Climate Change Impacts and Adaptation in a Hill Farming System of the Himalayan Region: Climatic Trends, Farmers’ Perceptions and Practices
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Climate Data
2.3. Household Survey and Key Informant Interview
2.4. Data Analysis
2.4.1. Specification of the Model
2.4.2. Description of Independent Predictor Variables in the Model
3. Results
3.1. Climatic Characteristics and Trend Analysis
3.1.1. Precipitation Characteristics and Trend
3.1.2. Temperature Characteristics and Trend
3.2. People’s Perception of Climate Change
3.2.1. Demographic Characteristics of Respondents
3.2.2. Farmers’ Perception of the Indicators of Climate Change
3.2.3. Farmers’ Perception of Impacts of Climate Change on Agriculture
3.3. Local Adaptation Practices
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gioli, G.; Thapa, G.; Khan, F.; Dasgupta, P.; Nathan, D.; Chhetri, N.; Adhikari, L.; Mohanty, S.K.; Aurino, E.; Mapstone Scott, L. Understanding and Tackling Poverty and Vulnerability in Mountain Livelihoods in the Hindu Kush Himalayas. In The Hindu Kush Himalaya Assessment; Spinger: Cham, Switzerland, 2019. [Google Scholar]
- Shrestha, U.B.; Gautam, S.; Bawa, K.S. Widespread Climate Change in the Himalayas and Associated Changes in Local Ecosystems. PLoS ONE 2012, 7, e36741. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Grumbine, R.E.; Shrestha, A.; Eriksson, M.; Yang, X.; Wang, Y.; Wilkes, A. The Melting Himalayas: Cascading Effects of Climate Change on Water, Biodiversity, and Livelihoods. Conserv. Biol. 2009, 23, 520–530. [Google Scholar] [CrossRef] [PubMed]
- Jodha, N. Globalization and Fragile Mountain Environments. Mt. Res. Dev. 2009, 20, 296–299. [Google Scholar] [CrossRef] [Green Version]
- Immerzeel, W.W.; van Beek, L.P.H.; Bierkens, M.F.P. Climate Change Will Affect the Asian Water Towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Rasul, G.; Mahapatra, B.; Tuladhar, S. Household food security in the face of climate change in the Hindu-Kush Himalayan region. Food Sec. 2016, 8, 921–937. [Google Scholar] [CrossRef] [Green Version]
- Molden, D.J.; Shrestha, A.B.; Nepal, S.; Immerzeel, W.W. Downstream Implications of Climate Change in the Himalayas. In Water Security, Climate Change and Sustainable Development; Biswas, A.K., Tortajada, C., Eds.; Springer: Singapore, 2016; pp. 65–82. [Google Scholar]
- Ragettli, S.; Immerzeel, W.W.; Pellicciotti, F. Contrasting climate change impact on river flows from high-altitude catchments in the Himalayan and Andes Mountains. Proc. Natl. Acad. Sci. USA 2016, 113, 9222–9227. [Google Scholar] [CrossRef] [Green Version]
- Rasul, G.; Saboor, A.; Tiwari, P.C.; Hussain, A.; Ghosh, N.; Chettri, G.B. Food and Nutrition Security in the Hindu Kush Himalaya: Unique Challenges and Niche Opportunities. In The Hindu Kush Himalaya Assessment: Mountains, Climate Change, Sustainability and People; Wester, P., Mishra, A., Mukherji, A., Shrestha, A.B., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 301–338. [Google Scholar]
- Zhan, Y.J.; Ren, G.Y.; Shrestha, A.B.; Rajbhandari, R.; Ren, Y.Y.; Sanjay, J.; Xu, Y.; Sun, X.B.; You, Q.L.; Wang, S. Changes in extreme precipitation events over the Hindu Kush Himalayan region during 1961–2012. Adv. Clim. Change Res. 2017, 8, 166–175. [Google Scholar] [CrossRef]
- Dahal, P.; Shrestha, N.S.; Shrestha, M.L.; Krakauer, N.Y.; Panthi, J.; Pradhanang, S.M.; Jha, A.; Lakhankar, T. Drought risk assessment in central Nepal: Temporal and spatial analysis. Nat. Hazards 2016, 80, 1913–1932. [Google Scholar] [CrossRef] [Green Version]
- Kirschbaum, D.; Kapnick, S.B.; Stanley, T.; Pascale, S. Changes in Extreme Precipitation and Landslides Over High Mountain Asia. Geophys. Res. Lett. 2020, 47, e2019GL085347. [Google Scholar] [CrossRef]
- Vaidya, R.A.; Shrestha, M.S.; Nasab, N.; Gurung, D.R.; Kozo, N.; Pradhan, N.S.; Wasson, R.J. Disaster Risk Reduction and Building Resilience in the Hindu Kush Himalaya. In The Hindu Kush Himalaya Assessment: Mountains, Climate Change, Sustainability and People; Wester, P., Mishra, A., Mukherji, A., Shrestha, A.B., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 389–419. [Google Scholar]
- Chaudhary, P.; Bawa, K.S. Local perceptions of climate change validated by scientific evidence in the Himalayas. Biol. Lett. 2011, 7, 767–770. [Google Scholar] [CrossRef]
- Singh, S.P.; Thadani, R.; Negi, G.C.S.; Singh, R.D.; Gumber, S. The Impact of Climate Change in Hindu Kush Himalayas: Key Sustainability Issues. In Himalayan Weather and Climate and Their Impact on the Environment; Dimri, A.P., Bookhagen, B., Stoffel, M., Yasunari, T., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 453–472. [Google Scholar]
- Forster, P.M.; Maycock, A.C.; McKenna, C.M.; Smith, C.J. Latest climate models confirm need for urgent mitigation. Nat. Clim. Chang. 2020, 10, 7–10. [Google Scholar] [CrossRef]
- Basannagari, B.; Kala, C.P. Climate Change and Apple Farming in Indian Himalayas: A Study of Local Perceptions and Responses. PLoS ONE 2013, 8, e77976. [Google Scholar] [CrossRef] [Green Version]
- Gentle, P.; Maraseni, T.N. Climate change, poverty and livelihoods: Adaptation practices by rural mountain communities in Nepal. Environ. Sci. Policy 2012, 21, 24–34. [Google Scholar] [CrossRef]
- Kaul, V.; Thornton, T.F. Resilience and adaptation to extremes in a changing Himalayan environment. Reg. Environ. Chang. 2014, 14, 683–698. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers. In Climate Change 2007: The Physical Science Basis; Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Battisti David, S.; Naylor, R.L. Historical Warnings of Future Food Insecurity with Unprecedented Seasonal Heat. Science 2009, 323, 240–244. [Google Scholar] [CrossRef] [Green Version]
- Calzadilla, A.; Rehdanz, K.; Betts, R.; Falloon, P.; Wiltshire, A.; Tol, R.S.J. Climate change impacts on global agriculture. Clim. Chang. 2013, 120, 357–374. [Google Scholar] [CrossRef]
- Jasper, K.; Calanca, P.; Fuhrer, J. Changes in summertime soil water patterns in complex terrain due to climatic change. J. Hydrol. 2006, 327, 550–563. [Google Scholar] [CrossRef]
- Chhogyel, N.; Kumar, L.; Bajgai, Y. Consequences of Climate Change Impacts and Incidences of Extreme Weather Events in Relation to Crop Production in Bhutan. Sustainability 2020, 12, 4319. [Google Scholar] [CrossRef]
- Vogel, M.M.; Hauser, M.; Seneviratne, S.I. Projected changes in hot, dry and wet extreme events’ clusters in CMIP6 multi-model ensemble. Environ. Res. Lett. 2020, 15, 094021. [Google Scholar] [CrossRef]
- Shrestha, A.; Rahaman, M.M.; Kalra, A.; Jogineedi, R.; Maheshwari, P. Climatological Drought Forecasting Using Bias Corrected CMIP6 Climate Data: A Case Study for India. Forecasting 2020, 2, 59–84. [Google Scholar] [CrossRef]
- Shukla, R.; Agarwal, A.; Gornott, C.; Sachdeva, K.; Joshi, P.K. Farmer typology to understand differentiated climate change adaptation in Himalaya. Sci Rep. 2019, 9, 20375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gillies, R.R.; Wang, S.Y.; Sun, Y.; Chung, O.Y. Supportive empirical modelling for the forecast of monsoon precipitation in Nepal. Int. J. Climatol. 2013, 33, 3047–3054. [Google Scholar] [CrossRef]
- Karmacharya, J.; Levine, R.C.; Jones, R.; Moufouma-Okia, W.; New, M. Sensitivity of systematic biases in South Asian summer monsoon simulations to regional climate model domain size and implications for downscaled regional process studies. Clim. Dyn. 2015, 45, 213–231. [Google Scholar] [CrossRef]
- Adger, W.N.; Barnett, J.; Brown, K.; Marshall, N.; O’Brien, K. Cultural dimensions of climate change impacts and adaptation. Nat. Clim Chang. 2013, 3, 112–117. [Google Scholar] [CrossRef]
- Smit, B.; Wandel, J. Adaptation, adaptive capacity and vulnerability. Glob. Environ. Chang. 2006, 16, 282–292. [Google Scholar] [CrossRef]
- Brace, C.; Geoghegan, H. Human geographies of climate change: Landscape, temporality, and lay knowledges. Prog. Hum. Geogr. 2011, 35, 284–302. [Google Scholar] [CrossRef]
- Ford, J.D.; Vanderbilt, W.; Berrang-Ford, L. Authorship in IPCC AR5 and its implications for content: Climate change and Indigenous populations in WGII. Clim. Chang. 2012, 113, 201–213. [Google Scholar] [CrossRef] [Green Version]
- Lebel, L. Local knowledge and adaptation to climate change in natural resource-based societies of the Asia-Pacific. Mitig. Adapt. Strateg. Glob. Chang. 2013, 18, 1057–1076. [Google Scholar] [CrossRef]
- Lehner, F.; Stocker, T.F. From local perception to global perspective. Nat. Clim. Chang. 2015, 5, 731–734. [Google Scholar] [CrossRef]
- Islam, M.D.M.; Jannat, A.; Dhar, A.R.; Ahamed, T. Factors determining conversion of agricultural land use in Bangladesh: Farmers’ perceptions and perspectives of climate change. GeoJournal 2020, 85, 343–362. [Google Scholar] [CrossRef]
- Alexander, C.; Bynum, N.; Johnson, E.; King, U.; Mustonen, T.; Neofotis, P.; Oettlé, N.; Rosenzweig, C.; Sakakibara, C.; Shadrin, V.; et al. Linking Indigenous and Scientific Knowledge of Climate Change. BioScience 2011, 61, 477–484. [Google Scholar] [CrossRef] [Green Version]
- Makondo, C.C.; Thomas, D.S.G. Climate change adaptation: Linking indigenous knowledge with western science for effective adaptation. Environ. Sci. Policy 2018, 88, 83–91. [Google Scholar] [CrossRef]
- Li, H.; Haugen, J.E.; Xu, C.Y. Precipitation pattern in the Western Himalayas revealed by four datasets. Hydrol. Earth Syst. Sci. 2018, 22, 5097–5110. [Google Scholar] [CrossRef] [Green Version]
- Pandit, A.; Jain, A.; Singha, R.; Suting, A.; Jamir, S.; Pradhan, N.S.; Choudhury, D. Community Perceptions and Responses to Climate Variability: Insights from the Himalayas. In Climate Change Adaptation Strategies—An Upstream-Downstream Perspective; Salzmann, N., Huggel, C., Nussbaumer, S.U., Ziervogel, G., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 179–194. [Google Scholar]
- Esham, M.; Garforth, C. Agricultural adaptation to climate change: Insights from a farming community in Sri Lanka. Mitig. Adapt. Strateg. Glob. Chang. 2013, 18, 535–549. [Google Scholar] [CrossRef]
- Yatagai, A.; Kamiguchi, K.; Arakawa, O.; Hamada, A.; Yasutomi, N.; Kitoh, A. APHRODITE: Constructing a Long-Term Daily Gridded Precipitation Dataset for Asia Based on a Dense Network of Rain Gauges. Bull. Am. Meteorol. Soc. 2012, 93, 1401–1415. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Griffin: London, UK, 1975; 202p. [Google Scholar]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anheim, CA, USA, 17–22 January 1993; pp. 179–184. [Google Scholar]
- Al-Karablieh, E.K.; Al-Rimawi, A.S.; Hunaiti, D.A. Logit models for identifying the factors that influence the adoption of barley production technologies in low rainfall areas. Jordan J. Agric. Sci. 2010, 5, 251–265. [Google Scholar]
- Amemiya, T. Qualitative response models: A survey. J. Econ. Lit. 1981, 19, 1483–1536. [Google Scholar]
- Greene, W. Econometric Analysis, 6th ed.; Prentice Hall: Hoboken, NJ, USA, 2008; 1178p. [Google Scholar]
- Gujarati, D. Basic Econometrics, 3rd ed.; McGraw-Hill, Inc: New York, NY, USA, 1995; 568p. [Google Scholar]
- Horowitz, J.L.; Savin, N.E. Binary response models: Logits, probits and semiparametrics. J. Econ. Perspect. 2001, 15, 43–56. [Google Scholar] [CrossRef] [Green Version]
- Perry, G.M.; Rister, M.E.; Richardson, J.W.; Grant, W.R. Analyzing tenure arrangements and crop rotations using farm simulation and probit analysis. South. J. Agric. Econ. 1986, 18, 165–174. [Google Scholar] [CrossRef] [Green Version]
- Shideed, K.; El Mourid, M. Adoption and Impact Assessment of Improved Technologies in Crop and Livestock Production Systems in the WANA Region: The Development of Integrated Crop/Livestock Production in Low Rainfall Areas of Mashreq and Maghreb Regions; ICARDA: Aleppo, Syria, 2005; p. 160. [Google Scholar]
- Gerfin, M. Parametric and semi-parametric estimation of the binary response model of labour market participation. J. Appl. Econ. 1996, 11, 321–339. [Google Scholar] [CrossRef]
- Karli, B.; Bilgic, A.; Celik, Y. Factors affecting farmers’ decision to enter agricultural cooperatives using random utility model in the South Eastern Anatolian region of Turkey. J. Agric. Rural. Dev. Trop. Subtrop. 2006, 107, 115–127. [Google Scholar]
- Kebede, Y.; Gunjal, K.; Coffin, G. Adoption of new technologies in Ethiopian agriculture: The case of Tegulet-Bulga District, Shoa province. Agric. Econ. Agric. Econ. 1990, 4, 27–43. [Google Scholar]
- Kega, V.; Kasina, M.; Olubayo, F.; Kamau, G.; Nderitu, J. A logit analysis of farmer knowledge on rice blast disease (Pyricularia grisea [Cook, Sacc]) at Mwea irrigation scheme, Kirinyaga county, central province, Kenya. Univers. J. Agric. Res. 2015, 3, 114–117. [Google Scholar]
- Nyangena, W. Social determinants of soil and water conservation in rural Kenya. Environ. Dev. Sustain. 2007, 10, 745–767. [Google Scholar] [CrossRef]
- Sarap, K.; Vashist, D. Adoption of modern varieties of rice in Orissa: A farm level analysis. Indian J. Agric. Econ. 1994, 49, 88–93. [Google Scholar]
- Maddala, G.S. Limited Dependent and Qualitative Variables in Econometrics; Cambridge University Press: Cambridge, UK, 1983; 401p. [Google Scholar]
- Bortamuly, A.B.; Goswami, K. Determinants of the adoption of modern technology in the handloom industry in Assam. Technol. Forecast. Soc. Chang. 2015, 90, 400–409. [Google Scholar] [CrossRef]
- Kassa, B.A.; Abdi, A.T. Factors Influencing the Adoption of Climate-Smart Agricultural Practice by Small-Scale Farming Households in Wondo Genet, Southern Ethiopia. SAGE Open 2022, 12, 1–13. [Google Scholar] [CrossRef]
- Nandi, F.; Nandi, C.; Chikaire, J.; Umunnakwe, P.; Ihenacho, R. Analysis of rural cassava farmers’ participation in the Nigeria agricultural insurance scheme in Imo State, Nigeria. Glob. J. Sci. Front. Res. 2013, 13, 39–45. [Google Scholar]
- Shahbaz, P.; Boz, I.; Haq, S. Do socio economic characteristics of farming community really matter for the adoption of climate change strategies? A case study of central Punja, Pakistan. Fresenius Environ. Bull. 2021, 30, 80–92. [Google Scholar]
- Ul Haq, S.; Boz, I.; Shahbaz, P. Adoption of climate-smart agriculture practices and differentiated nutritional outcome among rural households: A case of Punjab province, Pakistan. Food Secur. 2021, 13, 913–931. [Google Scholar] [CrossRef]
- Shrestha, A.B.; Bajracharya, S.R.; Sharma, A.R.; Duo, C.; Kulkarni, A. Observed trends and changes in daily temperature and precipitation extremes over the Koshi river basin 1975–2010. Int. J. Climatol. 2017, 37, 1066–1083. [Google Scholar] [CrossRef] [Green Version]
- Sigdel, M.; Ma, Y. Variability and trends in daily precipitation extremes on the northern and southern slopes of the central Himalaya. Theor. Appl. Climatol. 2017, 130, 571–581. [Google Scholar] [CrossRef]
- Khatiwada, K.R.; Panthi, J.; Shrestha, M.L.; Nepal, S. Hydro-Climatic Variability in the Karnali River Basin of Nepal Himalaya. Climate 2016, 4, 17. [Google Scholar] [CrossRef]
- Selvaraju, R. Impact of El Niño–southern oscillation on Indian foodgrain production. Int. J. Climatol. 2003, 23, 187–206. [Google Scholar] [CrossRef]
- Adhikari, S. Drought Impact and Adaptation Strategies in the Mid-Hill Farming System of Western Nepal. Environments 2018, 5, 101. [Google Scholar] [CrossRef] [Green Version]
- Ghimire, Y.N.; Shivakoti, G.P.; Perret, S.R. Household-level vulnerability to drought in hill agriculture of Nepal: Implications for adaptation planning. Int. J. Sustain. Dev. World Ecol. 2010, 17, 225–230. [Google Scholar] [CrossRef]
- Krishnan, R.; Shrestha, A.B.; Ren, G.; Rajbhandari, R.; Saeed, S.; Sanjay, J.; Syed, M.; Vellore, R.; Xu, Y.; You, Q.; et al. Unravelling Climate Change in the Hindu Kush Himalaya: Rapid Warming in the Mountains and Increasing Extremes. In The Hindu Kush Himalaya Assessment; Wester, P., Mishra, A., Mukherji, A., Shrestha, A.B., Eds.; Springer: Cham, Switzerland, 2019; pp. 57–97. [Google Scholar]
- Norris, J.; Carvalho, L.M.V.; Jones, C.; Cannon, F. Warming and drying over the central Himalaya caused by an amplification of local mountain circulation. NPJ Clim. Atmos. Sci. 2020, 3, 1. [Google Scholar] [CrossRef] [Green Version]
- Ren, Y.Y.; Ren, G.Y.; Sun, X.B.; Shrestha, A.B.; You, Q.L.; Zhan, Y.J.; Rajbhandari, R.; Zhang, P.F.; Wen, K.M. Observed changes in surface air temperature and precipitation in the Hindu Kush Himalayan region over the last 100-plus years. Adv. Clim. Chang. Res. 2017, 8, 148–156. [Google Scholar] [CrossRef]
- Thakuri, S.; Dahal, S.; Shrestha, D.; Guyennon, N.; Romano, E.; Colombo, N.; Salerno, F. Elevation-dependent warming of maximum air temperature in Nepal during 1976–2015. Atmos. Res. 2019, 228, 261–269. [Google Scholar] [CrossRef]
- Zhao, W.; He, J.; Wu, Y.; Xiong, D.; Wen, F.; Li, A. An Analysis of Land Surface Temperature Trends in the Central Himalayan Region Based on MODIS Products. Remote Sens. 2019, 11, 900. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, T.R.; Craufurd, P.Q.; Ellis, R.H.; Porter, J.R.; Vara Prasad, P.V. Temperature variability and the yield of annual crops. Agric. Ecosyst. Environ. 2000, 82, 159–167. [Google Scholar] [CrossRef]
- Sinha, S.K.; Swaminathan, M.S. Deforestation, climate change and sustainable nutrition security: A case study of India. Clim. Chang. 1991, 19, 201–209. [Google Scholar] [CrossRef]
- Lal, M. Implications of climate change in sustained agricultural productivity in South Asia. Reg. Environ. Chang. 2011, 11, 79–94. [Google Scholar] [CrossRef]
- Maharjan, K.L.; Joshi, N.P. Effect of Climate Variables on Yield of Major Food-Crops in Nepal: A Time-Series Analysis. In Climate Change, Agriculture and Rural Livelihoods in Developing Countries; Maharjan, K.L., Joshi, N.P., Eds.; Springer: Tokyo, Japan, 2013; pp. 127–137. [Google Scholar]
- Deutsch, C.A.; Tewksbury, J.J.; Tigchelaar, M.; Battisti, D.S.; Merrill, S.C.; Huey, R.B.; Naylor, R.L. Increase in crop losses to insect pests in a warming climate. Science 2018, 361, 916–919. [Google Scholar] [CrossRef] [Green Version]
- Dukes, J.S.; Mooney, H.A. Does global change increase the success of biological invaders? Trends Ecol. Evol. 1999, 14, 135–139. [Google Scholar] [CrossRef]
- Chhogyel, N.; Kumar, L.; Bajgai, Y.; Hasan, M.K. Perception of farmers on climate change and its impacts on agriculture across various altitudinal zones of Bhutan Himalayas. Int. J. Environ. Sci. Technol. 2020, 17, 3607–3620. [Google Scholar] [CrossRef]
- Dey, T.; Pala, N.A.; Shukla, G.; Pal, P.K.; Das, G.; Chakarvarty, S. Climate change perceptions and response strategies of forest fringe communities in Indian Eastern Himalaya. Environ. Dev. Sustain. 2018, 20, 925–938. [Google Scholar] [CrossRef]
- Huang, X.; Zhou, Y.; Fang, J.; Hou, L. Climate change has more adverse impacts on the higher mountain communities than the lower ones: People’s perception from the northern Himalayas. J. Mt. Sci. 2019, 16, 2625–2639. [Google Scholar] [CrossRef]
- Paudel, B.; Zhang, Y.; Yan, J.; Rai, R.; Li, L.; Wu, X.; Chapagain, P.S.; Khanal, N.R. Farmers’ understanding of climate change in Nepal Himalayas: Important determinants and implications for developing adaptation strategies. Clim. Chang. 2020, 158, 485–502. [Google Scholar] [CrossRef]
- Pradhan, N.S.; Sijapati, S.; Bajracharya, S.R. Farmers’ responses to climate change impact on water availability: Insights from the Indrawati Basin in Nepal. Int. J. Water Resour. Dev. 2015, 31, 269–283. [Google Scholar] [CrossRef] [Green Version]
- Negi, V.S.; Maikhuri, R.K.; Pharswan, D.; Thakur, S.; Dhyani, P.P. Climate change impact in the Western Himalaya: People’s perception and adaptive strategies. J. Mt. Sci. 2017, 14, 403–416. [Google Scholar] [CrossRef]
- Uprety, Y.; Shrestha, U.B.; Rokaya, M.B.; Shrestha, S.; Chaudhary, R.P.; Thakali, A.; Cockfield, G.; Asselin, H. Perceptions of climate change by highland communities in the Nepal Himalaya. Clim. Dev. 2017, 9, 649–661. [Google Scholar] [CrossRef]
- Devkota, R.P.; Pandey, V.P.; Bhattarai, U.; Shrestha, H.; Adhikari, S.; Dulal, K.N. Climate change and adaptation strategies in Budhi Gandaki River Basin, Nepal: A perception-based analysis. Clim. Chang. 2017, 140, 195–208. [Google Scholar] [CrossRef]
- Sharma, R.K.; Shrestha, D.G. Climate perceptions of local communities validated through scientific signals in Sikkim Himalaya, India. Environ. Monit. Assess. 2016, 188, 578. [Google Scholar] [CrossRef]
- Haq, S.M.; Ahmed, K.J. Does the perception of climate change vary with the socio-demographic dimensions? A study on vulnerable populations in Bangladesh. Nat. Hazards 2017, 85, 1759–1785. [Google Scholar] [CrossRef]
- Barrett, K.; Bosak, K. The Role of Place in Adapting to Climate Change: A Case Study from Ladakh, Western Himalayas. Sustainability 2018, 10, 898. [Google Scholar] [CrossRef]
- Abid, M.; Schilling, J.; Scheffran, J.; Zulfiqar, F. Climate change vulnerability, adaptation and risk perceptions at farm level in Punjab, Pakistan. Sci. Total Environ. 2016, 547, 447–460. [Google Scholar] [CrossRef]
- Joshi, A.; Joshi, P.K. A rapid inventory of indicators of climate change in the middle Himalaya. Curr. Sci. 2011, 100, 831–833. [Google Scholar]
- Lobell, D.B.; Burke, M.B.; Tebaldi, C.; Mastrandrea, M.D.; Falcon, W.P.; Naylor, R.L. Prioritizing Climate Change Adaptation Needs for Food Security in 2030. Science 2008, 319, 607–610. [Google Scholar] [CrossRef] [PubMed]
- Batool, N.; Shah, S.A.; Dar, S.N.; Skinder, S. Rainfall variability and dynamics of cropping pattern in Kashmir Himalayas: A case study of climate change and agriculture. SN Appl. Sci. 2019, 1, 606. [Google Scholar] [CrossRef] [Green Version]
- Poudel, S.; Shaw, R. The Relationships between Climate Variability and Crop Yield in a Mountainous Environment: A Case Study in Lamjung District, Nepal. Climate 2016, 4, 13. [Google Scholar] [CrossRef] [Green Version]
- Rahut, D.B.; Ali, A. Coping with climate change and its impact on productivity, income, and poverty: Evidence from the Himalayan region of Pakistan. Int. J. Disaster Risk Reduct. 2017, 24, 515–525. [Google Scholar] [CrossRef]
- Pandey, R.; Kumar, P.; Archie, K.M.; Gupta, A.K.; Joshi, P.K.; Valente, D.; Petrosillo, I. Climate change adaptation in the western-Himalayas: Household level perspectives on impacts and barriers. Ecol. Indic. 2018, 84, 27–37. [Google Scholar] [CrossRef]
- Klein, R.J.; Midgley, G.; Preston, B.L.; Alam, M.; Berkhout, F.; Dow, K.; Shaw, M.R. Adaptation Opportunities Constraints and Limits. In Climate Change 2014: Impacts, Adaptation and Vulnerability; Field, C.B., Barros, V.R., Dokken, D.J., Mack, K.J., Mastrandea, M.D., Eds.; Cambridge University Press: Cambridge, UK, 2014; pp. 899–943. [Google Scholar]
- Gentle, P.; Thwaites, R.; Race, D.; Alexander, K.; Maraseni, T. Household and community responses to impacts of climate change in the rural hills of Nepal. Clim. Chang. 2018, 147, 267–282. [Google Scholar] [CrossRef]
Variable | Measurement | Possible Effect |
---|---|---|
EDUCATION | Level of education of the farmer measured in years of schooling | + |
AGE | Age of responding farmer measured in years | − |
GENDER | Gender of farmer respondent as binary variable noted as 1 = male and 0 = female farmer | + |
LANDHOLDING | Size of operational land holding by the farmer measured in hectare | + |
DISTANCE TO MARKE | Distance to nearest market to sale of agricultural produce measured in kilometer | +/− |
LIVESTOCK | Number of livestock holding measured in numbers | + |
FARMING EXPERIENCE | Years of farming experience of the responding farmers | + |
FARM ALTITUDE | Location of farm expressed as altitude meter above sea level (masl) | − |
FARMING PURPOSE | Primary purpose of the farming activity as binary variable 1 = market purpose otherwise 0 = subsistence. | + |
Variables and Category | Measures | Value | |
---|---|---|---|
Gender [BIN] | Female | Frequency | 33 (21.6%) |
Male | Frequency | 120 (78.4%) | |
Age [CONT] | Overall, in years | Mean | 46.5 ± 14.9 |
Up to 20 years | Frequency | 4 (2.6%) | |
21–40 years | Frequency | 59 (38.6%) | |
41 to 60 years | Frequency | 57 (37.3%) | |
61 and above | Frequency | 33 (21.6%) | |
Farming experience (years) [CONT] | Mean | 26.5 ± 14.9 | |
Land Area (ha) [CONT] | Mean | 0.64 ± 0.43 | |
Education [ORDINAL] | No Schooling | Frequency | 48 (31.4%) |
Primary Education | Frequency | 78 (51.0%) | |
Secondary education | Frequency | 23 (15.0%) | |
College/University | Frequency | 4 (2.6%) | |
Primary occupation [ORDINAL] | Only agriculture | Frequency | 102 (66.66%) |
Agriculture with local grocery and tea shop | Frequency | 12 (7.84%) | |
Agriculture with service | Frequency | 6 (3.92%) | |
Others | Frequency | 33 (21.56%) | |
Livestock holding [CONT] | Mean | 5.8 ± 3.6 | |
Distance to market [Ordinal] | <1 KM | Frequency | 36 (23.5%) |
1–5 KM | Frequency | 50 (32.7%) | |
5–10 KM | Frequency | 19 (12.4%) | |
>10 KM | Frequency | 48 (31.4%) | |
Farming purpose [BIN] | Market purpose = 1 | Frequency | 124 (81%) |
Subsistence = 0 | Frequency | 29 (19%) | |
Altitude (masl) [CONT] | Mean | 1278.11 ± 223.8 |
Perception Parameter | Perception Category | Gender of HH Head | p-Value (χ2-Test) | |
---|---|---|---|---|
Female (n = 33) | Male (n = 120) | |||
Rainfall Changes (pool) n = 100; f = 65.4% | No | 21.2% | 38.3% | 0.049 |
Yes | 78.8% | 61.7% | ||
Temperature change (pool) n = 55; f = 35.9% | No | 39.4% | 70.8% | 0.001 |
Yes | 60.6% | 29.2% | ||
Season Change (pool) n = 32, f = 20.9% | No | 81.8% | 78.3% | 0.434 |
Yes | 18.8% | 21.7% | ||
Overall climate change (frequency) | No (18.3%) Yes (81.7%) | 17.9% 22.4% | 82.1% 77.6% | - |
Climate Parameters | Perception Category | Education of HH Head | p-Value (χ2-Test) | |||
---|---|---|---|---|---|---|
No Schooling | Primary Education | Secondary Education | College/University | |||
Rainfall change | No | 33.3% | 35.9% | 34.8% | 25.0% | 0.968 |
Yes | 66.7% | 64.1% | 65.2% | 75.0% | ||
Temperature Change | No | 58.3% | 65.4% | 73.9% | 50.0% | 0.561 |
Yes | 41.7% | 34.6% | 26.1% | 50.0% | ||
Season Change | No | 93.8% | 71.8% | 78.3% | 50.0% | 0.013 |
Yes | 6.2% | 28.2% | 21.7% | 50.0% |
Climate Parameters | CC Perception | HH Age | p-Value (χ2-Test) | |||
---|---|---|---|---|---|---|
Upto 20 | 21–40 Years | 41 to 60 | 61 and above | |||
Rainfall change | No | 0.0% | 45.8% | 29.8% | 27.3% | 0.081 |
Yes | 100.0% | 54.2% | 70.2% | 72.7% | ||
Temperature Change | No | 100.0% | 67.8% | 66.7% | 48.5% | 0.100 |
Yes | 0.0% | 32.2% | 33.3% | 51.5% | ||
Season Change | No | 50.0 | 78.0 | 73.7 | 93.9 | 0.058 |
Yes | 50.0 | 22.0 | 26.3 | 6.1 |
Impact | Number of Respondents |
---|---|
Decrease soil moisture/need more water for irrigation | 103 (83%) |
Increase disease, insect, pest and weeds | 99 (80%) |
Low yield/crop failure | 63 (51%) |
Climate Change/Variability | Change Observed in Agriculture |
---|---|
Change and variability in rainfall | Difficult to puddle to transplant rice |
Decreased crop yield | |
Decreased soil moisture | |
Delayed in time of sowing of crops | |
Increase mortality of seedlings | |
Witlings crop in the field | |
Change and variability in temperature | Increased incidence of pest and diseases |
Appearance of newer pests and disease | |
Increased weeds | |
Change in crop phenology; time of flowering and fruiting | |
Burning younger new leaves of crop plants | |
Change in surface water availability | Drying natural water sources. |
Adaptation Measures | Adaptation Decision | Gender of HH Head | p-Value (χ2-Test) | |
---|---|---|---|---|
Female | Male | |||
Crop and variety adaptation | No | 78.8% | 69.2% | 0.280 |
Yes | 21.2% | 30.8% | ||
Technological adaptation | No | 93.9% | 75.8% | 0.022 |
Yes | 6.1% | 24.2% | ||
Input adaptation | No | 54.5% | 39.2% | 0.113 |
Yes | 45.5% | 60.8% | ||
Farm structural adaptation | No | 36.4% | 48.3% | 0.222 |
Yes | 63.6% | 51.7% |
Explanatory Variables | B | S.E. | Sig. |
---|---|---|---|
Gender (Male = 1, Female = 0) BIN | –0.403 | 0.577 | 0.485 |
Education ORDINAL | 0.747 | 0.369 | 0.043 |
Landholding (ha) CONT. | 0.535 | 0.540 | 0.322 |
Distance to market (km) CONT. | –0.751 | 0.222 | 0.001 |
Livestock number (number) CONT. | –0.008 | 0.063 | 0.898 |
Age (years) CONT. | –0.034 | 0.023 | 0.151 |
Farming experience (years) CONT. | 0.020 | 0.027 | 0.460 |
Farm Altitude (masl) CONT. | –0.001 | 0.001 | 0.551 |
Farming purpose [Market = 1 Subsistence -0) BIN | 1.579 | 0.530 | 0.003 |
Constant | 3.279 | 1.691 | 0.052 |
Log likelihood = 129.201, Cox and Snell R Square = 0.242, Nagelkerke R Square = 0.358 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dahal, K.R.; Dahal, P.; Adhikari, R.K.; Naukkarinen, V.; Panday, D.; Bista, N.; Helenius, J.; Marambe, B. Climate Change Impacts and Adaptation in a Hill Farming System of the Himalayan Region: Climatic Trends, Farmers’ Perceptions and Practices. Climate 2023, 11, 11. https://doi.org/10.3390/cli11010011
Dahal KR, Dahal P, Adhikari RK, Naukkarinen V, Panday D, Bista N, Helenius J, Marambe B. Climate Change Impacts and Adaptation in a Hill Farming System of the Himalayan Region: Climatic Trends, Farmers’ Perceptions and Practices. Climate. 2023; 11(1):11. https://doi.org/10.3390/cli11010011
Chicago/Turabian StyleDahal, Khem Raj, Piyush Dahal, Raj Kumar Adhikari, Veera Naukkarinen, Dinesh Panday, Niranjan Bista, Juha Helenius, and Buddhi Marambe. 2023. "Climate Change Impacts and Adaptation in a Hill Farming System of the Himalayan Region: Climatic Trends, Farmers’ Perceptions and Practices" Climate 11, no. 1: 11. https://doi.org/10.3390/cli11010011
APA StyleDahal, K. R., Dahal, P., Adhikari, R. K., Naukkarinen, V., Panday, D., Bista, N., Helenius, J., & Marambe, B. (2023). Climate Change Impacts and Adaptation in a Hill Farming System of the Himalayan Region: Climatic Trends, Farmers’ Perceptions and Practices. Climate, 11(1), 11. https://doi.org/10.3390/cli11010011