Climate Change and Its Effects on Indoor Pests (Insect and Fungi) in Museums
Abstract
:1. Introduction
1.1. Climate Change and Cultural Heritage
1.2. Climate Change and Indoor Insect Pests
1.3. Climate Change and Indoor Fungi
1.4. Possible Responses to Climate Change
2. Research Needs
Important Questions
3. Methods for Investigating the Effects of Climate Change on Museum Pests
3.1. Monitoring
3.2. Laboratory Experiments Needed to Collect the Data
3.3. Indoor Climate Response Model
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Halsch, C.A.; Shapiro, A.M.; Fordyce, J.A.; Nice, C.C.; Thorne, J.H.; Waetjen, D.P.; Forister, M.L. Insects and recent climate change. Proc. Natl. Acad. Sci. USA 2021, 118, e2002543117. [Google Scholar] [CrossRef] [PubMed]
- Pauli, H.; Gottfried, M.; Dullinger, S.; Abdaladze, O.; Akhalkatsi, M.; Alonso, J.L.B.; Coldea, G.; Dick, J.; Erschbamer, B.; Calzado, R.F.; et al. Recent Plant Diversity Changes on Europe’s Mountain Summits. Science 2012, 336, 353–355. [Google Scholar] [CrossRef] [Green Version]
- Vila, M.; Hulme, P.E. Impact of Biological Invasions on Ecosystem Services; Invading Nature—Springer Series in Invasion Ecology; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- Sardain, A.; Sardain, E.; Leung, B. Global forecasts of shipping traffic and biological invasions to 2050. Nat. Sustain. 2019, 2, 274–282. [Google Scholar] [CrossRef]
- Shochat, E.; Lerman, S.B.; Anderies, J.M.; Warren, P.S.; Faeth, S.H.; Nilon, C.H. Invasion, Competition, and Biodiversity Loss in Urban Ecosystems. BioScience 2010, 60, 199–208. [Google Scholar] [CrossRef] [Green Version]
- Essl, F.; Rabitsch, W. (Eds.) Neobiota in Österreich; Umweltbundesamt: Vienna, Austria, 2002.
- Rabitsch, W.; Essl, F. Aliens. Neobiota und Klimawandel—Eine Verhängnisvolle Affäre; Bibliothek der Provinz: Weitra, Austria, 2010. [Google Scholar]
- Trematerra, P.; Pinniger, D. Museum pests–cultural heritage pests. In Recent Advances in Stored Product Protection; Springer: Berlin/Heidelberg, Germany, 2018; pp. 229–260. [Google Scholar]
- Pinniger, D. Integrated Pest Management in Cultural Heritage; Archetype Publications: London, UK, 2015. [Google Scholar]
- Pinniger, D.; Lauder, D. Pests in Houses Great and Small: Identification, Prevention and Eradication; English Heritage: Swindon, UK, 2018. [Google Scholar]
- Christian, E. Die primär flügellosen “Urinsekten” (Apterygota). In Neobiota in Österreich; Essl, F., Rabisch, W., Eds.; Umweltbundesamt: Wien, Austria, 2002; pp. 301–304. [Google Scholar]
- Aak, A.; Hage, M.; Magerøy, Ø.; Byrkjeland, R.; Lindstedt, H.; Ottesen, P.; Rukke, B.A. Introduction, dispersal, establishment and societal impact of the long-tailed silverfish Ctenolepisma longicaudata (Escherich, 1905) in Norway. BioInvasions Rec. 2021, 10, 483–498. [Google Scholar] [CrossRef]
- Aak, A.; Rukke, B.A.; Ottesen, P.; Hage, M. Long-Tailed Silverfish (Ctenolepisma longicaudata)—Biology and Control. Norwegian Institute of Public Health—Report. 2019. Available online: https://www.fhi.no/publ/2019/skjeggkre--biologiog-rad-om-bekjemping/ (accessed on 10 February 2022).
- Querner, P.; Erlacher, S.; Pospischil, R. Alles Fischchen oder was? Fischchen in Wohnungen und Gebäuden. DpS Fachz. Für Schädlingsbekämpfung 2017, 11, 18–19. [Google Scholar]
- Querner, P. Insect Pests and Integrated Pest Management in Museums, Libraries and Historic Buildings. Insects 2015, 6, 595–607. [Google Scholar] [CrossRef]
- Kulma, M.; Bubová, T.; Davies, M.P.; Boiocchi, F.; Patoka, J. Ctenolepisma longicaudatum Escherich (1905) Became a Common Pest in Europe: Case Studies from Czechia and the United Kingdom. Insects 2021, 12, 810. [Google Scholar] [CrossRef]
- Hansen, L.S.; Åkerlund, M.; Grøntoft, T.; Ryhl-Svendsen, M.; Schmidt, A.L.; Bergh, J.-E.; Jensen, K.-M.V. Future pest status of an insect pest in museums, Attagenus smirnovi: Distribution and food consumption in relation to climate change. J. Cult. Herit. 2012, 13, 22–27. [Google Scholar] [CrossRef] [Green Version]
- Querner, P. Thylodrias contractus Motschulsky, 1839, ein neuer Material und Museumsschädling in Wien und Österreich. Beiträge Zur Entomofaunist. 2018, 19, 127–132. [Google Scholar]
- Available online: www.whatseatingyourcollection.com (accessed on 10 February 2022).
- Kollar, V. Naturgeschichte der schädlichen Insekten. Verh. Der Kais.-Königlichen Landwirtsch. Wien 1837, 5, 411–413. [Google Scholar]
- Available online: http://objekte.nhm-wien.ac.at/thema/th1649 (accessed on 10 February 2022).
- Sabbioni, C.; The Noah’s Ark EC Project: Global Climate Change Impact on the Built Heritage and Cultural Landscapes, Italy. Doctorate Course on Vulnerability of Cultural Heritage to Climate Change. 2009. Available online: https://cordis.europa.eu/project/id/501837 (accessed on 10 February 2022).
- Cassar, M.; Hawkings, C. (Eds.) Engineering Historic Futures—Stakeholders Dissemination and Scientific Research Report; 2007; Available online: https://discovery.ucl.ac.uk/id/eprint/2612/ (accessed on 10 February 2022).
- Cassar, M.; Climate Change and the Historic Environment, Centre for Sustainable Heritage. 2005, University College London, London, UK. Available online: www.ucl.ac.uk/sustainableheritage/climatechange/climatechangeandthehistoricenvironment.pdf (accessed on 10 February 2022).
- Kilian, R.; Broström, T.; Ashley-Smith, J.; Schellen, H.I.; Martens, M.; Antretter, F.; Winkler, M.; Bertolin, C.; Camuffo, D.; Leissner, J. The Climate for Culture Method for assessing future risks resulting from the indoor climate in historic buildings. In Proceedings of the 3rd European Workshop on Cultural Heritage Preservation (EWCHP), Bozen, Italy, 16–17 September 2013. [Google Scholar]
- Leissner, J.; Kilian, R.; Kotova, L.; Jacob, D.; Mikolajewicz, U.; Brostrom, T.; Ashley-Smith, J.; Schellen, H.L.; Martens, M.; Van Schijndel, J.; et al. Climate for Culture: Assessing the impact of climate change on the future indoor climate in historic buildings using simulations. Herit. Sci. 2015, 3, 38. [Google Scholar] [CrossRef]
- Leissner, J.; Kilian, R.; Antretter, F.; Huijbregts, Z.; Schellen, H.; Van Schijndel, J. Climate Change Modelling and whole Building Simulation as a Tool for Assessing Indoor Climates in Buildings; Centro Universitario Europeo per I Beni Culturali: Ravello, Italy, 2018. [Google Scholar]
- Camuffo, D.; Bertolin, C.; Bonazzi, A.; Campana, F.; Merlo, C. Past, present and future effects of climate change on a wooden inlay bookcase cabinet: A new methodology inspired by the novel European Standard EN 15757: 2010. J. Cult. Herit. 2014, 15, 26–35. [Google Scholar] [CrossRef]
- Camuffo, D.; van Grieken, R.; Busse, H.-J.; Sturaro, G.; Valentino, A.; Bernardi, A.; Blades, N.; Shooter, D.; Gysels, K.; Deutsch, F.; et al. Environmental monitoring in four European museums. Atmos. Environ. 2001, 35, 127–140. [Google Scholar] [CrossRef]
- Camuffo, D. Microclimate for Cultural Heritage—Measurement, Risk Assessment, Conservation, Restoration and Maintenance of Indoor and Outdoor Monuments, 3rd ed.; Elsevier: Amsterdam, The Netherlands; New York, NY, USA, 2019. [Google Scholar]
- Camuffo, D.; Sturaro, G.; Bernardi, A.; Pagan, E.; Becherini, F. Microclimate: A Difficult Variable in Museums; National Research Council: Rome, Italy, 2001; Available online: http://iaq.dk/iap/iap2001/2001_01.htm (accessed on 10 February 2022).
- Camuffo, D.; Bertolin, C. Unfavorable microclimate conditions in exhibition rooms: Early detection, risk identification, and preventive conservation measures. J. Paleontol. Tech. 2016, 15, 144–161. [Google Scholar]
- Camuffo, D.; Bertolin, C. Climate Change and Indoor Environments. In Cultural Heritage from Pollution to Climate Change; Lefèvre, R.-A., Sabbioni, C., Eds.; Cultural Heritage in the Italian Strategy for Adaptation to Climate Change: Bari, Italy, 2016; pp. 51–61. [Google Scholar]
- Wood, J.D.W.; Gauvin, C.; Young, C.R.; Taylor, A.C.; Balint, D.S.; Charalambides, M.N. Reconstruction of historical temperature and relative humidity cycles within Knole House, Kent. J. Cult. Herit. 2019, 39, 212–220. [Google Scholar] [CrossRef]
- Lefèvre, R.-A.; Sabbioni, C.; Bonazza, A. (Eds.) Cultural Heritage Facing Climate Change: Experiences and Ideas for Resilience and Adaptation; Cultural Heritage in the Italian Strategy for Adaptation to Climate Change: Bari, Italy, 2018. [Google Scholar]
- Lankester, P.; Brimblecombe, P. The impact of future climate on historic interiors. Sci. Total Environ. 2012, 417–418, 248–254. [Google Scholar] [CrossRef]
- Lankester, P.; Brimblecombe, P. Future thermohygrometric climate within historic houses. J. Cult. Herit. 2012, 13, 1–6. [Google Scholar] [CrossRef]
- Leijonhufvud, G.; Broström, T. A call for systematic monitoring: Exploring the link between monitoring and management of cultural heritage in times of climate change. In Integrated Pest Management (IPM) for Cultural Heritage: Proceedings of the 4th International Conference in Stockholm Sweden, 21–23 May 2019; pp. 208–216.
- Cassar, M.; Pender, R. The impact of climate change on cultural heritage: Evidence and response. In ICOM Committee for Conservation: 14th Triennial Meeting The Hague; James & James: London, UK, 2005; Volume 14, pp. 610–616. [Google Scholar]
- Staniforth, S. The impact of climate change on historic libraries. In Proceedings of the LIBER 35th Annual General Conference, Uppsala, Sweden, 4–8 July 2006. [Google Scholar]
- Jones, M. Museums and Climate Change. 2008 [Brochure, Online Resource]. Available online: https://www.nationalmuseums.org.uk/media/documents/what_we_do_documents/mark_jones_museums_climate_change_nov08.pdf (accessed on 10 February 2022).
- Proudlove, C. Responding to climate change: A report. Icon Care of Collections Group, London 25 April 2007. ICON News 2007, 12, 35–36. [Google Scholar]
- Ankersmit, B.; Stappers, M. Managing Indoor Climate Risks in Museums; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Hong, S.H.; Strlic, M.; Ridley, I.; Ntanos, K.; Bell, N.; Cassar, M. Climate change mitigation strategies for mechanically con-trolled repositories: The case of The National Archives, Kew. Atmos. Environ. 2012, 49, 163–170. [Google Scholar] [CrossRef] [Green Version]
- Leissner, J. Auswirkungen des Klimawandels auf das Innenraumklima bei historischen Gebäude—das EU-Projekt Climate for Culture [Impact of Climate Change on the Interior Climate in Historic Buildings—the EU Project Climate for Culture], 2011, Das Grüne Museum, Köln. Available online: http://www.climateforculture.eu/pdf/11-10-13_CfC_gruenes_Museum.pdf (accessed on 10 February 2022).
- Maslin, M.; Austin, P. Uncertainty: Climate models at their limit? Nature 2012, 486, 184. [Google Scholar] [CrossRef] [PubMed]
- Pinniger, D. Ten Years On—From Vodka Beetles to Risk Zones. In Integrated Pest Management for Collections; Winsor, P., Pinniger, D., Bacon, L., Child, B., Harris, K., Lauder, D., Phippard, J., Xavier-Rowe, A., Eds.; English Heritage: Swindon, UK, 2011; pp. 1–9. [Google Scholar]
- Brimblecombe, P.; Lankester, P. Long-term changes in climate and insect damage in historic houses. Stud. Conserv. 2013, 58, 13–22. [Google Scholar] [CrossRef]
- Brimblecombe, P.; Brimblecombe, C.T.; Thickett, D.; Lauder, D. Statistics of insect catch within historic properties. Herit. Sci. 2013, 1, 34. [Google Scholar] [CrossRef] [Green Version]
- Brimblecombe, P.; Brimblecombe, C.T. Trends in insect catch at historic properties. J. Cult. Herit. 2014, 16, 127–133. [Google Scholar] [CrossRef]
- Brimblecombe, P.; Hayashi, M.; Futagami, Y. Mapping Climate Change, Natural Hazards and Tokyo’s Built Heritage. Atmosphere 2020, 11, 680. [Google Scholar] [CrossRef]
- Brimblecombe, P.; Querner, P. Silverfish (Zygentoma) in Austrian Museums before and during COVID-19 lockdown. Int. Biodeterior. Biodegradation 2021, 164, 105296. [Google Scholar] [CrossRef]
- Brimblecombe, P.; Pachler, M.-C.; Querner, P. Effect of Indoor Climate and Habitat Change on Museum Insects during COVID-19 Closures. Heritage 2021, 4, 3497–3506. [Google Scholar] [CrossRef]
- Lefkovitch, L. A laboratory study of Stegobium paniceum (L.) (Coleoptera: Anobiidae). J. Stored Prod. Res. 1967, 3, 235–249. [Google Scholar] [CrossRef]
- Gandhi, K.; Hofstetter, R. Bark Beetle Management, Ecology, and Climate Change; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Querner, P.; Simon, S.; Morelli, M.; Fürenkranz, S. Insect pest management programs and results from their application in two large museum collections in Berlin and Vienna. Int. Biodeterior. Biodegradation 2013, 84, 275–280. [Google Scholar] [CrossRef]
- Brimblecombe, P.; Querner, P. Webbing clothes moth catch and the management of heritage environments. Int. Biodeterior. Biodegradation 2014, 96, 50–57. [Google Scholar] [CrossRef]
- Cox, P.; Pinniger, D. Biology, behaviour and environmentally sustainable control of Tineola bisselliella (Hummel) (Lepidoptera: Tineidae). J. Stored Prod. Res. 2007, 43, 2–32. [Google Scholar] [CrossRef]
- CCE, Using Growing Degree Days for Pest Management; Cornell Cooperative Extension: Suffolk County, NY, USA, 2010.
- Child, R. Insect damage as a function of climate. In Museum Microclimates: Contributions to the Copenhagen Conference, 19–23 November; Padfield, T., Borchersen, K., Eds.; Nationalmuseet: Copenhagen, Denmark, 2007; pp. 57–60. [Google Scholar]
- Horn, D.J. Temperature synergism in integrated pest management. In Temperature Sensitivity in Insects and Application in Integrated Pest Management; Hallman, G.J., Denlinger, D.L., Eds.; Westview Press: Boulder, CO, USA, 1998. [Google Scholar]
- Plarre, R.; Krüger-Carstensen, B. An attempt to reconstruct the natural and cultural history of the webbing clothes moth Tineola bisselliella Hummel (Lepidoptera: Tineidae). J. EÌntomol. Acarol. Res. 2011, 43, 83. [Google Scholar] [CrossRef] [Green Version]
- Sterflinger, K. Fungi: Their role in deterioration of cultural heritage. Fungal Biol. Rev. 2010, 24, 47–55. [Google Scholar] [CrossRef]
- Sterflinger, K.; Little, B.; Pinar, G.; Pinzari, F.; Rios, A.D.L.; Gu, J.-D. Future directions and challenges in biodeterioration research on historic materials and cultural properties. Int. Biodeterior. Biodegrad. 2018, 129, 10–12. [Google Scholar] [CrossRef]
- Sterflinger, K.; Voitl, C.; Lopandic, K.; Piñar, G.; Tafer, H. Big Sound and Extreme Fungi—Xerophilic, Halotolerant Aspergilli and Penicillia with Low Optimal Temperature as Invaders of Historic Pipe Organs. Life 2018, 8, 22. [Google Scholar] [CrossRef] [Green Version]
- Isaksson, T.; Thelandersson, S.; Ekstrand-Tobin, A.; Johansson, P. Critical conditions for onset of mould growth under varying climate conditions. Build. Environ. 2010, 45, 1712–1721. [Google Scholar] [CrossRef]
- van Schijndel, A.; Schellen, H. Mapping future energy demands for European museums. J. Cult. Heritage 2018, 31, 189–201. [Google Scholar] [CrossRef]
- Brimblecombe, P. Temporal humidity variations in the heritage climate of south east England. Herit. Sci. 2013, 1, 3. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Galiano, E.; Sabbioni, C. Policy Relevance of Small Changes in Climate with Large Impacts on Heritage; Edipuglia: Bari, Italy, 2018. [Google Scholar]
- Querner, P.; Sterflinger, K.; Piombino-Mascali, D.; Morrow, J.J.; Pospischil, R.; Piñar, G. Insect pests and Integrated Pest Management in the Capuchin Catacombs of Palermo, Italy. Int. Biodeterior. Biodegradation 2018, 131, 107–114. [Google Scholar] [CrossRef]
- Querner, P.; Sterflinger, K. Microbial hitchhiking in museums—Spread of fungi by the grey silverfish (Ctenolepisma longicaudata). Restaurator. Int. J. Preserv. Libr. Arch. Mater. 2021, 42, 57–65. [Google Scholar]
- Hayashi, M.; Kigawa, R.; Harada, M.; Komine, Y.; Kawanobe, W.; Ishizaki, T. Distribution of wooden-damaging beetles captured by adhesive traps in historic buildings in Nikko. In Proceedings of the International Conference on IPM in Museums, Archives and Historic Houses, Vienna, Austria, 5–7 June 2013; Querner, P., Pinniger, D., Hammer, A., Eds.; Self Published. 2016. Available online: http://museumpests.net/conferences/international-conference-in-vienna-austria-2013/ (accessed on 10 February 2022).
- Padfield, T.; Borchersen, K. (Eds.) Museum Microclimates—Contributions to the Copenhagen Conference; The National Museum of Denmark: Copenhagen, Denmark, 2007. [Google Scholar]
- Skendžić, S.; Zovko, M.; Živković, I.P.; Lešić, V.; Lemić, D. The impact of climate change on agricultural insect pests. Insects 2021, 12, 440. [Google Scholar] [CrossRef]
- Pecl, G.T.; Araújo, M.B.; Bell, J.D.; Blanchard, J.; Bonebrake, T.C.; Chen, I.-C.; Clark, T.D.; Colwell, R.K.; Danielsen, F.; Evengård, B.; et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 2017, 355, eaai9214. [Google Scholar] [CrossRef] [PubMed]
- IPCC Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014.
- IPCC Climate Change 2022: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2022; Available online: https://www.ipcc.ch/report/ar6 (accessed on 10 June 2022).
- Chapter 1—Point of Departure and Key Concepts—Introduces the Working Group II Contribution to AR6, Explains its Framing and Context, and Elaborates on the Key Concepts Used in the Report. In IPCC Climate Change 2022: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2022; Available online: https://www.ipcc.ch/report/ar6 (accessed on 10 June 2022).
- O’Neill, B.C.; Kriegler, E.; Ebi, K.L.; Kemp-Benedict, E.; Riahi, K.; Rothman, D.S.; van Ruijven, B.J.; van Vuuren, D.P.; Birkmann, J.; Kok, K.; et al. The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. Glob. Environ. Change 2017, 42, 169–180. [Google Scholar] [CrossRef] [Green Version]
- Chapter 6—Cities, Settlements and Key Infrastructure—Assesses Climate Change Impacts and Risks to Cities, Human Settlements and Key Infrastructure as well as Enabling Conditions and Options for Adaptation. In IPCC Climate Change 2022: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2022; Available online: https://www.ipcc.ch/report/ar6 (accessed on 10 June 2022).
- Camuffo, D.; Bertolin, C.; Schenal, P. A novel proxy and the sea level rise in Venice, Italy, from 1350 to 2014. Clim. Change 2017, 143, 73–86. [Google Scholar] [CrossRef]
- Oke, T.R.; Mills, G.; Christen, A.; Voogt, J.A. Urban Climates; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Grimm, N.B.; Cook, E.M.; Hale, R.L.; Iwaniec, D.M. A broader framing of ecosystem services in cities: Benefits and challenges of built, natural or hybrid system function. In Routledge Handbook of Urbanization and Global Environmental Change; Seto, K.C., Solecki, W., Griffith, C.A., Eds.; Routledge: Oxfordshire, UK, 2016; pp. 202–212. [Google Scholar]
- Bertolin, C.; Loli, A. Sustainable interventions in historic buildings: A developing decision making tool. J. Cult. Herit. 2018, 34, 291–302. [Google Scholar] [CrossRef]
- Loli, A.; Bertolin, C. Indoor Multi-Risk Scenarios of Climate Change Effects on Building Materials in Scandinavian Countries. Geosciences 2018, 8, 347. [Google Scholar] [CrossRef] [Green Version]
- Loli, A.; Bertolin, C. Towards Zero-Emission Refurbishment of Historic Buildings: A Literature Review. Buildings 2018, 8, 22. [Google Scholar] [CrossRef] [Green Version]
- Leifeste, A.; Stiefl, B.L. Sustainable Heritage: Merging Environmental Conservation and Historic Preservation. Chapter 8: Going with the Flow: Strategies for Adapting Buildings and Structures For Rising Sea; Taylor & Francis: Abingdon, UK, 2018; pp. 198–211. [Google Scholar]
- Dedekorkut-Howes, A.; Torabi, E.; Howes, M. When the tide gets high: A review of adaptive responses to sea level rise and coastal flooding. J. Environ. Plan. Manag. 2020, 63, 2102–2143. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Querner, P.; Sterflinger, K.; Derksen, K.; Leissner, J.; Landsberger, B.; Hammer, A.; Brimblecombe, P. Climate Change and Its Effects on Indoor Pests (Insect and Fungi) in Museums. Climate 2022, 10, 103. https://doi.org/10.3390/cli10070103
Querner P, Sterflinger K, Derksen K, Leissner J, Landsberger B, Hammer A, Brimblecombe P. Climate Change and Its Effects on Indoor Pests (Insect and Fungi) in Museums. Climate. 2022; 10(7):103. https://doi.org/10.3390/cli10070103
Chicago/Turabian StyleQuerner, Pascal, Katja Sterflinger, Katharina Derksen, Johanna Leissner, Bill Landsberger, Astrid Hammer, and Peter Brimblecombe. 2022. "Climate Change and Its Effects on Indoor Pests (Insect and Fungi) in Museums" Climate 10, no. 7: 103. https://doi.org/10.3390/cli10070103
APA StyleQuerner, P., Sterflinger, K., Derksen, K., Leissner, J., Landsberger, B., Hammer, A., & Brimblecombe, P. (2022). Climate Change and Its Effects on Indoor Pests (Insect and Fungi) in Museums. Climate, 10(7), 103. https://doi.org/10.3390/cli10070103