Regional Responses of the Northern Hemisphere Subtropical Jet Stream to Reduced Arctic Sea Ice Extent
Abstract
:1. Introduction
2. Methods and Data
2.1. Model Description
2.2. Experimental Design
- simulations with a climatological SST annual cycle and,
- simulations using full global SST variability.
2.3. Regionalization and STJ Indices
2.4. Other Statistics and Climatic Indices
3. Results
3.1. Large Scale Climate Response in the Arctic Warming Experiments
3.2. Regional Response of the Zonal Wind
3.3. STJ Wind Speed and Position
3.4. STJ Indices
3.4.1. SSTclim Case
3.4.2. SSTreal Case
3.5. Correlations between the STJ and Ocean-Atmosphere Climate Oscillations
3.6. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bluestein, H.B. Synoptic-Dynamic Meteorology in Midlatitudes: Observations and Theory of Weather Systems; Taylor & Francis: Abingdon, UK, 1992; Volume 2. [Google Scholar]
- Holton, J. An Introduction to Dynamic Meteorology; International Geophysics Series; Academic Press: San Diego, ZA, USA, 1992. [Google Scholar]
- Serreze, M.C.; Francis, J.A. The Arctic Amplification debate. Clim. Chang. 2006, 76, 241–264. [Google Scholar] [CrossRef] [Green Version]
- Screen, J.A.; Simmonds, I. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 2010, 464, 1334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, J.; Screen, J.A.; Furtado, J.C.; Barlow, M.; Whittleston, D.; Coumou, D.; Francis, J.; Dethloff, K.; Entekhabi, D.; Overland, J.; et al. Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci. 2014, 7, 627–637. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Climate Change 2021—The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Francis, J.A.; Vavrus, S.J. Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett. 2012, 39, 1–6. [Google Scholar] [CrossRef]
- Yang, H.; Lohmann, G.; Lu, J.; Gowan, E.J.; Shi, X.; Liu, J.; Wang, Q. Tropical expansion driven by poleward advancing midlatitude meridional temperature gradients. J. Geophys. Res. Atmos. 2020, 125, e2020JD033158. [Google Scholar] [CrossRef]
- Yang, H.; Lu, J.; Wang, Q.; Shi, X.; Lohmann, G. Decoding the dynamics of poleward shifting climate zones using aqua-planet model simulations. Clim. Dyn. 2022, 58, 3513–3526. [Google Scholar] [CrossRef]
- Harvey, B.; Shaffrey, L.; Woollings, T. Equator-to-pole temperature differences and the extra-tropical storm track responses of the CMIP5 climate models. Clim. Dyn. 2014, 43, 1171–1182. [Google Scholar] [CrossRef] [Green Version]
- Barnes, E.A.; Screen, J.A. The impact of Arctic warming on the midlatitude jet-stream: Can it? Has it? Will it? WIley Interdiscip. Rev. Clim. Chang. 2015, 6, 277–286. [Google Scholar] [CrossRef] [Green Version]
- Blackport, R.; Kushner, P.J. Isolating the atmospheric circulation response to Arctic sea ice loss in the coupled climate system. J. Clim. 2017, 30, 2163–2185. [Google Scholar] [CrossRef]
- Vavrus, S.J. The influence of Arctic amplification on mid-latitude weather and climate. Curr. Clim. Chang. Rep. 2018, 4, 238–249. [Google Scholar] [CrossRef]
- Strong, C.; Davis, R.E. Winter jet stream trends over the Northern Hemisphere. Q. J. R. Meteorol. Soc. J. Atmos. Sci. Appl. Meteorol. Phys. Oceanogr. 2007, 133, 2109–2115. [Google Scholar] [CrossRef]
- Pena-Ortiz, C.; Gallego, D.; Ribera, P.; Ordonez, P.; Alvarez-Castro, M.D.C. Observed trends in the global jet stream characteristics during the second half of the 20th century. J. Geophys. Res. Atmos. 2013, 118, 2702–2713. [Google Scholar] [CrossRef]
- Maher, P.; Kelleher, M.E.; Sansom, P.G.; Methven, J. Is the subtropical jet shifting poleward? Clim. Dyn. 2020, 54, 1741–1759. [Google Scholar] [CrossRef] [Green Version]
- Manney, G.L.; Hegglin, M.I.; Lawrence, Z.D. Seasonal and regional signatures of ENSO in upper tropospheric jet characteristics from reanalyses. J. Clim. 2021, 34, 9181–9200. [Google Scholar] [CrossRef]
- Archer, C.L.; Caldeira, K. Historical trends in the jet streams. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Thapa, U.K.; St. George, S.; Trouet, V. Poleward Excursions by the Himalayan Subtropical Jet Over the Past Four Centuries. Geophys. Res. Lett. 2020, 47, e2020GL089631. [Google Scholar] [CrossRef]
- Francis, J.A.; Vavrus, S.J. Evidence for a wavier jet stream in response to rapid Arctic warming. Environ. Res. Lett. 2015, 10, 014005. [Google Scholar] [CrossRef]
- Butler, A.H.; Thompson, D.W.; Heikes, R. The steady-state atmospheric circulation response to climate change–like thermal forcings in a simple general circulation model. J. Clim. 2010, 23, 3474–3496. [Google Scholar] [CrossRef]
- Deser, C.; Tomas, R.; Alexander, M.; Lawrence, D.; Deser, C.; Tomas, R.; Alexander, M.; Lawrence, D. The Seasonal Atmospheric Response to Projected Arctic Sea Ice Loss in the Late Twenty-First Century. J. Clim. 2010, 23, 333–351. [Google Scholar] [CrossRef] [Green Version]
- Screen, J.A. Influence of Arctic sea ice on European summer precipitation. Environ. Res. Lett. 2013, 8, 044015. [Google Scholar] [CrossRef]
- Peings, Y.; Magnusdottir, G. Response of the Wintertime Northern Hemisphere Atmospheric Circulation to Current and Projected Arctic Sea Ice Decline: A Numerical Study with CAM5. J. Clim. 2014, 27, 244–264. [Google Scholar] [CrossRef] [Green Version]
- Petrie, R.E.; Shaffrey, L.C.; Sutton, R.T. Atmospheric impact of Arctic sea ice loss in a coupled ocean–atmosphere simulation. J. Clim. 2015, 28, 9606–9622. [Google Scholar] [CrossRef] [Green Version]
- Baker, H.S.; Woollings, T.; Mbengue, C. Eddy-driven jet sensitivity to diabatic heating in an idealized GCM. J. Clim. 2017, 30, 6413–6431. [Google Scholar] [CrossRef]
- Zappa, G.; Pithan, F.; Shepherd, T.G. Multimodel evidence for an atmospheric circulation response to Arctic sea ice loss in the CMIP5 future projections. Geophys. Res. Lett. 2018, 45, 1011–1019. [Google Scholar] [CrossRef] [Green Version]
- Smith, D.M.; Eade, R.; Andrews, M.; Ayres, H.; Clark, A.; Chripko, S.; Deser, C.; Dunstone, N.; García-Serrano, J.; Gastineau, G.; et al. Robust but weak winter atmospheric circulation response to future Arctic sea ice loss. Nat. Commun. 2022, 13, 1–15. [Google Scholar] [CrossRef]
- Barnes, E.A.; Simpson, I.R. Seasonal sensitivity of the Northern Hemisphere jet streams to Arctic temperatures on subseasonal time scales. J. Clim. 2017, 30, 10117–10137. [Google Scholar] [CrossRef] [Green Version]
- McKenna, C.M.; Bracegirdle, T.J.; Shuckburgh, E.F.; Haynes, P.H.; Joshi, M.M. Arctic sea ice loss in different regions leads to contrasting Northern Hemisphere impacts. Geophys. Res. Lett. 2018, 45, 945–954. [Google Scholar] [CrossRef] [Green Version]
- Barnes, E.A. Revisiting the evidence linking Arctic amplification to extreme weather in midlatitudes. Geophys. Res. Lett. 2013, 40, 4734–4739. [Google Scholar] [CrossRef]
- Screen, J.A.; Simmonds, I. Exploring links between Arctic amplification and mid-latitude weather. Geophys. Res. Lett. 2013, 40, 959–964. [Google Scholar] [CrossRef] [Green Version]
- Blackport, R.; Screen, J.A. Insignificant effect of Arctic amplification on the amplitude of midlatitude atmospheric waves. Sci. Adv. 2020, 6, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Hall, R.; Erdélyi, R.; Hanna, E.; Jones, J.M.; Scaife, A.A. Drivers of North Atlantic polar front jet stream variability. Int. J. Climatol. 2015, 35, 1697–1720. [Google Scholar] [CrossRef]
- Chen, G.; Lu, J.; Frierson, D.M. Phase speed spectra and the latitude of surface westerlies: Interannual variability and global warming trend. J. Clim. 2008, 21, 5942–5959. [Google Scholar] [CrossRef]
- Lu, J.; Chen, G.; Frierson, D.M. Response of the zonal mean atmospheric circulation to El Ni no versus global warming. J. Clim. 2008, 21, 5835–5851. [Google Scholar] [CrossRef] [Green Version]
- Staten, P.W.; Lu, J.; Grise, K.M.; Davis, S.M.; Birner, T. Re-examining tropical expansion. Nat. Clim. Chang. 2018, 8, 768–775. [Google Scholar] [CrossRef]
- Allen, R.J.; Norris, J.R.; Kovilakam, M. Influence of anthropogenic aerosols and the Pacific Decadal Oscillation on tropical belt width. Nat. Geosci. 2014, 7, 270–274. [Google Scholar] [CrossRef]
- Mantsis, D.F.; Sherwood, S.; Allen, R.; Shi, L. Natural variations of tropical width and recent trends. Geophys. Res. Lett. 2017, 44, 3825–3832. [Google Scholar] [CrossRef]
- Woollings, T.; Hannachi, A.; Hoskins, B. Variability of the North Atlantic eddy-driven jet stream. Q. J. R. Meteorol. Soc. 2010, 136, 856–868. [Google Scholar] [CrossRef] [Green Version]
- Woollings, T.; Czuchnicki, C.; Franzke, C. Twentieth century North Atlantic jet variability. Q. J. R. Meteorol. Soc. 2014, 140, 783–791. [Google Scholar] [CrossRef] [Green Version]
- Thompson, D.W.; Wallace, J.M. The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett. 1998, 25, 1297–1300. [Google Scholar] [CrossRef] [Green Version]
- Thompson, D.W.; Wallace, J.M. Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Clim. 2000, 13, 1000–1016. [Google Scholar] [CrossRef]
- Ambaum, M.H.; Hoskins, B.J.; Stephenson, D.B. Arctic oscillation or North Atlantic oscillation? J. Clim. 2001, 14, 3495–3507. [Google Scholar] [CrossRef] [Green Version]
- Barnston, A.G.; Livezey, R.E. Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Weather Rev. 1987, 115, 1083–1126. [Google Scholar] [CrossRef]
- Hurrell, J.W.; Holland, M.M.; Gent, P.R.; Ghan, S.; Kay, J.E.; Kushner, P.J.; Lamarque, J.F.; Large, W.G.; Lawrence, D.; Lindsay, K.; et al. The community earth system model: A framework for collaborative research. Bull. Am. Meteorol. Soc. 2013, 94, 1339–1360. [Google Scholar] [CrossRef]
- Conley, A.J.; Garcia, R.; Kinnison, D.; Lamarque, J.F.; Marsh, D.; Mills, M.; Smith, A.K.; Tilmes, S.; Vitt, F.; Morrison, H.; et al. Description of the NCAR community atmosphere model (CAM 5.0). NCAR Tech. Note 2010, 1, 1–12. Available online: https://www.ccsm.ucar.edu/models/cesm1.0/cam/ (accessed on 25 January 2022).
- Lawrence, D.M.; Oleson, K.W.; Flanner, M.G.; Thornton, P.E.; Swenson, S.C.; Lawrence, P.J.; Zeng, X.; Yang, Z.L.; Levis, S.; Sakaguchi, K.; et al. Parameterization improvements and functional and structural advances in version 4 of the Community Land Model. J. Adv. Model. Earth Syst. 2011, 3. [Google Scholar] [CrossRef]
- Gates, W.; Boyle, J.; Covey, C.; Dease, C.; Doutriaux, C.; Drach, R.; Fiorino, M.; Gleckler, P.; Hnilo, J.; Marlais, S.M.; et al. An Overview of the Results of the Atmospheric Model Intercomparison Project (AMIP I). Bull. Am. Meteorol. Soc. 1999, 80, 29–55. [Google Scholar] [CrossRef] [Green Version]
- Rayner, N.A. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 2003, 108, 4407. [Google Scholar] [CrossRef]
- Lamarque, J.F.; Bond, T.C.; Eyring, V.; Granier, C.; Heil, A.; Klimont, Z.; Lee, D.; Liousse, C.; Mieville, A.; Owen, B.; et al. Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application. Atmos. Chem. Phys. 2010, 10, 7017–7039. [Google Scholar] [CrossRef] [Green Version]
- Kay, J.E.; Deser, C.; Phillips, A.; Mai, A.; Hannay, C.; Strand, G.; Arblaster, J.M.; Bates, S.C.; Danabasoglu, G.; Edwards, J.; et al. The community earth system model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Am. Meteorol. Soc. 2015, 96, 1333–1349. [Google Scholar] [CrossRef] [Green Version]
- Deser, C.; Phillips, A.; Bourdette, V.; Teng, H. Uncertainty in climate change projections: The role of internal variability. Clim. Dyn. 2012, 38, 527–546. [Google Scholar] [CrossRef] [Green Version]
- Neelin, J.D.; Battisti, D.S.; Hirst, A.C.; Jin, F.F.; Wakata, Y.; Yamagata, T.; Zebiak, S.E. ENSO theory. J. Geophys. Res. Ocean. 1998, 103, 14261–14290. [Google Scholar] [CrossRef]
- Wallace, J.; Rasmusson, E.; Mitchell, T.; Kousky, V.; Sarachik, E.; Von Storch, H. On the structure and evolution of ENSO-related climate variability in the tropical Pacific: Lessons from TOGA. J. Geophys. Res. Ocean. 1998, 103, 14241–14259. [Google Scholar] [CrossRef]
- Timmermann, A.; An, S.I.; Kug, J.S.; Jin, F.F.; Cai, W.; Capotondi, A.; Cobb, K.M.; Lengaigne, M.; McPhaden, M.J.; Stuecker, M.F.; et al. El Ni no–southern oscillation complexity. Nature 2018, 559, 535–545. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR reanalysis 40-year project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Wettstein, J.J. Thermally driven and eddy-driven jet variability in reanalysis. J. Clim. 2012, 25, 1587–1596. [Google Scholar] [CrossRef]
- Hamming, R.W. Digital Filters, 3rd ed.; Courier Corporation: Englewood Cliffs, NJ, USA, 1998. [Google Scholar]
- Wallace, J.M.; Lim, G.H.; Blackmon, M.L. Relationship between cyclone tracks, anticyclone tracks and baroclinic waveguides. J. Atmos. Sci. 1988, 45, 439–462. [Google Scholar] [CrossRef] [Green Version]
- Afargan, H.; Kaspi, Y. A midwinter minimum in North Atlantic storm track intensity in years of a strong jet. Geophys. Res. Lett. 2017, 44, 12–511. [Google Scholar] [CrossRef]
- Yuval, J.; Afargan, H.; Kaspi, Y. The relation between the seasonal changes in jet characteristics and the Pacific midwinter minimum in eddy activity. Geophys. Res. Lett. 2018, 45, 9995–10002. [Google Scholar] [CrossRef]
- Afargan-Gerstman, H.; Domeisen, D.I. Pacific modulation of the North Atlantic storm track response to sudden stratospheric warming events. Geophys. Res. Lett. 2020, 47, e2019GL085007. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Kendall, M. Rank Correlation Methods; Charles Griffin: London, UK, 1975. [Google Scholar]
- Wallace, J.M.; Gutzler, D.S. Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Weather Rev. 1981, 109, 784–812. [Google Scholar] [CrossRef]
- Overland, J.E.; Wood, K.R.; Wang, M. Warm Arctic—Cold continents: Climate impacts of the newly open Arctic Sea. Polar Res. 2011, 30, 15787. [Google Scholar] [CrossRef]
- Mori, M.; Watanabe, M.; Shiogama, H.; Inoue, J.; Kimoto, M. Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nat. Geosci. 2014, 7, 869–873. [Google Scholar] [CrossRef]
- Kug, J.S.; Jeong, J.H.; Jang, Y.S.; Kim, B.M.; Folland, C.K.; Min, S.K.; Son, S.W. Two distinct influences of Arctic warming on cold winters over North America and East Asia. Nat. Geosci. 2015, 8, 759–762. [Google Scholar] [CrossRef]
- Chen, L.; Francis, J.; Hanna, E. The “Warm-Arctic/Cold-continents” pattern during 1901–2010. Int. J. Climatol. 2018, 38, 5245–5254. [Google Scholar] [CrossRef] [Green Version]
- Honda, M.; Inoue, J.; Yamane, S. Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Nakamura, T.; Yamazaki, K.; Iwamoto, K.; Honda, M.; Miyoshi, Y.; Ogawa, Y.; Ukita, J. A negative phase shift of the winter AO/NAO due to the recent Arctic sea-ice reduction in late autumn. J. Geophys. Res. Atmos. 2015, 120, 3209–3227. [Google Scholar] [CrossRef] [Green Version]
- Wu, A.; Hsieh, W.W.; Boer, G.J.; Zwiers, F.W. Changes in the Arctic Oscillation under increased atmospheric greenhouse gases. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef] [Green Version]
- Deser, C.; Sun, L.; Tomas, R.A.; Screen, J. Does ocean coupling matter for the northern extratropical response to projected Arctic sea ice loss? Geophys. Res. Lett. 2016, 43, 2149–2157. [Google Scholar] [CrossRef] [Green Version]
- Tomas, R.A.; Deser, C.; Sun, L. The role of ocean heat transport in the global climate response to projected Arctic sea ice loss. J. Clim. 2016, 29, 6841–6859. [Google Scholar] [CrossRef]
- Screen, J.A.; Deser, C.; Smith, D.M.; Zhang, X.; Blackport, R.; Kushner, P.J.; Oudar, T.; McCusker, K.E.; Sun, L. Consistency and discrepancy in the atmospheric response to Arctic sea-ice loss across climate models. Nat. Geosci. 2018, 11, 155–163. [Google Scholar] [CrossRef]
- McCusker, K.E.; Kushner, P.J.; Fyfe, J.C.; Sigmond, M.; Kharin, V.V.; Bitz, C.M. Remarkable separability of circulation response to Arctic sea ice loss and greenhouse gas forcing. Geophys. Res. Lett. 2017, 44, 7955–7964. [Google Scholar] [CrossRef]
- Oudar, T.; Sanchez-Gomez, E.; Chauvin, F.; Cattiaux, J.; Terray, L.; Cassou, C. Respective roles of direct GHG radiative forcing and induced Arctic sea ice loss on the Northern Hemisphere atmospheric circulation. Clim. Dyn. 2017, 49, 3693–3713. [Google Scholar] [CrossRef]
- Kim, B.M.; Son, S.W.; Min, S.K.; Jeong, J.H.; Kim, S.J.; Zhang, X.; Shim, T.; Yoon, J.H. Weakening of the stratospheric polar vortex by Arctic sea-ice loss. Nat. Commun. 2014, 5. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Deser, C.; Tomas, R.A. Mechanisms of stratospheric and tropospheric circulation response to projected Arctic sea ice loss. J. Clim. 2015, 28, 7824–7845. [Google Scholar] [CrossRef]
- Wu, Y.; Smith, K.L. Response of Northern Hemisphere midlatitude circulation to Arctic amplification in a simple atmospheric general circulation model. J. Clim. 2016, 29, 2041–2058. [Google Scholar] [CrossRef]
- Bao, M.; Wallace, J.M. Cluster analysis of Northern Hemisphere wintertime 500-hPa flow regimes during 1920–2014. J. Atmos. Sci. 2015, 72, 3597–3608. [Google Scholar] [CrossRef]
- Kim, S.H.; Ha, K.J. Two leading modes of Northern Hemisphere blocking variability in the boreal wintertime and their relationship with teleconnection patterns. Clim. Dyn. 2015, 44, 2479–2491. [Google Scholar] [CrossRef]
- Messori, G.; Caballero, R.; Gaetani, M. On cold spells in North America and storminess in western Europe. Geophys. Res. Lett. 2016, 43, 6620–6628. [Google Scholar] [CrossRef] [Green Version]
- Park, H.J.; Ahn, J.B. Combined effect of the Arctic Oscillation and the Western Pacific pattern on East Asia winter temperature. Clim. Dyn. 2016, 46, 3205–3221. [Google Scholar] [CrossRef] [Green Version]
- Woollings, T.; Hannachi, A.; Hoskins, B.; Turner, A. A regime view of the North Atlantic Oscillation and its response to anthropogenic forcing. J. Clim. 2010, 23, 1291–1307. [Google Scholar] [CrossRef] [Green Version]
- Seierstad, I.A.; Bader, J. Impact of a projected future Arctic Sea Ice reduction on extratropical storminess and the NAO. Clim. Dyn. 2009, 33, 937–943. [Google Scholar] [CrossRef]
- Blackport, R.; Screen, J.A. Observed statistical connections overestimate the causal effects of arctic sea ice changes on midlatitude winter climate. J. Clim. 2021, 34, 3021–3038. [Google Scholar] [CrossRef]
- Hallam, S.; Josey, S.A.; McCarthy, G.D.; Hirschi, J.J.M. A regional (land–ocean) comparison of the seasonal to decadal variability of the Northern Hemisphere jet stream 1871–2011. Clim. Dyn. 2022, 1–22. [Google Scholar] [CrossRef]
- Thompson, D.W.; Solomon, S.; Kushner, P.J.; England, M.H.; Grise, K.M.; Karoly, D.J. Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat. Geosci. 2011, 4, 741–749. [Google Scholar] [CrossRef]
- Orr, A.; Bracegirdle, T.J.; Hosking, J.S.; Feng, W.; Roscoe, H.K.; Haigh, J.D. Strong dynamical modulation of the cooling of the polar stratosphere associated with the Antarctic ozone hole. J. Clim. 2012, 26, 662–668. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Zhang, X. Observed forcing-feedback processes between Northern Hemisphere atmospheric circulation and Arctic sea ice coverage. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Zhang, W.; Li, J.; Zhao, X. Sea surface temperature cooling mode in the Pacific cold tongue. J. Geophys. Res. Ocean. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Grassi, B.; Redaelli, G.; Canziani, P.O.; Visconti, G. Effects of the PDO phase on the tropical belt width. J. Clim. 2012, 25, 3282–3290. [Google Scholar] [CrossRef]
- Kosaka, Y.; Xie, S.P. Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 2013, 501, 403–407. [Google Scholar] [CrossRef] [Green Version]
- McGregor, S.; Timmermann, A.; Stuecker, M.F.; England, M.H.; Merrifield, M.; Jin, F.F.; Chikamoto, Y. Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat. Clim. Chang. 2014, 4, 888–892. [Google Scholar] [CrossRef] [Green Version]
- Grise, K.M.; Davis, S.M.; Simpson, I.R.; Waugh, D.W.; Fu, Q.; Allen, R.J.; Rosenlof, K.H.; Ummenhofer, C.C.; Karnauskas, K.B.; Maycock, A.C.; et al. Recent tropical expansion: Natural variability or forced response? J. Clim. 2019, 32, 1551–1571. [Google Scholar] [CrossRef]
- Henley, B.J.; Gergis, J.; Karoly, D.J.; Power, S.; Kennedy, J.; Folland, C.K. A tripole index for the interdecadal Pacific oscillation. Clim. Dyn. 2015, 45, 3077–3090. [Google Scholar] [CrossRef]
- Newman, M.; Alexander, M.A.; Ault, T.R.; Cobb, K.M.; Deser, C.; Di Lorenzo, E.; Mantua, N.J.; Miller, A.J.; Minobe, S.; Nakamura, H.; et al. The Pacific decadal oscillation, revisited. J. Clim. 2016, 29, 4399–4427. [Google Scholar] [CrossRef] [Green Version]
- Feng, X.; Ding, Q.; Wu, L.; Jones, C.; Baxter, I.; Tardif, R.; Stevenson, S.; Emile-Geay, J.; Mitchell, J.; Carvalho, L.M.; et al. A Multidecadal-Scale Tropically Driven Global Teleconnection over the Past Millennium and Its Recent Strengthening. J. Clim. 2021, 34, 2549–2565. [Google Scholar] [CrossRef]
- Sun, X.; Ding, Q.; Wang, S.Y.; Topal, D.; Castro, C.; Teng, H.; Luo, R.; Ding, Y. Enhanced jet stream waviness induced by suppressed tropical Pacific convection during boreal summer. Nat. Commun. 2022, 13, 1–10. [Google Scholar] [CrossRef]
- Strong, C.; Davis, R.E. Variability in the position and strength of winter jet stream cores related to Northern Hemisphere teleconnections. J. Clim. 2008, 21, 584–592. [Google Scholar] [CrossRef] [Green Version]
- Barton, N.P.; Ellis, A.W. Variability in wintertime position and strength of the North Pacific jet stream as represented by re-analysis data. Int. J. Climatol. J. R. Meteorol. Soc. 2009, 29, 851–862. [Google Scholar] [CrossRef]
- Athanasiadis, P.J.; Wallace, J.M.; Wettstein, J.J. Patterns of wintertime jet stream variability and their relation to the storm tracks. J. Atmos. Sci. 2010, 67, 1361–1381. [Google Scholar] [CrossRef]
- Liu, X.; Grise, K.M.; Schmidt, D.F.; Davis, R.E. Regional characteristics of variability in the Northern Hemisphere wintertime polar front jet and subtropical jet in observations and CMIP6 models. J. Geophys. Res. Atmos. 2021, 126, e2021JD034876. [Google Scholar] [CrossRef]
- Cassano, E.N.; Cassano, J.J.; Higgins, M.E.; Serreze, M.C. Atmospheric impacts of an Arctic sea ice minimum as seen in the Community Atmosphere Model. Int. J. Climatol. 2014, 34, 766–779. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodriguez Solis, J.L.; Turrent, C.; Gross, M. Regional Responses of the Northern Hemisphere Subtropical Jet Stream to Reduced Arctic Sea Ice Extent. Climate 2022, 10, 108. https://doi.org/10.3390/cli10070108
Rodriguez Solis JL, Turrent C, Gross M. Regional Responses of the Northern Hemisphere Subtropical Jet Stream to Reduced Arctic Sea Ice Extent. Climate. 2022; 10(7):108. https://doi.org/10.3390/cli10070108
Chicago/Turabian StyleRodriguez Solis, José Luis, Cuauhtémoc Turrent, and Markus Gross. 2022. "Regional Responses of the Northern Hemisphere Subtropical Jet Stream to Reduced Arctic Sea Ice Extent" Climate 10, no. 7: 108. https://doi.org/10.3390/cli10070108