity |
---|---|---|---|---|
Fedora 17 | ||||
22.07.2019 | Early flowering | 150 | 22.05 ± 0.46 a 1 | 43.35 ± 0.25 a |
13.08.2019 | Full flowering | 10.5 ± 0.18 b | 14.45 ± 5.71 b | |
27.08.2019 | End of flowering | 10.63 ± 0.27 b | 22.76 ± 0.69 b | |
10.09.2019 | 9.36 ± 0.12 c | 13.65 ± 5.53 b | ||
Felina 32 | ||||
22.07.2019 | Early flowering | 300 | 21.97 ± 0.05 a | 38.06 ± 0.13 a |
10.09.2019 | End of flowering | 14.68 ± 0.17 c | 21.06 ± 0.75 d | |
22.07.2019 | Early flowering | 150 | 17.14 ± 0.29 b | 27.06 ± 0.38 b |
13.08.2019 | Full flowering | 14.67 ± 0.21 c | 22.09 ± 0.25 c d | |
27.08.2019 | End of flowering | 13.88 ± 0.25 d | 24.40 ± 0.75 c | |
10.09.2019 | 8.40 ± 0.20 e | 12.60 ± 0.31 e | ||
Fibror 79 | ||||
22.07.2019 | Early flowering | 300 | 18.12 ± 0.21 a | 32.77 ± 2.45 a |
27.08.2019 | 13.37 ± 0.17 c | 16.81 ± 1.13 d e | ||
10.09.2019 | Full flowering | 7.26 ± 0.08 e | 9.68 ± 0.25 f | |
22.07.2019 | Early flowering | 150 | 18.01 ± 0.15 a | 29.77 ± 0.88 a b |
13.08.2019 | 16.98 ± 0.13 b | 27.99 ± 1.07 b | ||
27.08.2019 | 11.23 ± 0.23 d | 15.87 ± 0.44 e | ||
10.09.2019 | Full flowering | 13.40 ± 0.10 c | 19.53 ± 0.31 c d | |
13.08.2019 | Early flowering | 30 | 18.18 ± 0.34 a | 29.36 ± 0.25 a b |
27.08.2019 | 16.61 ± 0.18 a | 27.20 ± 0.75 b | ||
10.09.2019 | Full flowering | 13.02 ± 0.36 c | 23.05 ± 0.06 c | |
Finola | ||||
02.07.2019 ♂ | 150 | 10.77 ± 0.29 c | 24.89 ± 0.13 b | |
02.07.2019 ♀ | Full flowering | 15.46 ± 0.22 a | 31.10 ± 0.69 a | |
16.07.2019 ♀ | End of flowering | 14.28 ± 0.13 b | 26.93 ± 0.19 b | |
30.07.2019 ♀ | 9.71 ± 0.58 c d | 16.19 ± 0.57 c | ||
11.08.2019 ♀ | 8.63 ± 0.72 d | 13.65 ± 0.25 d | ||
11.08.2019 ♀ | End of flowering | 300 | 5.38 ± 0.23 e | 8.34 ± 0.82 e |
Futura 75 | ||||
22.07.2019 | Early flowering | 300 | 16.11 ± 0.20 a | 32.22 ± 0.38 a |
13.08.2019 | 9.76 ± 0.14 d | 11.72 ± 0.31 e | ||
10.09.2019 | End of flowering | 8.26 ± 0.09 e | 16.16 ± 0.38 d | |
22.07.2019 | Early flowering | 150 | 15.67 ± 0.17 a | 27.04 ± 1.07 b |
13.08.2019 | 14.90 ± 0.35 b | 23.98 ± 0.13 c | ||
27.08.2019 | Full flowering | 10.33 ± 0.12 c | 17.85 ± 0.63 d | |
10.09.2019 | End of flowering | 7.85 ± 0.20 e | 13.52 ± 0.38 e | |
KC Virtus | ||||
13.08.2019 ♂ | 300 | 18.31 ± 0.94 b | 33.36 ± 0.69 b c d | |
27.08.2019 ♂ | 11.50 ± 0.17 f | 17.40 ± 0.25 f | ||
22.07.2019 ♀ | Early flowering | 20.28 ± 0.59 a | 33.50 ± 0.57 b c | |
13.08.2019 ♀ | 18.30 ± 0.15 b | 33.26 ± 0.82 b | ||
27.08.2019 ♀ | 16.55 ± 0.16 c | 26.55 ± 0.75 d e | ||
10.09.2019 ♀ | Full flowering | 4.80 ± 0.18 h | 7.57 ± 0.63 g | |
13.08.2019 ♂ | 150 | 7.58 ± 0.21 g | 9.66 ± 2.45 g | |
27.08.2019 ♂ | 16.05 ± 0.30 c d | 25.09 ± 2.39 e | ||
22.07.2019 ♀ | Early flowering | 15.16 ± 0.65 d e | 27.33 ± 1.19 c d e | |
13.08.2019 ♀ | 16.39 ± 0.05 c d | 24.61 ± 0.50 e | ||
27.08.2019 ♀ | 16.49 ± 0.61 c d | 30.31 ± 3.52 b c d e | ||
10.09.2019 ♀ | Full flowering | 5.58 ± 0.08 h | 8.34 ± 1.19 g | |
27.08.2019 ♂ | 30 | 14.54 ± 0.46 e | 25.96 ± 1.44 e | |
27.08.2019 ♀ | Early flowering | 21.51 ± 0.57 a | 40.15 ± 0.50 a | |
10.09.2019 ♀ | Full flowering | 15.76 ± 0.44 c d e | 28.95 ± 0.94 b c d e | |
Santhica 27 | ||||
22.07.2019 | Early flowering | 300 | 17.14 ± 0.54 a | 32.33 ± 1.76 a |
13.08.2019 | Full flowering | 13.36 ± 0.21 b | 23.21 ± 0.88 b | |
27.08.2019 | 6.45 ± 0.06 c | 9.11 ± 1.07 c | ||
10.09.2019 | End of flowering | 7.32 ± 0.06 d | 11.52 ± 0.63 c | |
Santhica 70 | ||||
22.07.2019 | Early flowering | 300 | 16.46 ± 0.23 a | 35.21 ± 1.00 a |
13.08.2019 | Full flowering | 9.00 ± 0.42 b | 10.00 ± 4.02 b | |
10.09.2019 | End of flowering | 4.72 ± 0.11 c | 8.17 ± 0.44 b |
No. | Attempted Identification | Abbr. | RT (min) | UV (nm) | Molecular Formula | MW (g/mol) | (M+H)+ (m/z) | Major Fragments (M+H)+(m/z) | Collision Energy (eV) | ||
---|---|---|---|---|---|---|---|---|---|---|---|
1 ♂ | Quercetin-O-sophoroside | Q-soph | 16.7 | 360 | C27H30O17 | 626.517 | 627.157 | 303.050 | 465.104 | - | 15 |
2 | Isoorientin-2’’-O-glucoside | I-gluc | 18.4 | 360 | C27H30O16 | 610.517 | 611.162 | 449.105 | 329.066 | 287.059 | 30 |
3 | Luteolin-C-glucoside | L-gluc | 18.7 | 360 | C21H20O11 | 448.377 | 449.109 | 329.07 | 287.055 | - | 30 |
4 | Luteolin-C-hexoside-O-rhamnoside | L-hex-rhamn | 19.1 | 360 | C27H30O15 | 594.518 | 595.167 | 449.108 | 329.068 | 287.054 | 30 |
5 ♂ | Kaempferol-O-sophoroside | K-soph | 20.0 | 360 | C27H30O16 | 610.517 | 611.161 | 287.056 | 153.021; 121.029; 165.02 (70eV) | - | 30 |
6 | Vitexin-2’’-O-glucoside | V-gluc | 21.3 | 360 | C27H30O15 | 594.518 | 595.166 | 433.11 | 313.072 | 271.059 | 30 |
7 | Vitexin-2’’-O-rhamnoside * | V-rhamn | 22.6 | 360 | C27H30O14 | 578.519 | 579.171 | 433.113 | 313.074 | 271.058 | 15 |
8 | Luteolin-7-O-glucuronide * | L-glucu | 25.7 | 360 | C21H18O12 | 463.460 | 463.088 | 287.056 | - | - | 30 |
9 | Apigenin-7-O-glucuronide * | A-glucu | 28.7 | 320 | C21H18O11 | 446.361 | 447.092 | 271.061 | - | - | 30 |
10 | Chrysoeriol-O-glucuronide isomer 1 | C-glucu-1 | 28.7 | 360 | C22H20O12 | 476.387 | 477.104 | 301.071 | 286.047 | 258.050 | 45 |
11 | Chrysoeriol-O-glucuronide isomer 2 | C-glucu-2 | 28.8 | 360 | C22H20O12 | 476.387 | 477.104 | 301.071 | 286.048 | 258.051 | 45 |
12 | Apigenin-4’-methoxy-7-glucuronide | A-meth-glucu | 29.4 | 320 | C22H20O11 | 460.388 | 461.110 | 285.077 | 133.017 | 153.014 | 45 |
13 | Luteolin * | Lut | 29.4 | 360 | C15H10O6 | 286.236 | 287.056 | 153.02 | 135.046 | 161.023 | 45 |
14 | Apigenin * | Api | 29.9 | 320 | C15H10O5 | 270.237 | 271.066 | 153.019 | 145.028 | 121.03 | 45 |
15 | Chrysoeriol * | Chryso | 30.2 | 360 | C16H12O6 | 300.260 | 301.072 | 286.048 | 258.054 | - | 30 |
Group | Cultivar/Density/ Harvest Date/Flowering stage | Average Terpene Content (mg/kg) | Average Ratio Mono-/sesquiterpenes | Characteristic Terpenes |
---|---|---|---|---|
A | Santhica 70, 300, 13/08 (full flowering) Santhica 27, 300, 27/08 (full flowering) Finola, 150, 11/08 (end of flowering) | 268.4 ± 40.4 | 0.9 | Finola only: (E)-ocimene.Overall low amount of all terpene |
B | Fedora 17, 150, 13/08 (full flowering) Felina 32, 150, 27/08 (end of flowering) Futura 75, 150, 27/08 (full flowering) | 820.7 ± 171.9 | 2.3 | Myrcene, Terpinolene, Beta-phellandrene, (E)-ocimene |
C | KC Virtus, 150, 10/09 (full flowering) KC Virtus, 150, 27/08 (early flowering) Fibror 79, 30-150-300, 27/08 (early flowering) | 631.9 ± 81.1 | 2.1 | Limonene, Linalool, Alpha-bisabolol |
Genotype | Origin | Characteristics | Species | Cultivated Density (Plants/m2) |
---|---|---|---|---|
Fedora 17 | France | Average earliness | Monoecious | 150 |
Felina 32 | France | Average earliness | Monoecious | 150/300 |
Futura 75 | France | Average early maturing | Monoecious | 150/300 |
Santhica 27 | France | Average early maturing | Monoecious | 300 |
Santhica 70 | France | Average early maturing | Monoecious | 300 |
Fibror 79 | France | Late maturing | Monoecious | 30/150/300 |
KC Virtus | Hungary | Late maturing | Dioecious | 30/150/300 |
Finola | Finland | Early | Dioecious | 150/300 |
Month | Tmin (°C) | Tmax (°C) | Total Rainfall (mm) | Average Humidity (%) |
---|---|---|---|---|
May | 0.5 | 23.3 | 142.5 | 75.5 |
June | 9.9 | 36.4 | 89 | 67.7 |
July | 11.9 | 36.2 | 181.6 | 67.3 |
August | 10.9 | 32.3 | 159.2 | 77.6 |
September | 6.6 | 28.5 | 131.8 | 81 |
Mean | 8.0 | 31.3 | 73.8 | |
Total | 704.1 |
Cultivar/Harvest Date | 22.07.2019 | 13.08.2019 | 27.08.2019 | 10.09.2019 |
---|---|---|---|---|
Futura 75 | early flowering | early flowering | full flowering | end of flowering |
Felina 32 | early flowering | full flowering | end of flowering | end of flowering |
Fedora 17 | early flowering | full flowering | end of flowering | end of flowering |
Santhica 27 | early flowering | full flowering | full flowering | end of flowering |
Santhica 70 | early flowering | full flowering | full flowering | end of flowering |
Fibror 79 | early flowering | early flowering | early flowering | full flowering |
KC Virtus | early flowering | early flowering | early flowering | full flowering |
Cultivar/Harvest Date | 02.07.2019 | 16.07.2019 | 30.07.2019 | 11.08.2019 |
Finola | full flowering | end of flowering | end of flowering | end of flowering |
Compound | UV (nm) | Range (mg/mL) | Linear Equation | R2 |
---|---|---|---|---|
Vitexin-2-O-rhamnoside | 360 | 0.1–1 | y = 9799.6x + 409.54 | 0.9984 |
Luteolin-7-O-glucuronide | 360 | 0.1–1 | y = 14862x + 352.91 | 0.9989 |
Apigenin-7-O-glucuronide | 320 | 0.1–0.5 | y = 18766x + 852.21 | 0.9892 |
Apigenin | 320 | 0.01–0.25 | y = 27617x + 69.461 | 0.9982 |
Kaempferol | 360 | 0.01–0.25 | y = 36241x − 51.284 | 0.9995 |
Luteolin | 360 | 0.01–0.25 | y = 29449x + 71.492 | 0.9974 |
Quercetin | 360 | 0.01–0.25 | y = 25592x + 118.05 | 0.996 |
Chrysoeriol | 360 | 0.01–0.25 | y = 30287x + 43.037 | 0.9981 |
Tetrahydrocannabinolic acid (THCA) | 280 | 0.05–0.1 | y = 10402x − 4.3312 | 0.9998 |
Cannabiodiolic acid (CBDA) | 280 | 0.025–1 | y = 8751.7x + 72.234 | 0.9936 |
Cannabigerolic acid (CBGA) | 280 | 0.025–1 | y = 8050.9x + 34.236 | 0.9994 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
André, A.; Leupin, M.; Kneubühl, M.; Pedan, V.; Chetschik, I. Evolution of the Polyphenol and Terpene Content, Antioxidant Activity and Plant Morphology of Eight Different Fiber-Type Cultivars of Cannabis sativa L. Cultivated at Three Sowing Densities. Plants 2020, 9, 1740. https://doi.org/10.3390/plants9121740
André A, Leupin M, Kneubühl M, Pedan V, Chetschik I. Evolution of the Polyphenol and Terpene Content, Antioxidant Activity and Plant Morphology of Eight Different Fiber-Type Cultivars of Cannabis sativa L. Cultivated at Three Sowing Densities. Plants. 2020; 9(12):1740. https://doi.org/10.3390/plants9121740
Chicago/Turabian StyleAndré, Amandine, Marianne Leupin, Markus Kneubühl, Vasilisa Pedan, and Irene Chetschik. 2020. "Evolution of the Polyphenol and Terpene Content, Antioxidant Activity and Plant Morphology of Eight Different Fiber-Type Cultivars of Cannabis sativa L. Cultivated at Three Sowing Densities" Plants 9, no. 12: 1740. https://doi.org/10.3390/plants9121740
APA StyleAndré, A., Leupin, M., Kneubühl, M., Pedan, V., & Chetschik, I. (2020). Evolution of the Polyphenol and Terpene Content, Antioxidant Activity and Plant Morphology of Eight Different Fiber-Type Cultivars of Cannabis sativa L. Cultivated at Three Sowing Densities. Plants, 9(12), 1740. https://doi.org/10.3390/plants9121740