Evaluation of ECMWF-SEAS5 Seasonal Temperature and Precipitation Predictions over South America
Abstract
:1. Introduction
2. Materials and Methods
2.1. ECMWF-SEAS5 Data
2.2. NOAA CPC Data
2.3. Construction of the Seasonal Means and Domain of Study
2.4. Statistical Analysis
2.4.1. Hindcasts Seasonal Prediction Skill Score
2.4.2. Forecast Bias Correction
2.4.3. Statistical Indicators
2.5. The Seasonality Index (SI)
3. Results and Discussion
3.1. Temperature
3.2. Precipitation
3.3. Seasonality Index (SI)
3.4. Statistical Indicators
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferreira, G.W.S.; Reboita, M.S. A new look into the South American precipitation patterns: Observation and forecast. Atmosphere 2022, 13, 873. [Google Scholar] [CrossRef]
- Lorenz, E.N. A study of the predictability of a 28-variable atmospheric model. Tellus 1965, 17, 321–333. [Google Scholar] [CrossRef]
- Meehl, G.A.; Richter, J.H.; Teng, H.; Capotondi, A.; Cobb, K.; Doblas-Reyes, F.; Donat, M.G.; England, M.H.; Fyfe, J.C.; Han, W.; et al. Initialized Earth system prediction from subseasonal to decadal timescales. Nat. Rev. Earth Environ. 2021, 2, 340–357. [Google Scholar] [CrossRef]
- Vitart, F.; Robertson, A.W. Introduction: Why sub-seasonal to seasonal prediction (S2S)? In Sub-Seasonal to Seasonal Prediction—The Gap Between Weather and Climate Forecasting, 1st ed.; Robertson, A.W., Vitart, F., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 3–15. [Google Scholar] [CrossRef]
- Webster, P.J. Response of the tropical atmosphere to local, steady forcing. Mon. Weather Rev. 1972, 100, 518–541. [Google Scholar] [CrossRef]
- Charney, J.G.; Shukla, J. Predictability of monsoons. In Monsoon Dynamics, 1st ed.; Lighthill, J., Pearce, R., Eds.; Cambridge University Press: Cambridge, UK, 1981; pp. 99–109. [Google Scholar] [CrossRef]
- Hoskins, B.J.; Karoly, D.J. The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci. 1981, 38, 1179–1196. [Google Scholar] [CrossRef]
- Sampaio, G.; Silva Dias, P.L. Evolução dos modelos climáticos e de previsão de tempo e clima. Rev. USP Dossiê Clima 2014, 103, 41–54. [Google Scholar] [CrossRef]
- Ropelewski, C.F.; Halpert, M.S. Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Weather Rev. 1987, 115, 1606–1626. [Google Scholar] [CrossRef]
- Palmer, T.N.; Anderson, L.T. The prospects for seasonal forecasting—A review paper. Q. J. R. Meteorol. Soc. 1994, 120, 755–793. [Google Scholar] [CrossRef]
- Shukla, J. Predictability in the midst of chaos: A scientific basis for climate forecasting. Science 1998, 282, 728–731. [Google Scholar] [CrossRef]
- Shukla, J.; Anderson, J.; Baumhefner, D.; Branković, Č.; Chang, Y.; Kalnay, E.; Marx, L.; Palmer, T.N.; Paolino, D.; Ploshay, J.; et al. Dynamical seasonal prediction. Bull. Am. Meteorol Soc. 2000, 81, 2593–2606. [Google Scholar] [CrossRef]
- Reboita, M.S.; Ambrizzi, T.; Crespo, N.M.; Dutra, L.M.M.; Ferreira, G.W.S.; Rehbein, A.; Drumond, A.; da Rocha, R.P.; Souza, C.A. Impacts of teleconnection patterns on South America climate. Ann. Acad. Sci. 2021, 1504, 116–153. [Google Scholar] [CrossRef] [PubMed]
- Weber, T.M.; Dereczynski, C.P.; Souza, R.H.S.; Chou, S.C.; Bustamante, J.F.; Neto, A.C.P. Investigação da previsibilidade sazonal da precipitação na região do Alto São Francisco em Minas Gerais. Anu. Inst. Geocienc. 2015, 38, 34–36. [Google Scholar] [CrossRef]
- Martins, M.A.; Tomasella, J.; Rodriguez, D.A.; Alvalá, R.C.S.; Giarolla, A.; Garofolo, L.I.; Siqueira Júnior, J.L.; Paolicchi, L.T.L.C.; Pinto, G.L.N. Improving drought management in the Brazilian semiarid through crop forecasting. Agric. Syst. 2018, 160, 21–30. [Google Scholar] [CrossRef]
- Piedra-Bonilla, E.B.; da Cunha, D.A.; Braga, M.J. Climate variability and crop diversification in Brazil: An ordered probit analysis. J. Clean. Prod. 2020, 256, 120252. [Google Scholar] [CrossRef]
- Shafiee-Jood, M.; Cai, X.; Chen, L.; Liang, X.Z.; Kumar, P. Assessing the value of seasonal climate forecast information through an end-to-end forecasting network: Application to U.S. 2012 drought in central Illinois. Water Resour. Res. 2014, 50, 6592–6609. [Google Scholar] [CrossRef]
- Hao, Z.; Singh, V.P.; Xia, Y. Seasonal drought prediction: Advances, challenges, and future prospects. Rev. Geophys. 2018, 56, 108–141. [Google Scholar] [CrossRef]
- Roberts, P.S.; Wernstedt, K. Using climate forecasts across a state’s emergency management network. Nat. Hazards Rev. 2016, 17, 05016002. [Google Scholar] [CrossRef]
- Drumond, A.; Stojanovic, M.; Nieto, R.; Gimeno, L.; Liberato, M.L.R.; Pauliquevis, T.; Oliveira, M.; Ambrizzi, T. Dry and wet climate periods over Eastern South America: Identification and characterization through the SPEI index. Atmosphere 2021, 12, 155. [Google Scholar] [CrossRef]
- Turco, M.; Marcos-Matamoros, R.; Castro, X.; Canyameras, E.; Lllasat, M.C. Seasonal prediction of climate-driven fire risk for decision-making and operational applications in a Mediterranean region. Sci. Total Environ. 2019, 676, 577–583. [Google Scholar] [CrossRef]
- Lowe, R.; García-Díez, M.; Ballester, J.; Creswick, J.; Robine, J.-M.; Herrmman, F.R.; Rodó, X. Evaluation of an early-warning system for heat wave-related mortality in Europe: Implications for sub-seasonal to seasonal forecasting and climate services. Int. J. Environ. Res. Public Health 2016, 13, 206. [Google Scholar] [CrossRef]
- Shin, C.-S.; Huang, B.; Dirmeyer, P.A.; Halder, S.; Kumar, A. Sensitivity of U.S. drought prediction skill to land initial states. J. Hydrometeorol. 2020, 21, 2793–2811. [Google Scholar] [CrossRef]
- Junquas, C.; Li, L.; Vera, C.S.; Le Treut, H.; Takahashi, K. Influence of South America orography on summertime precipitation in southeastern South America. Clim. Dyn. 2016, 46, 3941–3963. [Google Scholar] [CrossRef]
- Almazroui, M.; Ashfaq, M.; Islam, M.N.; Kamil, S.; Abid, M.A.; O’Brien, E.; Ismail, M.; Reboita, M.S.; Sörensson, A.A.; Arias, P.A.; et al. Assessment of CMIP6 performance and projected temperature and precipitation changes over South America. Earth Syst. Environ. 2021, 5, 155–183. [Google Scholar] [CrossRef]
- Dias, C.G.; Reboita, M.S. Assessment of CMIP6 simulations over tropical South America. Rev. Bras. Geogr. Fis. 2021, 14, 1282–1295. [Google Scholar] [CrossRef]
- Kuki, C.A.C.; Ferreira, G.W.S.; Reboita, M.S. Avaliação da performance da previsão sazonal para o Brasil utilizando o CFSv2 e ECMWF-SEAS5. Rev. Bras. Climatol. 2021, 29, 385–413. [Google Scholar] [CrossRef]
- Osman, M.; Coelho, C.A.S.; Vera, C.S. Calibration and combination of seasonal precipitation forecasts over South America using Ensemble Regression. Clim. Dyn. 2021, 57, 2889–2904. [Google Scholar] [CrossRef]
- Coelho, C.A.S.; Souza, D.C.; Kubota, P.Y.; Cavalcanti, I.F.A.; Baker, J.C.A.; Figueroa, S.N.; Firpo, M.A.F.; Guimarães, B.S.; Costa, S.M.S.; Gonçalves, L.J.M.; et al. Assessing the representation of South American monsoon features in Brazil and U.K. climate model simulations. Clim. Resil. Sustain. 2022, 1, e27. [Google Scholar] [CrossRef]
- Pabón-Caicedo, J.D.; Arias, P.A.; Carril, A.F.; Espinoza, J.C.; Borrel, L.F.; Goubanova, K.; Lavado-Casimiro, W.; Masiokas, M.; Solman, S.; Villalba, R. Observed and projected hydroclimate changes in the Andes. Front. Earth Sci. 2020, 8, 61. [Google Scholar] [CrossRef]
- Rivera, J.A.; Marianetti, G.; Hinrichs, S. Validation of CHIRPS precipitation dataset along the central Andes of Argentina. Atmos. Res. 2018, 213, 437–449. [Google Scholar] [CrossRef]
- Johnson, S.J.; Stockdale, T.N.; Ferranti, L.; Balsameda, M.A.; Molteni, F.; Magnusson, L.; Tietsche, S.; Decremer, D.; Weisheimer, A.; Balsamo, G.; et al. SEAS5: The new ECMWF seasonal forecast system. Geosci. Model. Dev. 2019, 12, 1087–1117. [Google Scholar] [CrossRef]
- Gubler, S.; Sedlmeier, K.; Bhend, J.; Avalos, G.; Coelho, C.A.S.; Escajadillo, Y.; Jacques-Coper, M.; Martinez, R.; Schwierz, C.; de Skansi, M.; et al. Assessment of ECMWF-SEAS5 seasonal forecast performance over South America. Weather Forecast. 2020, 35, 561–584. [Google Scholar] [CrossRef]
- Risbey, J.S.; Squire, D.T.; Black, A.S.; Delsole, T.; Lepore, C.; Matear, R.J.; Monselesan, D.P.; Moore, T.S.; Richardson, D.; Schepen, A.; et al. Standard assessments of climate forecast skill can be misleading. Nat. Commun. 2021, 12, 4346. [Google Scholar] [CrossRef]
- Meehl, G.A.; Teng, H.; Smith, D.; Yeager, S.; Merryfield, W.; Doblas-Reyes, F.; Glanville, A.A. The effect of bias, drift, and trends in calculating anomalies for evaluating skill of seasonal-to-decadal initialized climate predictions. Clim. Dyn. 2022. [Google Scholar] [CrossRef]
- Risbey, J.S.; Squire, D.T.; Pacchetti, M.B.; Black, A.S.; Chapman, C.C.; Dessai, S.; Irving, D.B.; Matear, R.J.; Monselesan, D.P.; Moore, T.S.; et al. Common issues in verification of climate forecasts and projections. Climate 2022, 10, 83. [Google Scholar] [CrossRef]
- Shukla, R.P.; Huang, B.; Marx, L.; Kinter, J.L.; Shin, C.-S. Predictability and prediction of Indian summer monsoon by CFSv2: Implication of the initial shock effect. Clim. Dyn. 2018, 50, 159–178. [Google Scholar] [CrossRef]
- Stockdale, T. SEAS5 User Guide; Version 1.2; ECMWF: Reading, UK, 2017. [Google Scholar] [CrossRef]
- Chen, M.; Shi, W.; Xie, P.; Silva, V.B.S.; Kousky, V.E.; Higgins, R.W.; Janowiak, J.E. Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res. 2008, 113, D04110. [Google Scholar] [CrossRef]
- Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes in C: The Art of Scientific Computing, 1st ed.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Reboita, M.S.; Dias, C.G.; Dutra, L.M.M.; da Rocha, R.P.; Llopart, M. Previsão climática sazonal para o Brasil obtida através de modelos climáticos globais e regional. Rev. Bras. Meteorol. 2018, 33, 207–224. [Google Scholar] [CrossRef] [Green Version]
- Chou, S.C.; Dereczynksi, C.; Gomes, J.L.; Pesquero, J.F.; Avila, A.M.H.; Resende, N.C.; Alvez, L.P.; Ruiz-Cárdenas, R.; Souza, C.R.; Bustamante, J.F. Ten-year seasonal climate reforecasts over South America using the Eta regional climate model. An. Acad. Brasil. Cienc. 2020, 92, e20181242. [Google Scholar] [CrossRef]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences, 4th ed.; Elsevier: Cambridge, MA, USA, 2019. [Google Scholar]
- Reboita, M.S.; Kiani, R.S.; Ali, S.; Khan, T. Projections of wind power density in Pakistan and adjacent regions. Clim. Res. 2021, 85, 177–192. [Google Scholar] [CrossRef]
- Montgomery, D.C.; Jennings, C.L.; Kulahci, M. Introduction to Time Series Analysis and Forecasting; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Willmott, C.J. On the validation of models. Phys. Geogr. 1981, 2, 184–194. [Google Scholar] [CrossRef]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modeling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef]
- Kling, H.; Fuchs, M.; Paulin, M. Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. J. Hydrol. 2012, 424–425, 264–277. [Google Scholar] [CrossRef]
- Walsh, R.P.D.; Lawler, D.M. Rainfall seasonality: Description, spatial patterns and change through time. Weather 1981, 36, 201–208. [Google Scholar] [CrossRef]
- Kim, H.-M.; Webster, P.J.; Curry, J.A. Seasonal prediction skill of ECMWF System 4 and NCEP CFSv2 retrospective forecast for the Northern Hemisphere winter. Clim. Dyn. 2012, 39, 2957–2973. [Google Scholar] [CrossRef]
- Osman, M.; Vera, C.S. Climate predictability and prediction skill on seasonal time scales over South America from CHFP models. Clim. Dyn. 2017, 49, 2356–2383. [Google Scholar] [CrossRef]
- Wang, W.; Chen, M.; Kumar, A. An assessment of the CFS real-time seasonal forecasts. Weather Forecast. 2010, 25, 950–969. [Google Scholar] [CrossRef]
- Moura, A.D.; Shukla, J. On the dynamics of droughts in the Northeast Brazil: Observations, theory and numerical experiments with a general circulation model. J. Atmos. Sci. 1981, 38, 2653–2675. [Google Scholar] [CrossRef]
- Hastenrath, S.; Greischar, L. Further work on the prediction of Northeast Brazil anomalies. J. Clim. 1993, 6, 743–758. [Google Scholar] [CrossRef]
- Uvo, C.B.; Repelli, C.A.; Zebiak, S.E.; Kushnir, Y. The relationships between tropical Pacific and Atlantic SST and northeast Brazil monthly precipitation. J. Clim. 1998, 11, 551–562. [Google Scholar] [CrossRef]
- Moura, A.D.; Hastenrath, S. Climate prediction for Brazil’s Nordeste: Performance of empirical and numerical modeling methods. J. Clim. 2004, 17, 2667–2672. [Google Scholar] [CrossRef]
- Shimizu, M.H.; Anochi, J.A.; Kayano, M.T. Precipitation patterns over northern Brazil basins: Climatology, trends, and associated mechanisms. Theor. Appl. Climatol. 2022, 147, 767–783. [Google Scholar] [CrossRef]
- Escobar, G.C.J.; Reboita, M.S. Relationship between daily atmospheric circulation patterns and South Atlantic Convergence Zone (SACZ) events. Atmósfera 2022, 35, 1–25. [Google Scholar] [CrossRef]
- Coelho, C.A.S.; Stephenson, D.B.; Balsameda, M.; Doblas-Reyes, F.J.; Van Oldenborgh, G.J. Toward an integrated seasonal forecasting system for South America. J. Clim. 2006, 19, 3704–3721. [Google Scholar] [CrossRef]
- Jiménez-Muñoz, J.C.; Mattar, C.; Barichivich, J.; Santmaría-Artigas, A.; Takahashi, K.; Malhi, Y.; Sobrino, J.A.; van der Schrier, G. Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015–2016. Sci. Rep. 2016, 6, 33130. [Google Scholar] [CrossRef] [PubMed]
- Marengo, J.A.; Alves, L.M.; Soares, W.R.; Rodriguez, D.A.; Camargo, H.; Riveros, M.P.; Pabló, A.D. Two contrasting severe seasonal extremes in tropical South America in 2012: Flood in Amazonia and drought in Northeast Brazil. J. Clim. 2013, 26, 9137–9154. [Google Scholar] [CrossRef]
- Marengo, J.A.; Alves, L.M.; Alvala, R.C.S.; Cunha, A.P.; Brito, S.; Moraes, O.L.L. Climatic characteristics of the 2010-2016 drought in the semiarid Northeast Brazil region. An. Acad. Brasil. Ciênc. 2018, 90, 1973–1985. [Google Scholar] [CrossRef]
- Barros, V.R.; Doyle, M.E. Low-level circulation and precipitation simulated by CMIP5 CGMs over southeastern South America. Int. J. Climatol. 2018, 38, 5476–5490. [Google Scholar] [CrossRef]
- Zhang, Z.; Varble, A.; Feng, Z.; Hardin, J.; Zipser, E. Growth of mesoscale convective systems in observations and a seasonal convection-permitting simulation over Argentina. Mon. Weather Rev. 2021, 149, 3469–3490. [Google Scholar] [CrossRef]
- de Jesus, E.M.; da Rocha, R.P.; Crespo, N.M.; Reboita, M.S.; Gozzo, L.P. Multi-model climate projections of the main cyclogenesis hot-spots and associated winds over the eastern coast of South America. Clim. Dyn. 2020, 56, 537–557. [Google Scholar] [CrossRef]
- Nascimento, M.G.; Herdies, D.L.; Souza, D.O. The South American water balance: The influence of low-level jets. J. Clim. 2016, 29, 1429–1449. [Google Scholar] [CrossRef]
- Barreiro, M.; Chang, P.; Saravanan, R. Simulated precipitation response to SST forcing and potential predictability in the region of the South Atlantic Convergence Zone. Clim. Dyn. 2005, 24, 105–114. [Google Scholar] [CrossRef]
- Bombardi, R.J.; Trenary, L.; Pegion, K.; Cash, B.; DelSole, T.; Kinter, J.L. Seasonal predictability of summer rainfall over South America. J. Clim. 2018, 31, 8181–8195. [Google Scholar] [CrossRef]
- Hunziker, S.; Gubler, S.; Calle, J.; Moreno, I.; Andrade, M.; Velarde, F.; Ticona, L.; Carrasco, G.; Castellón, Y.; Croci-Maspoli, M.; et al. Identifying, attributing, and overcoming common data quality issues of manned station observations. Int. J. Climatol. 2017, 37, 4131–4145. [Google Scholar] [CrossRef]
- Massonnet, F.; Bellprat, O.; Guemas, V.; Doblas-Reyes, F. Using climate models to estimate the quality of global observational data sets. Science 2016, 354, 452–455. [Google Scholar] [CrossRef] [PubMed]
- Tedeschi, R.G.; Collins, M. The influence of ENSO on South American precipitation during austral summer and autumn in observations and models. Int. J. Climatol. 2016, 36, 618–635. [Google Scholar] [CrossRef]
- Doyle, M.E. Observed and simulated changes in precipitation seasonality in Argentina. Int. J. Climatol. 2019, 40, 1716–1737. [Google Scholar] [CrossRef]
- Reboita, M.S.; Rodrigues, M.; Armando, R.P.; Freitas, C.; Martins, D.; Miller, G. Causas da semiaridez do sertão nordestino. Rev. Bras. Climatol. 2016, 19, 254–277. [Google Scholar] [CrossRef] [Green Version]
- Sapucci, C.R.; Mayta, V.C.; Silva Dias, P.L. Evaluation of diverse-based precipitation data over the Amazon region. Theor. Appl. Climatol. 2022. [Google Scholar] [CrossRef]
- Gilewski, P.; Nawalany, M. Inter-comparison of rain-gauge, radar, and satellite (IMERG GPM) precipitation estimates performance for rainfall-runoff modeling in a mountainous catchment in Poland. Water 2018, 10, 1665. [Google Scholar] [CrossRef]
- Giorgi, F.; Mearns, L.O. Introduction to special section: Regional climate modeling revisited. J. Geophys. Res. 1999, 104, 6335–6352. [Google Scholar] [CrossRef]
- Hall, K.J.C.; Acharya, N. XCast: A Python climate forecasting toolkit. Front. Clim. 2022, 4, 953262. [Google Scholar] [CrossRef]
- Ma, H.-Y.; Siongco, A.C.; Kleinn, S.A.; Xie, S.; Karspeck, A.R.; Raeder, K.; Anderson, J.L.; Lee, J.; Kirtman, B.P.; Merryfield, W.J.; et al. On the correspondence between seasonal forecast biases and long-term climate biases in sea surface temperature. J. Clim. 2021, 34, 427–446. [Google Scholar] [CrossRef]
Temperature Statistical Indicators 1993–2021 | |||||
Region | r | R2 | d | RE (%) | KGE |
SEB | 0.32 | 0.10 | 0.57 | 5.58 | 0.73 |
AMZ | 0.61 * | 0.37 | 0.75 | 4.66 | 0.78 |
NEB | 0.62 * | 0.38 | 0.77 | 2.30 | 0.66 |
SB | 0.22 | 0.05 | 0.51 | 9.27 | 0.80 |
AP | 0.27 | 0.07 | 0.51 | 14.66 | 0.78 |
NSA | 0.65 * | 0.42 | 0.79 | 6.00 | 0.68 |
Precipitation Statistical Indicators 1993–2021 | |||||
Region | r | R2 | d | RE (%) | KGE |
SEB | 0.25 | 0.06 | 0.35 | 21.80 | 0.88 |
AMZ | 0.23 | 0.05 | 0.38 | 24.80 | 0.80 |
NEB | 0.54 * | 0.30 | 0.67 | 24.09 | 0.87 |
SB | 0.56 * | 0.32 | 0.61 | 22.42 | 0.52 |
AP | 0.43 * | 0.19 | 0.48 | 23.23 | 0.30 |
NSA | 0.41 * | 0.17 | 0.54 | 18.63 | 0.71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, G.W.S.; Reboita, M.S.; Drumond, A. Evaluation of ECMWF-SEAS5 Seasonal Temperature and Precipitation Predictions over South America. Climate 2022, 10, 128. https://doi.org/10.3390/cli10090128
Ferreira GWS, Reboita MS, Drumond A. Evaluation of ECMWF-SEAS5 Seasonal Temperature and Precipitation Predictions over South America. Climate. 2022; 10(9):128. https://doi.org/10.3390/cli10090128
Chicago/Turabian StyleFerreira, Glauber W. S., Michelle S. Reboita, and Anita Drumond. 2022. "Evaluation of ECMWF-SEAS5 Seasonal Temperature and Precipitation Predictions over South America" Climate 10, no. 9: 128. https://doi.org/10.3390/cli10090128
APA StyleFerreira, G. W. S., Reboita, M. S., & Drumond, A. (2022). Evaluation of ECMWF-SEAS5 Seasonal Temperature and Precipitation Predictions over South America. Climate, 10(9), 128. https://doi.org/10.3390/cli10090128