Projected Changes in Extreme Wet and Dry Conditions in Greece
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Climate Data
2.3. Method and Indices
2.4. Evaluation of the Climate Model—Metrics of Model Performance
3. Results
3.1. Time Series of Climate Extreme Precipitation Indices
3.1.1. Annual Total of Precipitation in Wet Days (PrcpTOT) and Simple Daily Intensity Index (SDII)
3.1.2. Maximum Annual Number of Consecutive Wet/Dry Days
3.1.3. Annual Number of Days with Precipitation Not Less Than 10 mm (R10mm) or 20 mm (R20mm)
3.1.4. Annual Maximum 1-Day (Rx1day) and 5-Day (Rx5day) Precipitation
3.1.5. Annual Total Precipitation from Days with PR > 95th (R95p) and PR > 99th (R99p) Percentile
3.1.6. Annual Fraction of Total Wet-Day Rainfall from Very Wet Days (R95pTOT) and Extremely Wet Days (R99pTOT)
3.2. Trends in Climate Extreme Precipitation Indices
3.3. Time Series of Drought Indices
3.3.1. Temporal Analysis of SPI-3, SPI-6, SPI-12, and SPI-24
3.3.2. Temporal Analysis of SPEI-3, SPEI-6, SPEI-12, and SPEI-24
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bolle, H.-J. Climate, Climate Variability, and Impacts in the Mediterranean Area: An Overview. In Mediterranean Climate—Variability and Trends; Bolle, H.-J., Ed.; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Christensen, J.H.; Kumar, K.K.; Aldrian, E.; An, S.-I.; Cavalcanti, I.F.A.; de Castro, M.; Dong, W.; Goswami, P.; Hall, A.; Kanyanga, J.K.; et al. Climate Phenomena and their Relevance for Future Regional Climate Change. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Mariotti, A.; Zeng, N.; Yoon, J.H.; Artale, V.; Navarra, A.; Alpert, P.; Li, L.Z.X. Mediterranean water cycle changes: Transition to drier 21st century conditions in observations and CMIP3 simulations. Environ. Res. Lett. 2008, 3, 044001. [Google Scholar] [CrossRef]
- Milano, M.; Ruelland, D.; Fernandez, S.; Dezetter, A.; Fabre, J.; Servat, E.; Fritsch, J.M.; Ardoin-Bardin, S.; Thivet, G. Current state of Mediterranean water resources and future trends under climatic and anthropogenic changes. Hydrolog. Sci. J. 2013, 58, 498–518. [Google Scholar] [CrossRef] [Green Version]
- Alessandri, A.; De Felice, M.; Zeng, N.; Mariotti, A.; Pan, Y.; Cherchi, A.; Lee, J.Y.; Wang, B.; Ha, K.J.; Ruti, P.; et al. Robust assessment of the expansion and retreat of Mediterranean climate in the 21st century. Sci. Rep. 2014, 4, 7211. [Google Scholar] [CrossRef] [Green Version]
- Seager, R.; Liu, H.; Henderson, N.; Simpson, I.; Kelley, C.; Shaw, T.; Kushnir, Y.; Ting, M. Causes of increasing aridification of the mediterranean region in response to rising greenhouse gases. J. Clim. 2014, 27, 4655–4676. [Google Scholar] [CrossRef] [Green Version]
- Caloiero, T.; Caloiero, P.; Frustaci, F. Long-Term Precipitation Trend Analysis in Europe and in the Mediterranean Basin: Long-Term Precipitation Trend Analysis. Water Environ. J. 2018, 32, 433–445. [Google Scholar] [CrossRef]
- Kim, G.U.; Seo, K.H.; Chen, D. Climate change over the Mediterranean and current destruction of marine ecosystem. Sci. Rep. 2019, 9, 18813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giorgi, F. Climate Change Hot-Spots. Geophys. Res. Lett. 2006, 33, L08707. [Google Scholar] [CrossRef]
- United Nations Environment Programme/Mediterranean Action Plan and Plan Bleu. State of the Environment and Development in the Mediterranean; United Nations: Nairobi, Kenya, 2020. [Google Scholar]
- Cramer, W.; Guiot, J.; Marini, K. (Eds.) MedECC. Climate and Environmental Change in the Mediterranean Basin—Current Situation and Risks for the Future. In First Mediterranean Assessment Report; Union for the Mediterranean, Plan Bleu; UNEP/MAP: Marseille, France, 2020. [Google Scholar]
- Lionello, P.; Scarascia, L. The Relation between Climate Change in the Mediterranean Region and Global Warming. Reg. Environ. Chang. 2018, 18, 1481–1493. [Google Scholar] [CrossRef]
- Ali, E.; Cramer, W.; Carnicer, J.; Georgopoulou, E.; Hilmi, N.J.M.; Le Cozannet, G.; Lionello, P. Cross-Chapter Paper 4: Mediterranean Region. In Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., Eds.; Cambridge University Press: Cambridge, UK, 2022; pp. 2233–2272. [Google Scholar]
- Mariotti, A.; Pan, Y.; Zeng, N.; Alessandri, A. Long-Term Climate Change in the Mediterranean Region in the Midst of Decadal Variability. Clim. Dyn. 2015, 44, 1437–1456. [Google Scholar] [CrossRef]
- Lionello, P.; Scarascia, L. The relation of climate extremes with global warming in the Mediterranean region and its north versus south contrast. Reg. Environ. Chang. 2020, 20, 1–16. [Google Scholar] [CrossRef]
- Molina, M.O.; Sánchez, E.; Gutiérrez, C. Future Heat Waves over the Mediterranean from an Euro-CORDEX Regional Climate Model Ensemble. Sci. Rep. 2020, 10, 8801. [Google Scholar] [CrossRef] [PubMed]
- Zittis, G.; Hadjinicolaou, P.; Klangidou, M.; Proestos, Y.; Lelieveld, J. A Multi-Model, Multi-Scenario, and Multi-Domain Analysis of Regional Climate Projections for the Mediterranean. Reg. Environ. Chang. 2019, 19, 2621–2635. [Google Scholar] [CrossRef] [Green Version]
- Zittis, G.; Hadjinicolaou, P.; Fnais, M.; Lelieveld, J. Projected Changes in Heat Wave Characteristics in the Eastern Mediterranean and the Middle East. Reg. Environ. Chang. 2016, 16, 1863–1876. [Google Scholar] [CrossRef]
- Tramblay, Y.; Somot, S. Future evolution of extreme precipitation in the Mediterranean. Clim. Change 2018, 151, 289–302. [Google Scholar] [CrossRef]
- Zittis, G.; Bruggeman, A.; Lelieveld, J. Revisiting future extreme precipitation trends in the Mediterranean. Weather Clim. Extrem. 2021, 34, 100380. [Google Scholar] [CrossRef]
- Jacob, D.; Kotova, L.; Teichmann, C.; Sobolowski, S.P.; Vautard, R.; Donnelly, C.; Koutroulis, A.G.; Grillakis, M.G.; Tsanis, I.K.; Damm, A. Climate impacts in Europe under +1.5 °C global warming. Earth’s Future 2018, 6, 264–285. [Google Scholar] [CrossRef] [Green Version]
- Vautard, R.; Gobiet, A.; Sobolowski, S.; Kjellström, E.; Stegehuis, A.; Watkiss, P.; Mendlik, T.; Landgren, O.; Nikulin, G.; Teichmann, C. The European climate under a 2 °C global warming. Environ. Res. Lett. 2014, 9, 034006. [Google Scholar] [CrossRef]
- Forzieri, G.; Feyen, L.; Rojas, R.; Flörke, M.; Wimmer, F.; Bianchi, A. Ensemble projections of future streamflow droughts in Europe. Hydrol. Earth Syst. Sci. 2014, 18, 85–108. [Google Scholar] [CrossRef] [Green Version]
- Toreti, A.; Naveau, P.; Zampieri, M.; Schindler, A.; Scoccimarro, E.; Xoplaki, E.; Dijkstra, H.A.; Gualdi, S.; Luterbacher, J. Projections of global changes in precipitation extremes from Coupled Model Intercomparison Project Phase 5 models. Geophys. Res. Lett. 2013, 40, 4887–4892. [Google Scholar] [CrossRef] [Green Version]
- Toreti, A.; Naveau, P. On the evaluation of climate model simulated precipitation extremes. Environ. Res. Lett. 2015, 10, 014012. [Google Scholar] [CrossRef]
- Paxian, A.; Hertig, E.; Seubert, S.; Vogt, G.; Jacobeit, J.; Paeth, H. Present-day and future mediterranean precipitation extremes assessed by different statistical approaches. Clim. Dyn. 2015, 44, 845–860. [Google Scholar] [CrossRef]
- Duguy, B.; Paula, S.; Pausas, J.G.; Alloza, J.A.; Gimeno, T.; Vallejo, R.V. Effects of Climate and Extreme Events on Wildfire Regime and their Ecological Impacts. In Regional Assessment of Climate Change in the Mediterranean. Volume 2: Agriculture, Forests and Ecosystem Services and People; Navarra, A., Tubiana, L., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 101–134. [Google Scholar]
- Ruffault, J.; Moron, V.; Trigo, R.M.; Curt, T. Objective identification of multiple large fire climatologies: An application to a Mediterranean ecosystem. Environ. Res. Lett. 2016, 11, 075006. [Google Scholar] [CrossRef] [Green Version]
- Turco, M.; Llasat, M.C.; von Hardenberg, J.; Provenzale, A. Climate change impacts on wildfires in a Mediterranean environment. Clim. Change 2014, 125, 369–380. [Google Scholar] [CrossRef]
- Carnicer, J.; Alegria, A.; Giannakopoulos, C.; Di Giuseppe, F.; Karali, A.; Koutsias, N.; Lionello, P.; Parrington, M.; Vitolo, C. Global warming is shifting the relationships between fire weather and realized fire-induced CO2 emissions in Europe. Sci. Rep. 2022, 12, 10365. [Google Scholar] [CrossRef] [PubMed]
- Iglesias, A.; Garrote, L.; Quiroga, S.; Moneo, M. A regional comparison of the effects of climate change on agricultural crops in Europe. Clim. Chang. 2012, 112, 29–46. [Google Scholar]
- Olesen, J.E.; Trnka, M.; Kersebaum, K.C.; Skjelvåg, A.O.; Seguin, B.; Peltonen-Sainio, P.; Rossi, F.; Kozyra, J.; Micale, F. Impacts and adaptation of European crop production systems to climate change. Eur. J. Agron. 2011, 34, 96–112. [Google Scholar] [CrossRef]
- Zittis, G.; Almazroui, M.; Alpert, P.; Ciais, P.; Cramer, W.; Dahdal, Y.; Fnais, M.; Francis, D.; Hadjinicolaou, P.; Howari, F.; et al. Climate Change and Weather Extremes in the Eastern Mediterranean and Middle East. Rev. Geophys. 2022, 60, e2021RG000762. [Google Scholar] [CrossRef]
- García-Garizábal, I.; Causapé, J.; Abrahao, R.; Merchan, D. Impact of Climate Change on Mediterranean Irrigation Demand: Historical Dynamics of Climate and Future Projections. Water Resour. Manag. 2014, 28, 1449–1462. [Google Scholar] [CrossRef]
- Todaro, V.; D’Oria, M.; Secci, D.; Zanini, A.; Tanda, M.G. Climate Change over the Mediterranean Region: Local Temperature and Precipitation Variations at Five Pilot Sites. Water 2022, 14, 2499. [Google Scholar] [CrossRef]
- Giannakopoulos, C.; Kostopoulou, E.; Varotsos, K.V.; Tziotziou, K.; Plitharas, A. An integrated assessment of climate change impacts for Greece in the near future. Reg. Environ. Chang. 2011, 11, 829–843. [Google Scholar] [CrossRef] [Green Version]
- Jacob, D.; Petersen, J.; Eggert, B.; Alias, A.; Christensen, O.B.; Bouwer, L.M.; Braun, A.; Colette, A.; Déqué, M.; Georgievski, G.; et al. EURO-CORDEX: New high-resolution climate change projections for European impact research. Reg. Environ. Chang. 2014, 14, 563–578. [Google Scholar] [CrossRef]
- Moss, R.H.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.R.; Rose, S.K.; Van Vuuren, D.P.; Carter, T.R.; Emori, S.; Kainuma, M.; Kram, T. The next generation of scenarios for climate change research and assessment. Nature 2010, 463, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Samuelsson, P.; Jones, C.G.; Willen, U.; Ullerstig, A.; Gollvik, S.; Hansson, U.; Jansson, C.; Kjellström, E.; Nikulin, G.; Wyser, K. The Rossby Centre regional model RCA3: Model description and performance. Tellus Ser. A 2011, 63, 4–23. [Google Scholar] [CrossRef] [Green Version]
- Strandberg, G.; Bärring, L.; Hansson, U.; Jansson, C.; Jones, C.; Kjellström, E.; Kupiainen, M.; Nikulin, G.; Samuelsson, P.; Ullerstig, A. CORDEX Scenarios for Europe from the Rossby Centre Regional Climate Model RCA4; Technical Report 116; Swedish Meteorological and Hydrological Institute: Norrköping, Sweden, 2014. [Google Scholar]
- Peterson, T.C.; Manton, M.J. Monitoring changes in climate extremes: A tale of international collaboration. Bull. Amer. Meteorol. Soc. 2008, 89, 1266–1271. [Google Scholar] [CrossRef]
- Alexander, L.V.; Fowler, H.J.; Bador, M.; Behrangi, A.; Donat, M.G.; Dunn, R.; Funk, C.; Goldie, J.; Lewis, E.; Rogé, M.; et al. On the use of indices to study extreme precipitation on sub-daily and daily timescales. Environ. Res. Lett. 2019, 14, 125008. [Google Scholar] [CrossRef]
- Zhang, X.; Alexander, L.; Hegerl, G.C.; Jones, P.; Tank, A.K.; Peterson, T.C.; Trewin, B.; Zwiers, F.W. Indices for monitoring changes in extremes based on daily temperature and precipitation data, WIREs. Clim. Chang. 2011, 2, 851–870. [Google Scholar]
- Donat, M.G.; Alexander, L.; Yang, H.; Durre, I.; Vose, R.; Caesar, J. Global Land-Based Datasets for Monitoring Climatic Extremes. Bull. Amer. Meteorol. Soc. 2013, 94, 997–1006. [Google Scholar] [CrossRef] [Green Version]
- Wilhite, D.A. Responding to drought: Common threads from the past, visions for the future. J. Am. Water Resour. Assoc. 1997, 33, 951–959. [Google Scholar] [CrossRef] [Green Version]
- Nam, W.H.; Hayes, M.J.; Svoboda, M.D.; Tadesse, T.; Wilhite, D.A. Drought Hazard Assessment in the Context of Climate Change for South Korea. Agric. Water Manag. 2015, 160, 106–117. [Google Scholar] [CrossRef]
- Alexander, L.V.; Herold, N.; ClimPACT2 Indices and Software. A Document Prepared on Behalf of the Commission for Climatology (CCl) Expert Team on Sector-specific Climate Indices (ET-SCI) 2016. Available online: https://awi.eprints-hosting.org/id/eprint/49274/1/ClimPACTv2_manual.pdf (accessed on 10 March 2021).
- World Meteorological Organization. Standardized Precipitation Index User Guide; Svoboda, M., Hayes, M., Wood, D., Eds.; World Meteorological Organization: Geneva, Switzerland, 2012. [Google Scholar]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The Relationship of Drought Frequency and Duration to Time Scales. In Proceedings of the Eighth Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 179–184. [Google Scholar]
- Edwards, D.C.; McKee, T.B. Characteristics of 20th Century Drought in the United States at Multiple Time Scales. Master’s Thesis, Colorado State University, Fort Collins, CO, USA, 1997; p. 174. [Google Scholar]
- Yuan, X.; Jian, J.; Jiang, G. Spatiotemporal Variation of Precipitation Regime in China from 1961 to 2014 from the Standardized Precipitation Index. ISPRS Int. J. Geo-Inf. 2016, 5, 194. [Google Scholar] [CrossRef] [Green Version]
- Vicente-Serrano, S.M.; Begueria, S.; Lopez-Moreno, J.I. A multi-scalar drought index sensitive to global warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Zhu, F.; Emile-Geay, J.; McKay, N.P.; Hakim, G.J.; Khider, D.; Ault, T.R.; Steig, E.J.; Dee, S.; Kirchner, J.W. Climate models can correctly simulate the continuum of global-average temperature variability. Proc. Natl. Acad. Sci. USA 2019, 116, 8728–8733. [Google Scholar] [CrossRef] [Green Version]
- Valler, V.; Brugnara, Y.; Bronnimann, S. Assimilating monthly precipitation data in a paleoclimate data assimilation framework. Clim. Past. 2020, 16, 1309–1323. [Google Scholar] [CrossRef]
- Madoff, R.; Putkonen, J. Global variations in regional degradation rates since the Last Glacial Maximum mapped through time and space. Quat. Res. 2022, 109, 128–140. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Z.; Foster, I.; Chang, W.; Kettimuthu, R.; Kotamarthi, V.R. Fast and accurate learned multiresolution dynamical downscaling for precipitation. Geosci. Model Dev. 2021, 14, 6355–6372. [Google Scholar] [CrossRef]
- Legates, D.R. Climate Models and Their Simulation of Precipitation. Energy Environ. 2014, 25, 1163–1175. [Google Scholar] [CrossRef]
- Bauer, P.; Thorpe, A.; Brunet, G. The quiet revolution of numerical weather prediction. Nature 2015, 525, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Wang, L.; Koike, T.; Zhou, H.; Yang, K.; Wang, A.; Li, W. Evaluation and application of a fine-resolution global data set in a semiarid mesoscale river basin with a distributed biosphere hydrological model. J. Geophys. Res. 2011, 116, D21108. [Google Scholar] [CrossRef]
- Colston, J.M.; Ahmed, T.; Mahopo, C.; Kang, G.; Kosek, M.N.; de Sousa Júnior, F.C.; Shrestha, P.; Svensen, E.; Turab, A.; Zaitchik, B.F. Evaluating meteorological data from weather stations, and from satellites and global models for a multi-site epidemiological study. Environ. Res. 2018, 165, 91–109. [Google Scholar] [CrossRef] [PubMed]
- Barnston, A.G. Correspondence among the correlation, RMSE, and Heidke forecast verification measures; refinement of the Heidke score. Weather Forecast. 1992, 7, 699–709. [Google Scholar] [CrossRef]
- Rebetez, M.; Mayer, H.; Dupont, O.; Schindler, D.; Gartner, K.; Kropp, J.P.; Menzel, A. Heat and drought 2003 in Europe: A climate synthesis. Ann. For. Sci. 2006, 63, 569–577. [Google Scholar] [CrossRef] [Green Version]
Index | Definition | Units |
---|---|---|
CDD | Maximum number of consecutive dry days (PR < 1.0 mm) | days |
CWD | Maximum annual number of consecutive wet days (PR ≥ 1.0 mm) | days |
R10mm | Annual number of days when PR ≥10 mm | days |
R20mm | Annual number of days when PR ≥ 20 mm | days |
PrcpTOT | Sum of daily PR ≥ 1.0 mm (from wet days) | mm |
SDII | Annual total PR (PR ≥ 1.0 mm) divided by the number of wet days | mm/day |
Rx1day | Maximum 1-day PR total | mm |
Rx5day | Maximum 5-day PR total | mm |
R95p | Annual total precipitation from days with PR > 95th percentile | mm |
R99p | Annual total precipitation from days with PR > 99th percentile | mm |
R95pTOT | Fraction of total wet-day rainfall from very wet days (100*r95p/PrcpTOT) | % |
R99pTOT | Fraction of total wet-day rainfall from extremely wet days (100*r99p/PrcpTOT) | % |
SPI | Standardized Precipitation Index | unitless |
SPEI | Standardized Precipitation Evapotranspiration Index | unitless |
Anomaly | Range of SPI Values | Precipitation Regime |
---|---|---|
2.0 < SPI ≤ Max | Extremely wet | |
Positive | 1.5 < SPI ≤ 2.0 | Very wet |
1.0 < SPI ≤ 1.5 | Moderately wet | |
None | −1.0 < SPI ≤ 1.0 | Normal precipitation |
−1.5 < SPI ≤ −1.0 | Moderately dry | |
Negative | −2.0 < SPI ≤ −1.5 | Very dry |
Min ≤ SPI ≤ −2.0 | Extremely dry |
Stations | PrcpTOT | SDII | CWD | CDD | R10mm | R20mm | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R4.5 | R8.5 | R4.5 | R8.5 | R4.5 | R8.5 | R4.5 | R8.5 | R4.5 | R8.5 | R4.5 | R8.5 | |
Alexandroupoli | −3.28 | −14.2 | 0.08 | 0.1 | −0.06 | −0.17 | 1.24 | 2.92 | −0.07 | −0.38 | 0.03 | −0.09 |
Argostoli | −17.4 | −45.8 | −0.01 | −0.09 | −0.07 | −0.35 | 1.29 | 2.51 | −0.86 | −1.79 | −0.34 | −0.95 |
Athens | −3.81 | −10.6 | 0 | 0.01 | −0.12 | −0.12 | 0.42 | 3.67 | −0.16 | −0.3 | −0.05 | −0.08 |
Chania | −12.9 | −29.5 | −0.02 | −0.04 | −0.21 | −0.41 | 1.36 | 3.88 | −0.4 | −1 | −0.15 | −0.31 |
Chios | −8.26 | −22.9 | 0.02 | 0.04 | −0.1 | −0.27 | 1.16 | 3.69 | −0.37 | −0.9 | −0.11 | −0.35 |
Corfu | −17.2 | −36.4 | 0.01 | 0.02 | −0.04 | −0.2 | 0.96 | 1.38 | −0.63 | −1.46 | −0.26 | −0.53 |
Florina | −2.05 | −8.27 | 0.02 | 0.05 | −0.04 | −0.08 | 1.18 | 2.3 | −0.06 | −0.22 | 0.02 | 0 |
Ierapetra | −7.1 | −17.1 | −0.01 | −0.04 | −0.14 | −0.18 | 0.72 | 2.4 | −0.22 | −0.52 | −0.09 | −0.18 |
Iraklio | −4.67 | −9.59 | 0.02 | 0.01 | −0.1 | −0.14 | 1.49 | 5.74 | −0.1 | −0.22 | 0 | −0.06 |
Kalamata | −3.07 | −14.1 | 0.03 | −0.02 | 0.04 | −0.2 | 0.33 | 2.35 | −0.01 | −0.4 | 0.01 | −0.11 |
Kithira | −25.1 | −43.6 | −0.12 | −0.13 | −0.2 | −0.38 | 1.81 | 4.11 | −0.92 | −1.64 | −0.51 | −0.73 |
Kos | −9.96 | −21.5 | −0.01 | 0 | −0.18 | −0.25 | 0.43 | 3.52 | −0.39 | −0.83 | −0.08 | −0.25 |
Lamia | −1.45 | −6.03 | 0.03 | 0.06 | −0.07 | −0.1 | 1.34 | 4.43 | 0.07 | −0.01 | 0.01 | −0.02 |
Larissa | 1.19 | −6.7 | 0.1 | 0.05 | −0.02 | −0.06 | 1.38 | 3.04 | 0.05 | −0.17 | 0.08 | 0.02 |
Milos | −8.04 | −15.2 | 0.01 | 0.04 | −0.17 | −0.23 | 1.67 | 4.27 | −0.16 | −0.49 | −0.09 | −0.12 |
Mytilene | −15.9 | −36.0 | 0.06 | 0.06 | −0.09 | −0.31 | 1.37 | 3.41 | −0.63 | −1.5 | −0.37 | −0.66 |
Naxos | −5.13 | −15.0 | 0.02 | 0.01 | −0.1 | −0.18 | 0.56 | 3.26 | −0.19 | −0.5 | −0.07 | −0.13 |
Rhodes | −27.6 | −46.5 | −0.08 | −0.08 | −0.25 | −0.39 | 1.69 | 4.55 | −1.01 | −1.74 | −0.49 | −0.73 |
Skiros | −4.62 | −10.7 | 0.05 | 0.03 | −0.06 | −0.07 | 1.34 | 3.63 | −0.21 | −0.42 | −0.02 | −0.07 |
Thessaloniki | −0.75 | −5.19 | 0.08 | 0.1 | −0.05 | −0.08 | 1.23 | 2.1 | 0.03 | −0.06 | 0.08 | 0.07 |
Zakynthos | −34.7 | −78.1 | −0.05 | −0.18 | −0.14 | −0.35 | 1.06 | 2.24 | −1.08 | −2.37 | −0.77 | −1.63 |
Stations | Rx1day | Rx5day | R95p | R99p | R95pTOT | R99pTOT | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R4.5 | R8.5 | R4.5 | R8.5 | R4.5 | R8.5 | R4.5 | R8.5 | R4.5 | R8.5 | R4.5 | R8.5 | |
Alexandroupoli | 0.09 | −0.39 | 0.54 | −0.78 | −0.35 | −1.51 | 0.07 | −0.39 | 0.11 | 0.28 | 0.03 | 0.09 |
Argostoli | 0.63 | 0.23 | −0.29 | −1.35 | 1.09 | −7.24 | 0.27 | 1.09 | 0.42 | 0.09 | 0.12 | 0.37 |
Athens | 0.45 | −0.44 | 0.07 | −0.82 | −0.39 | −1.93 | 1.14 | −0.81 | 0.06 | 0.05 | 0.28 | −0.17 |
Chania | −0.07 | −0.1 | −0.56 | −1.45 | −3.81 | −5.79 | −0.69 | −0.5 | −0.1 | 0.07 | 0.09 | 0.24 |
Chios | −0.28 | 0.18 | −0.95 | −0.51 | 1.15 | −0.09 | 0.09 | 0.72 | 0.36 | 0.51 | 0.07 | 0.23 |
Corfu | −0.12 | 0.03 | −0.7 | −0.87 | −1.14 | −1.65 | −1.77 | 1.34 | 0.17 | 0.38 | −0.03 | 0.25 |
Florina | 0.95 | 0.12 | 0.85 | −0.24 | 1.61 | −0.03 | 2.07 | 0.87 | 0.57 | 0.31 | 0.62 | 0.3 |
Ierapetra | 0.12 | −0.64 | −0.06 | −1.71 | −1.82 | −4.43 | −0.26 | −0.78 | 0.03 | −0.12 | 0.06 | 0.04 |
Iraklio | −0.26 | −0.56 | −1.16 | −1.11 | −0.79 | −2.28 | −0.52 | −0.68 | 0.26 | −0.11 | 0.04 | −0.04 |
Kalamata | 0.34 | −0.17 | −0.14 | −0.62 | 0.44 | −2.41 | −0.23 | −1.13 | 0.37 | 0.31 | 0.1 | −0.09 |
Kithira | −0.19 | −0.98 | −1.56 | −2.21 | −6.42 | −9.49 | −1.28 | −2.12 | −0.14 | −0.07 | 0.02 | 0.01 |
Kos | −0.11 | 0.17 | −0.67 | −1.22 | −2.38 | −2.64 | 0.53 | 0.85 | −0.12 | 0.14 | 0.14 | 0.36 |
Lamia | 0.46 | 0.05 | 0.43 | 0.61 | 0.13 | −0.51 | −0.11 | −0.27 | 0.13 | 0.23 | −0.01 | 0.03 |
Larissa | 0.78 | 0.05 | 0.81 | −0.23 | 3.65 | 0.28 | 2.6 | 0.6 | 0.99 | 0.59 | 0.69 | 0.36 |
Milos | −0.15 | 0.62 | −0.19 | −0.09 | −1.12 | −0.79 | −1.35 | 1.41 | 0.18 | 0.34 | −0.11 | 0.47 |
Mytilene | 0.35 | 0.94 | −0.87 | −0.28 | 1.19 | −1.17 | 1.56 | 2.24 | 0.34 | 0.54 | 0.18 | 0.45 |
Naxos | 0.04 | −0.13 | −0.43 | −0.37 | 0.29 | −0.85 | 1.16 | 1.19 | 0.3 | 0.34 | 0.3 | 0.38 |
Rhodes | −0.37 | −0.01 | −1.69 | −2.61 | −7.2 | −7.9 | −1.81 | −1.62 | −0.11 | 0.15 | −0.03 | 0.22 |
Skiros | 1.26 | 0.57 | 1.27 | 0.49 | 1.69 | 1.18 | 2.36 | 1.96 | 0.63 | 0.66 | 0.59 | 0.52 |
Thessaloniki | −0.36 | 0.13 | −0.45 | 0.21 | 2.44 | 2.13 | −0.06 | 0.14 | 0.63 | 0.83 | 0.08 | 0.1 |
Zakynthos | 0.5 | 0.24 | −2.41 | −3.52 | −5.45 | −15.1 | −0.33 | −2.41 | 0.09 | 0.01 | 0.12 | 0.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kostopoulou, E.; Giannakopoulos, C. Projected Changes in Extreme Wet and Dry Conditions in Greece. Climate 2023, 11, 49. https://doi.org/10.3390/cli11030049
Kostopoulou E, Giannakopoulos C. Projected Changes in Extreme Wet and Dry Conditions in Greece. Climate. 2023; 11(3):49. https://doi.org/10.3390/cli11030049
Chicago/Turabian StyleKostopoulou, Effie, and Christos Giannakopoulos. 2023. "Projected Changes in Extreme Wet and Dry Conditions in Greece" Climate 11, no. 3: 49. https://doi.org/10.3390/cli11030049
APA StyleKostopoulou, E., & Giannakopoulos, C. (2023). Projected Changes in Extreme Wet and Dry Conditions in Greece. Climate, 11(3), 49. https://doi.org/10.3390/cli11030049