Spatio-Temporal Assessment of Satellite Estimates and Gauge-Based Rainfall Products in Northern Part of Egypt
Abstract
:1. Introduction
1.1. Gauge Observations
1.2. Gauge-Based Rainfall Products
1.3. Satellite Estimates
1.4. Reanalysis Systems
2. Methodology
2.1. Study Area
2.2. Evaluation Rainfall Products
2.3. Used Ground Stations
2.4. Statistical Evaluation of Rainfall Products
3. Results and Discussions
3.1. Annual Rainfall Distribution
3.2. Evaluation of Annual Rainfall Products
3.3. Monthly Rainfall Distribution
3.4. Evaluation of Monthly Rainfall Products
3.5. Spatial Distribution Mapping of Monthly and Annual Rainfall
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kidd, C.; Becker, A.; Huffman, G.J.; Muller, C.L.; Joe, P.; Skofronick-Jackson, G.; Kirschbaum, D.B. So, how much of the Earth’s surface is covered by rain gauges? Bull. Am. Meteorol. Soc. 2017, 98, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Kidd, C.; Levizzani, V. Status of satellite precipitation retrievals. Hydrol. Earth Syst. Sci. 2011, 15, 1109–1116. [Google Scholar] [CrossRef]
- Huffman, G.J.; Pendergrass, A.; National Center for Atmospheric Research Staff (Eds.) Last Modified 20 March 2021. The Climate Data Guide: TRMM: Tropical Rainfall Measuring Mission. Available online: https://climatedataguide.ucar.edu/climate-data/trmm-tropical-rainfall-measuring-mission (accessed on 21 November 2021).
- Sinta, N.S.; Mohammed, A.K.; Ahmed, Z.; Dambul, R. Evaluation of Satellite Precipitation Estimates Over Omo–Gibe River Basin in Ethiopia. Earth Syst. Environ. 2022, 6, 263–280. [Google Scholar] [CrossRef]
- Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P. CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeorol. 2004, 5, 487–503. [Google Scholar] [CrossRef]
- Adler, R.F.; Huffman, G.J.; Chang, A.; Ferraro, R.; Xie, P.P.; Janowiak, J.; Rudolf, B.; Schneider, U.; Curtis, S.; Bolvin, D.; et al. The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeorol. 2003, 4, 1147–1167. [Google Scholar] [CrossRef]
- Morbidelli, R.; Saltalippi, C.; Dari, J.; Flammini, A. A Review on Rainfall Data Resolution and Its Role in the Hydrological Practice. Water 2021, 13, 1012. [Google Scholar] [CrossRef]
- WMO, World Meteorological Organization. 2021. Available online: https://public.wmo.int/en/our-mandate/what-we-do/observations (accessed on 5 December 2021).
- Harris, I.P.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated high-resolution grids of monthly climatic observations–the CRU TS3. 10 Dataset. Int. J. Climatol. 2014, 34, 623–642. [Google Scholar] [CrossRef]
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 2020, 7, 1–18. [Google Scholar] [CrossRef]
- Becker, A.; Finger, P.; Meyer-Christoffer, A.; Rudolf, B.; Schamm, K.; Schneider, U.; Ziese, M. A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901–present. Earth Syst. Sci. Data 2013, 5, 71–99. [Google Scholar] [CrossRef]
- Sun, Q.; Miao, C.; Duan, Q.; Ashouri, H.; Sorooshian, S.; Hsu, K.L. A review of global precipitation data sets: Data sources, estimation, and intercomparisons. Rev. Geophys. 2018, 56, 79–107. [Google Scholar] [CrossRef] [Green Version]
- Negrón Juárez, R.I.; Li, W.; Fu, R.; Fernandes, K.; de Oliveira Cardoso, A. Comparison of precipitation datasets over the tropical South American and African continents. J. Hydrometeorol. 2009, 10, 289–299. Available online: https://www.jstor.org/stable/10.2307/24911970 (accessed on 11 June 2022). [CrossRef]
- Ogbu, K.N.; Hounguè, N.R.; Gbode, I.E.; Tischbein, B. Performance evaluation of satellite-based rainfall products over Nigeria. Climate 2020, 8, 103. [Google Scholar] [CrossRef]
- Liu, Z.; Ostrenga, D.; Teng, W.; Kempler, S. Tropical Rainfall Measuring Mission (TRMM) precipitation data and services for research and applications. Bull. Am. Meteorol. Soc. 2012, 93, 1317–1325. Available online: https://www.jstor.org/stable/10.2307/26219323 (accessed on 11 June 2022). [CrossRef]
- Nastos, P.T.; Kapsomenakis, J.; Philandras, K.M. Evaluation of the TRMM 3B43 gridded precipitation estimates over Greece. Atmos. Res. 2016, 169, 497–514. [Google Scholar] [CrossRef]
- NASA. 2022. Available online: https://www.nasa.gov/mission_pages/GPM/main/index.html (accessed on 15 April 2022).
- Hessels, T.M. Comparison and Validation of Several Open Access Remotely Sensed Rainfall Products for the Nile Basin. Master’s Thesis, Delft University of Technology, Delft, The Netherlands, 2015. [Google Scholar]
- Ashouri, H.; Hsu, K.L.; Sorooshian, S.; Braithwaite, D.K.; Knapp, K.R.; Cecil, L.D.; Nelson, B.R.; Prat, O.P. PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bull. Am. Meteorol. Soc. 2015, 96, 69–83. [Google Scholar] [CrossRef]
- Xie, P.; Arkin, P.A.; Janowiak, J.E. CMAP: The CPC Merged Analysis of Precipitation. In Measuring Precipitation from Space; Springer: Dordrecht, The Netherlands, 2007; pp. 319–328. [Google Scholar]
- Yin, X.; Gruber, A.; Arkin, P. Comparison of the GPCP and CMAP merged gauge–satellite monthly precipitation products for the period 1979–2001. J. Hydrometeorol. 2004, 5, 1207–1222. [Google Scholar] [CrossRef]
- Huffman, G.J.; Adler, R.F.; Morrissey, M.M.; Bolvin, D.T.; Curtis, S.; Joyce, R.; McGavock, B.; Susskind, J. Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeorol. 2001, 2, 36–50. [Google Scholar] [CrossRef]
- Abdelmoneim, H.; Soliman, M.R.; Moghazy, H.M. Evaluation of TRMM 3B42V7 and CHIRPS satellite precipitation products as an input for hydrological model over Eastern Nile Basin. Earth Syst. Environ. 2020, 4, 685–698. [Google Scholar] [CrossRef]
- Katsanos, D.; Retalis, A.; Michaelides, S. Validation of a high-resolution precipitation database (CHIRPS) over Cyprus for a 30-year period. Atmos. Res. 2016, 169, 459–464. [Google Scholar] [CrossRef]
- Dee, D.; Fasullo, J.; Shea, D.; Walsh, J.; National Center for Atmospheric Research Staff. The Climate Data Guide: Atmospheric Reanalysis: Overview & Comparison Tables; National Center for Atmospheric Research: Boulder, CO, USA, 2016; p. 2017. Available online: https://climatedataguide.ucar.edu/climatedata/atmospheric-reanalysis-overview-comparison-tables (accessed on 21 May 2022).
- Derin, Y.; Yilmaz, K.K. Evaluation of multiple satellite-based precipitation products over complex topography. J. Hydrometeorol. 2014, 15, 1498–1516. [Google Scholar] [CrossRef] [Green Version]
- Tan, M.L.; Ibrahim, A.L.; Duan, Z.; Cracknell, A.P.; Chaplot, V. Evaluation of six high-resolution satellite and ground-based precipitation products over Malaysia. Remote Sens. 2015, 7, 1504–1528. [Google Scholar] [CrossRef]
- Liu, J.; Duan, Z.; Jiang, J.; Zhu, A. Evaluation of three satellite precipitation products TRMM 3B42, CMORPH, and PERSIANN over a subtropical watershed in China. Adv. Meteorol. 2015, 2015, 151239. [Google Scholar] [CrossRef]
- Trinh-Tuan, L.; Matsumoto, J.; Ngo-Duc, T.; Nodzu, M.I.; Inoue, T. Evaluation of satellite precipitation products over Central Vietnam. Prog. Earth Planet. Sci. 2019, 6, 54. [Google Scholar] [CrossRef]
- Pang, J.; Zhang, H.; Xu, Q.; Wang, Y.; Wang, Y.; Zhang, O.; Hao, J. Hydrological evaluation of open-access precipitation data using SWAT at multiple temporal and spatial scales. Hydrol. Earth Syst. Sci. 2020, 24, 3603–3626. [Google Scholar] [CrossRef]
- Salehie, O.; Ismail, T.; Shahid, S.; Ahmed, K.; Adarsh, S.; Asaduzzaman, M.; Dewan, A. Ranking of gridded precipitation datasets by merging compromise programming and global performance index: A case study of the Amu Darya basin. Theor. Appl. Climatol. 2021, 144, 985–999. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, N. Evaluation of Eight High-Resolution Gridded Precipitation Products in the Heihe River Basin, Northwest China. Remote Sens. 2022, 14, 1458. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Novella, N.S.; Thiaw, W.M. African rainfall climatology version 2 for famine early warning systems. J. Appl. Meteorol. Climatol. 2013, 52, 588–606. [Google Scholar] [CrossRef]
- The NOAA Climate Prediction Center. The NOAA Climate Prediction Center African Rainfall Estimation Algorithm Version 2.0. Technical Report. 2001. Available online: https://www.cpc.ncep.noaa.gov/products/fews/RFE2.0_tech.pdf (accessed on 25 July 2022).
- Climate Hazards Center. CHIRPS: Rainfall Estimates from Rain Gauge and Satellite Observations; UC Santa Barbara: Santa Barbara, CA, USA, 2017. [Google Scholar]
- National Center for Atmospheric Research Staff (Ed.) Last Modified 6 October 2017 The Climate Data Guide: CMORPH (CPC MORPHing Technique): High Resolution Precipitation (60S-60N). Available online: https://climatedataguide.ucar.edu/climate-data/cmorph-cpc-morphing-technique-high-resolution-precipitation-60s-60n (accessed on 8 January 2022).
- Xie, P.; Joyce, R.; Wu, S.; Yoo, S.H.; Yarosh, Y.; Sun, F.; Lin, R. NOAA Climate Data Record (CDR) of CPC Morphing Technique (CMORPH) High Resolution Global Precipitation Estimates, Version 1; NOAA National Centers for Environmental Information; NOAA: Silver Spring, MD, USA, 2019. [Google Scholar] [CrossRef]
- National Center for Atmospheric Research Staff (Ed.) Last Modified 8 March 2022. The Climate Data Guide: CPC Unified Gauge-Based Analysis of Global Daily Precipitation. Available online: https://climatedataguide.ucar.edu/climate-data/cpc-unified-gauge-based-analysis-global-dailyprecipitation (accessed on 8 January 2022).
- National Center for Atmospheric Research Staff (Ed.) Last Modified 27 February 2020. The Climate Data Guide: GPCC: Global Precipitation Climatology Centre. Available online: https://climatedataguide.ucar.edu/climate-data/gpcc-global-precipitation-climatology-centre (accessed on 12 January 2022).
- Schneider, U.; Fuchs, T.; Meyer-Christoffer, A.; Rudolf, B. Global Precipitation Analysis Products of the GPCC; Global Precipitation Climatology Centre (GPCC), DWD, Deutscher Wetterdienst: Offenbach, Germany, 2021. [Google Scholar]
- Pendergrass, A.; National Center for Atmospheric Research Staff (Eds.) Last Modified 1 July 2016. The Climate Data Guide: GPCP (Daily): Global Precipitation Climatology Project. Available online: https://climatedataguide.ucar.edu/climate-data/gpcp-daily-global-precipitation-climatology-project (accessed on 11 January 2022).
- Pendergrass, A.; Wang, J.-J.; National Center for Atmospheric Research Staff (Eds.) Last Modified 6 November 2020. The Climate Data Guide: GPCP (Monthly): Global Precipitation Climatology Project. Available online: https://climatedataguide.ucar.edu/climate-data/gpcp-monthly-global-precipitation-climatology-project (accessed on 12 January 2022).
- Adler, R.F.; Sapiano, M.R.; Huffman, G.J.; Wang, J.J.; Gu, G.; Bolvin, D.; Chiu, L.; Schneider, U.; Becker, A.; Nelkin, E.; et al. The Global Precipitation Climatology Project (GPCP) monthly analysis (new version 2.3) and a review of 2017 global precipitation. Atmosphere 2018, 9, 138. [Google Scholar] [CrossRef] [Green Version]
- Ashouri, H.; Gehne, M.; National Center for Atmospheric Research Staff (Eds.) Last Modified 31 October 2021. The Climate Data Guide: PERSIANN-CDR: Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks—Climate Data Record. Available online: https://climatedataguide.ucar.edu/climate-data/persiann-cdr-precipitation-estimation-remotely-sensed-information-using-artificial (accessed on 11 January 2022).
- Maidment, R.I.; Grimes, D.; Black, E.; Tarnavsky, E.; Young, M.; Greatrex, H.; Allan, R.; Stein, T.; Nkonde, E.; Senkunda, S.; et al. A new, long-term daily satellite-based rainfall dataset for operational monitoring in Africa. Sci. Data 2017, 4, 170063. [Google Scholar] [CrossRef]
- Gado, T.A.; El-Hagrsy, R.M.; Rashwan, I.M.H. Spatial and temporal rainfall changes in Egypt. Environ. Sci. Pollut. Res. 2019, 26, 28228–28242. [Google Scholar] [CrossRef] [PubMed]
- Wedajo, G.K.; Muleta, M.K.; Awoke, B.G. Performance evaluation of multiple satellite rainfall products for Dhidhessa River Basin (DRB), Ethiopia. Atmos. Meas. Tech. 2021, 14, 2299–2316. [Google Scholar] [CrossRef]
- Sidike, A.; Chen, X.; Liu, T.; Durdiev, K.; Huang, Y. Investigating alternative climate data sources for hydrological simulations in the upstream of the Amu Darya River. Water 2016, 8, 441. [Google Scholar] [CrossRef]
- Hordofa, A.T.; Leta, O.T.; Alamirew, T.; Kawo, N.S.; Chukalla, A.D. Performance evaluation and comparison of satellite-derived rainfall datasets over the Ziway lake basin, Ethiopia. Climate 2021, 9, 113. [Google Scholar] [CrossRef]
- El Alaoui El Fels, A.; Saidi, M.E.; Alam, M.J. Rainfall Frequency Analysis Using Assessed and Corrected Satellite Precipitation Products in Moroccan Arid Areas. The Case of Tensift Watershed. Earth Syst. Environ. 2022, 6, 391–404. [Google Scholar] [CrossRef]
- Salaudeen, A.; Ismail, A.; Adeogun, B.K.; Ajibike, M.A.; Zubairu, I. Evaluation of ground-based, daily, gridded precipitation products for Upper Benue River basin, Nigeria. Eng. Appl. Sci. Res. 2021, 48, 397–405. [Google Scholar] [CrossRef]
- Nkunzimana, A.; Bi, S.; Alriah, M.A.; Zhi, T.; Kur, N.A. Comparative Analysis of the Performance of Satellite-Based Rainfall Products Over Various Topographical Unities in Central East Africa: Case of Burundi. Earth Space Sci. 2020, 7, e2019EA000834. [Google Scholar] [CrossRef]
- Gadouali, F.; Messouli, M. Evaluation of multiple satellite-derived rainfall products over Morocco. Int. J. Hydrol. Sci. Technol. 2020, 10, 72–89. [Google Scholar] [CrossRef]
- Nie, Y.; Sun, J. Evaluation of high-resolution precipitation products over southwest China. J. Hydrometeorol. 2020, 21, 2691–2712. [Google Scholar] [CrossRef]
- Gebremicael, T.; Mohamed, Y.; Berhe, A.; Haile, G.; Yazew, E.; Kifle, M. Comparative evaluation of multiple satellite rainfall products over the complex terrains of Tekeze-Atbara sub-basin, Nile River basin. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 8–13 April 2018; p. 5979. [Google Scholar]
- Arun, P.V. A comparative analysis of different DEM interpolation methods. Egypt. J. Remote Sens. Space Sci. 2013, 16, 133–139. [Google Scholar] [CrossRef] [Green Version]
No. | Rainfall Product | Abbreviation | Resolution | Time Scale | Temporal Coverage | Reference |
---|---|---|---|---|---|---|
1 | Tropical Rainfall Measuring Mission–3B43 V7 | TRMM | 0.25° × 0.25° | Daily | 1998–2019 | [33] |
2 | The African Rainfall Climatology–V2 | ARC | 0.1° × 0.1° | Daily | 1983–2022 | [34] |
3 | African Rainfall Estimation Algorithm–V2 | RFE | 0.1° × 0.1◦ | Daily | 2000–2022 | [35] |
4 | the Climate Hazards Group Infra-Red Precipitation Station | Chirps | 0.05° × 0.05° | Daily | 1981–2022 | [36] |
5 | Climate Prediction Center morphing method | CMORPH | 0.25° × 0.25° | Daily | 2002–2019 | [37,38] |
6 | Climate Prediction Center | CPC | 0.5° × 0.5° | Daily | 1947–2018 | [39] |
7 | Climatic Research Unit | CRU | 0.5° × 0.5° | Monthly | 1901–2019 | [10] |
8 | Global Precipitation Climatology Centre | GPCC | 0.5° × 0.5° | Monthly | 1891–2018 | [40,41] |
9 | Global Precipitation Climatology Project–One-Degree Daily Precipitation Dataset | GPCP_1DD | 1° × 1° | Daily | 1996–2015 | [42] |
10 | Global Precipitation Climatology Project | GPCP | 1° × 1° | Daily | 1979–2020 | [43,44] |
11 | Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks–Climate Data Record | PERSIANN | 0.25° × 0.25° | Daily | 1983–2021 | [19,45] |
12 | Tropical Applications of Meteorology Using Satellite Data and Ground-Based Observations | TAMSAT | 0.0375° × 0.0375° | Daily | 1983–2022 | [46] |
Indices | Formula | Parameters | Indices Range | Acceptable Range in This Paper |
---|---|---|---|---|
r | is average ground station observation is average RP estimates is observed rainfall is simulated rainfall | −1 to 1 | >0.65 | |
NSE | −∞ to 1 | >0.50 | ||
RMSE | 0 to ∞ | - | ||
Pbias | −∞ to ∞ | <±15% |
Marha-Matrouh | r | NSE | RMSE | Pbias | Abu-Qier | r | NSE | RMSE | Pbias | ||
TRMM | 0.823 | 0.416 | 31.0 | 15.3 | TRMM | 0.650 | −0.254 | 105.9 | 40.6 | ||
ARC | 0.912 * | 0.818 * | 17.3 * | 1.7 * | ARC | 0.420 * | 0.170 * | 86.1 * | −0.8 * | ||
RFE | 0.262 | −0.713 | 53.1 | 11.0 | RFE | 0.287 | −0.260 | 106.2 | 27.4 | ||
Chirps | 0.811 | 0.485 | 29.1 | −12.6 | Chirps | 0.237 | −0.012 | 95.1 | 12.6 | ||
CMORPH | 0.010 | −2.041 | 70.7 | 24.7 | CMORPH | 0.092 | −0.997 | 133.6 | −9.6 | ||
CPC | 0.916 * | 0.836 * | 16.4 * | −0.2 * | CPC | 0.387 | 0.071 | 91.2 | 12.9 | ||
CRU | 0.770 | 0.457 | 29.9 | −1.8 | CRU | 0.148 | −0.311 | 108.3 | 15.2 | ||
GPCC | 0.671 | −1.090 | 58.6 | −30.9 | GPCC | 0.494 | 0.124 | 88.5 | 11.4 | ||
GPCP_1DD | 0.380 | −1.606 | 65.4 | −21.7 | GPCP_1DD | −0.231 | −0.964 | 132.5 | 32.4 | ||
GPCP | 0.344 | −2.181 | 72.3 | −50.2 | GPCP | 0.183 | −0.182 | 102.8 | 23.4 | ||
PERSIANN | 0.054 | −2.850 | 79.5 | 58.0 | PERSIANN | 0.476 | −1.730 | 156.2 | 73.7 | ||
TAMSAT | −0.014 | −1.974 | 69.9 | 3.3 | TAMSAT | 0.062 | −1.339 | 144.6 | 60.9 | ||
Rasheed | r | NSE | RMSE | Pbias | Port-Said | r | NSE | RMSE | Pbias | ||
TRMM | 0.759 | −0.944 | 87.7 | 45.5 | TRMM | 0.785 | 0.264 | 20.1 | 25.9 | ||
ARC | 0.657 | 0.195 | 56.5 | 8.9 | ARC | 0.332 | −2.975 | 46.8 | −68.0 | ||
RFE | 0.167 | −1.737 | 104.1 | 33.1 | RFE | 0.501 | −0.098 | 24.6 | 19.6 | ||
Chirps | 0.425 | −0.154 | 67.6 | −16.9 | Chirps | −0.094 | −1.163 | 34.5 | −23.4 | ||
CMORPH | 0.757 | 0.117 | 59.1 | 20.7 | CMORPH | 0.345 | −0.488 | 28.6 | 26.6 | ||
CPC | 0.606 | 0.295 | 52.8 | 3.8 | CPC | 0.943 | 0.862 | 8.7 | −5.4 | ||
CRU | 0.461 | −0.148 | 67.4 | 7.4 | CRU | 0.481 | −80.241 | 211.5 | −368.4 | ||
GPCC | 0.877 * | 0.629 * | 38.3 * | 9.5 * | GPCC | 0.576 | 0.002 | 23.4 | 7.0 | ||
GPCP_1DD | 0.605 | −0.365 | 73.5 | 29.8 | GPCP_1DD | 0.550 | −11.731 | 83.7 | −125.7 | ||
GPCP | 0.464 | −0.052 | 64.5 | 18.5 | GPCP | 0.370 | −26.199 | 122.4 | −218.8 | ||
PERSIANN | 0.226 | −3.705 | 136.5 | 71.6 | PERSIANN | −0.012 | −0.963 | 32.9 | 26.8 | ||
TAMSAT | 0.150 | −1.104 | 91.3 | 33.8 | TAMSAT | −0.256 | −7.090 | 66.7 | −100.0 | ||
Damanhour | r | NSE | RMSE | Pbias | Mansoura | r | NSE | RMSE | Pbias | ||
TRMM | 0.234 | −1.092 | 36.6 | −1.0 | TRMM | 0.742 * | 0.047 * | 13.8 * | −29.7 * | ||
ARC | 0.238 | −0.882 | 35.1 | 29.3 | ARC | 0.296 | −9.119 | 45.0 | −84.0 | ||
RFE | −0.287 | −3.659 | 55.5 | 55.9 | RFE | 0.357 | −1.620 | 22.9 | −20.8 | ||
Chirps | 0.556 * | 0.122 * | 23.9 * | −16.9 * | Chirps | −0.033 | −1.956 | 24.3 | −43.2 | ||
CMORPH | 0.079 | −1.925 | 43.3 | −6.1 | CMORPH | 0.435 | −3.612 | 30.4 | −68.9 | ||
CPC | 0.679 | −8.357 | 79.9 | −112.3 | CPC | 0.286 | −3.757 | 30.9 | −74.0 | ||
CRU | 0.867 | −8.813 | 82.0 | −118.2 | CRU | 0.466 | 0.061 | 13.7 | −1.9 | ||
GPCC | 0.757 | −1.658 | 42.5 | −57.4 | GPCC | 0.519 | −0.297 | 16.1 | −7.6 | ||
GPCP_1DD | 0.431 | −3.773 | 56.6 | −70.4 | GPCP_1DD | 0.585 | −15.394 | 57.3 | −145.1 | ||
GPCP | 0.422 | −3.132 | 52.6 | −62.3 | GPCP | 0.588 | −64.173 | 114.2 | −339.1 | ||
PERSIANN | −0.005 | −3.024 | 51.9 | 60.8 | PERSIANN | −0.080 | −1.690 | 23.2 | −6.7 | ||
TAMSAT | −0.175 | −1.407 | 39.3 | 9.8 | TAMSAT | 0.319 | −21.474 | 67.1 | −184.4 | ||
Tanta | r | NSE | RMSE | Pbias | Cairo-Airport | r | NSE | RMSE | Pbias | ||
TRMM | 0.093 | −1.921 | 26.5 | −28.8 | TRMM | 0.477 | −0.098 | 10.1 | 1.7 | ||
ARC | −0.139 | −2.743 | 30.0 | −46.9 | ARC | 0.802 * | 0.505 * | 6.8 * | −8.7 * | ||
RFE | −0.035 | −5.387 | 39.2 | −7.1 | RFE | 0.730 | 0.192 | 8.6 | −3.1 | ||
Chirps | 0.398 * | −0.322 * | 17.8 * | −32.1 * | Chirps | 0.448 | −1.894 | 16.3 | −46.4 | ||
CMORPH | −0.252 | −6.495 | 42.5 | −65.5 | CMORPH | 0.448 | −1.894 | 16.3 | −46.4 | ||
CPC | 0.474 | −1.105 | 22.5 | −51.1 | CPC | 0.538 | −3.484 | 20.3 | −59.7 | ||
CRU | 0.796 | −30.894 | 87.6 | −250.3 | CRU | 0.456 | 0.037 | 9.4 | −1.1 | ||
GPCC | 0.723 | −78.477 | 138.3 | −413.7 | GPCC | 0.571 | 0.027 | 9.5 | 20.2 | ||
GPCP_1DD | −0.025 | −15.780 | 63.5 | −172.5 | GPCP_1DD | −0.154 | −57.126 | 73.2 | −312.1 | ||
GPCP | 0.042 | −49.748 | 110.5 | −307.6 | GPCP | 0.343 | −69.934 | 80.8 | −400.6 | ||
PERSIANN | −0.101 | −2.407 | 28.6 | 17.5 | PERSIANN | 0.094 | −4.844 | 23.2 | −58.0 | ||
TAMSAT | −0.097 | −4.306 | 35.7 | −64.9 | TAMSAT | −0.066 | −6.037 | 25.5 | −96.9 |
Jan | Feb | Mar | Apr | May | Sep | Oct | Nov | Dec | Annual | |
---|---|---|---|---|---|---|---|---|---|---|
Marsa-Matrouh | RFE ** | RFE ** CPC ** | ARC ** RFE ** CPC ** | ARC ** RFE ** | TRMM ** | GPCC * | RFE ** | RFE ** | CPC ** | CPC ** |
Abu-Qier | GPCC ** | GPCP * | CPC * | Chirps * | GPCC ** | ARC ** | TRMM ** | GPCC ** | GPCC * | ARC * |
Rasheed | GPCC ** | GPCC ** | CRU ** | GPCC * | TRMM * | Chirps ** | TRMM ** | GPCC ** | Chirps * | GPCC ** |
Port-Said | CPC ** | CPC ** | CPC ** GPCC ** | GPCC ** | GPCC ** | CPC ** | GPCC ** | GPCC ** | GPCC ** | CPC ** |
Damanhour | Chirps * | GPCP ** | TRMM ** | GPCC * | TRMM ** | CRU * TAMSAT * | GPCC * | RFE * | TRMM * | Chirps * |
Mansoura | Chirps * | CPC * | GPCC ** | GPCC ** | CRU * | CRU * | RFE ** | CMORPH * | TRMM * | TRMM * |
Tanta | Chirps * | CPC * | CPC | Chirps * | CMORPH ** | CMORPH * | TAMSAT * | Chirps * | TRMM * | Chirps * |
Cairo-Airport | GPCC ** | GPCC ** | ARC ** CPC ** | CPC * | CPC * | No Rainfall | GPCC ** | ARC ** | ARC ** | ARC ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roushdi, M. Spatio-Temporal Assessment of Satellite Estimates and Gauge-Based Rainfall Products in Northern Part of Egypt. Climate 2022, 10, 134. https://doi.org/10.3390/cli10090134
Roushdi M. Spatio-Temporal Assessment of Satellite Estimates and Gauge-Based Rainfall Products in Northern Part of Egypt. Climate. 2022; 10(9):134. https://doi.org/10.3390/cli10090134
Chicago/Turabian StyleRoushdi, Mahmoud. 2022. "Spatio-Temporal Assessment of Satellite Estimates and Gauge-Based Rainfall Products in Northern Part of Egypt" Climate 10, no. 9: 134. https://doi.org/10.3390/cli10090134
APA StyleRoushdi, M. (2022). Spatio-Temporal Assessment of Satellite Estimates and Gauge-Based Rainfall Products in Northern Part of Egypt. Climate, 10(9), 134. https://doi.org/10.3390/cli10090134