Characteristics of Compound Climate Extremes and Impacts in Singapore, 1985–2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. Definition of Compound Climate Extremes
3. Results
3.1. Compound Rainfall and Wind Speed Extremes
3.2. Compound Dry and Hot Extremes
4. Climate Impacts
5. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IPCC. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012; pp. 115–122. [Google Scholar]
- van den Hurk, B.; van Meijgaard, E.; de Valk, P.; van Heeringen, K.J.; Gooijer, J. Analysis of a compounding surge and precipitation event in the Netherlands. Environ. Res. Lett. 2015, 10, 035001. [Google Scholar] [CrossRef]
- Gazol, A.; Camarero, J.J. Compound climate events increase tree drought mortality across European forests. Sci. Total Environ. 2022, 816, 151604. [Google Scholar] [CrossRef] [PubMed]
- Squire, D.T.; Richardson, D.; Risbey, J.S.; Black, A.S.; Kitsios, V.; Matear, R.J.; Monselesan, D.; Moore, T.S.; Tozer, C.R. Likelihood of unprecedented drought and fire weather during Australia’s 2019 megafires. NPJ Clim. Atmos. Sci. 2021, 4, 1–2. [Google Scholar] [CrossRef]
- Zscheischler, J.; Westra, S.; van Den Hurk, B.J.; Seneviratne, S.I.; Ward, P.J.; Pitman, A.; AghaKouchak, A.; Bresch, D.N.; Leonard, M.; Wahl, T.; et al. Future climate risk from compound events. Nat. Clim. Chang. 2018, 8, 469–477. [Google Scholar] [CrossRef]
- Russo, S.; Sillmann, J.; Fischer, E.M. Top ten European heatwaves since 1950 and their occurrence in the coming decades. Environ. Res. Lett. 2015, 10, 124003. [Google Scholar] [CrossRef]
- Hao, Z.; Hao, F.; Xia, Y.; Feng, S.; Sun, C.; Zhang, X.; Fu, Y.; Hao, Y.; Zhang, Y.; Meng, Y. Compound droughts and hot extremes: Characteristics, drivers, changes, and impacts. Earth-Sci. Rev. 2022, 235, 104241. [Google Scholar] [CrossRef]
- Hao, Z.; Hao, F.; Singh, V.P.; Zhang, X. Changes in the severity of compound drought and hot extremes over global land areas. Environ. Res. Lett. 2018, 13, 124022. [Google Scholar] [CrossRef]
- Sutanto, S.J.; Vitolo, C.; Di Napoli, C.; D’Andrea, M.; van Lanen, H.A. Heatwaves, droughts, and fires: Exploring compound and cascading dry hazards at the pan-European scale. Environ. Int. 2020, 134, 105276. [Google Scholar] [CrossRef]
- Yu, R.; Zhai, P. More frequent and widespread persistent compound drought and heat event observed in China. Sci. Rep. 2020, 10, 14576. [Google Scholar] [CrossRef]
- Alizadeh, M.R.; Adamowski, J.; Nikoo, M.R.; AghaKouchak, A.; Dennison, P.; Sadegh, M. A century of observations reveals increasing likelihood of continental-scale compound dry-hot extremes. Sci. Adv. 2020, 6, eaaz4571. [Google Scholar] [CrossRef]
- Panda, D.K.; Pradhan, S.; AghaKouchak, A. Surface drying impacts hot extremes in India: Unravelling the exceptional 2010 and 2016 hot events. Clim. Dyn. 2022. [Google Scholar] [CrossRef]
- Martius, O.; Pfahl, S.; Chevalier, C. A global quantification of compound precipitation and wind extremes. Geophys. Res. Lett. 2016, 43, 7709–7717. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Sun, X.; Chen, C. Characteristics of concurrent precipitation and wind speed extremes in China. Weather Clim. Extrem. 2021, 32, 100322. [Google Scholar] [CrossRef]
- Ridder, N.N.; Pitman, A.J.; Westra, S.; Ukkola, A.; Do, H.X.; Bador, M.; Hirsch, A.L.; Evans, J.P.; Di Luca, A.; Zscheischler, J. Global hotspots for the occurrence of compound events. Nat. Commun. 2020, 11, 1–10. [Google Scholar] [CrossRef]
- Li, X.; Meshgi, A.; Babovic, V. Spatio-temporal variation of wet and dry spell characteristics of tropical precipitation in Singapore and its association with ENSO. Int. J. Climatol. 2016, 36, 4831–4846. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Babovic, V. Analysis of variability and trends of precipitation extremes in Singapore during 1980–2013. Int. J. Climatol. 2018, 38, 125–141. [Google Scholar] [CrossRef]
- Beck, F.; Bárdossy, A.; Seidel, J.; Müller, T.; Sanchis, E.F.; Hauser, A. Statistical analysis of sub-daily precipitation extremes in Singapore. J. Hydrol. Reg. Stud. 2015, 3, 337–358. [Google Scholar] [CrossRef] [Green Version]
- Rahardjo, H.; Nistor, M.M.; Gofar, N.; Satyanaga, A.; Qin, X.S.; Chui Yee, S.I. Spatial distribution, variation and trend of five-day antecedent rainfall in Singapore. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 2020, 14, 177–191. [Google Scholar] [CrossRef]
- Jiang, R.; Li, W.; Lu, X.X.; Xie, J.; Zhao, Y.; Li, F. Assessment of temperature extremes and climate change impacts in Singapore, 1982–2018. Singap. J. Trop. Geogr. 2021, 42, 378–396. [Google Scholar] [CrossRef]
- Climate of Singapore. Available online: http://www.weather.gov.sg/climate-climate-of-singapore/ (accessed on 30 December 2022).
- Chew, L.W.; Liu, X.; Li, X.X.; Norford, L.K. Interaction between heat wave and urban heat island: A case study in a tropical coastal city, Singapore. Atmos. Res. 2021, 247, 105134. [Google Scholar] [CrossRef]
- Chow, W.T.; Roth, M. Temporal dynamics of the urban heat island of Singapore. Int. J. Climatol. 2006, 26, 2243–2260. [Google Scholar] [CrossRef]
- Zhang, X.; Alexander, L.; Hegerl, G.C.; Jones, P.; Tank, A.K.; Peterson, T.C.; Trewin, B.; Zwiers, F.W. Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip. Rev. Clim. Chang. 2011, 2, 851–870. [Google Scholar] [CrossRef]
- Hassim, M.E.; Timbal, B. Observed rainfall trends over Singapore and the Maritime Continent from the perspective of regional-scale weather regimes. J. Appl. Meteorol. Climatol. 2019, 58, 365–384. [Google Scholar] [CrossRef]
- Wang, F.; Shao, W.; Yu, H.; Kan, G.; He, X.; Zhang, D.; Ren, M.; Wang, G. Re-evaluation of the power of the mann-kendall test for detecting monotonic trends in hydrometeorological time series. Front. Earth Sci. 2020, 8, 14. [Google Scholar] [CrossRef]
- Philipp, C.H. Surface Urban Heat Island (S-UHI) Investigations Using Remote Sensing; ETH Zurich: Zurich, Switzerland, 2019. [Google Scholar]
- Singapore Water Story. Available online: https://www.pub.gov.sg/watersupply/singaporewaterstory/ (accessed on 30 December 2022).
- Ziegler, A.D.; Terry, J.P.; Oliver, G.J.H.; Friess, D.A.; Chuah, C.J.; Chow, W.T.L.; Wasson, R.J. Increasing Singapore’s resilience to drought. Hydrol. Process. 2014, 28, 4543–4548. [Google Scholar] [CrossRef]
- Budget Debate: Singapore’s Daily Water Consumption Rose in 2021 for Second Straight Year. Available online: https://www.straitstimes.com/singapore/politics/budget-debate-daily-consumption-of-water-rose-again-in-2021-to-reach-158-litres-per-capita/ (accessed on 30 December 2022).
- Pörtner, H.O.; Roberts, D.C.; Adams, H.; Adler, C.; Aldunce, P.; Ali, E.; Begum, R.A.; Betts, R.; Kerr, R.B.; Biesbroek, R.; et al. Climate Change 2022: Impacts, Adaptation and Vulnerability; IPCC Sixth Assessment Report; IPCC: Geneva, Switzerland, 2022. [Google Scholar]
- Corlett, R.T. Flora and reproductive phenology of the rain forest at Bukit Timah, Singapore. J. Trop. Ecol. 1990, 6, 55–63. [Google Scholar] [CrossRef] [Green Version]
- Sakai, S.; Harrison, R.; Momose, K.; Kuraji, K.; Nagamasu, H.; Yasunari, T.; Chong, L.; Nakashizuka, T. Irregular droughts trigger mass flowering in aseasonal tropical forests in Asia. Am. J. Bot. 2006, 93, 1134–1139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Turner, I.M.; Saunders, R.M.K.; Thomas, D.C. Artabotrys scortechinii (Annonaceae): An augmented species description and a new record for Singapore. Gard. Bull. Singap. 2018, 70, 3–8. [Google Scholar] [CrossRef]
- Sakai, S.; Kitajima, K. Tropical phenology: Recent advances and perspectives. Ecol. Res. 2019, 34, 50–54. [Google Scholar] [CrossRef]
- Ngo, K.M.; Davies, S.; Nik Hassan, N.F.; Lum, S. Resilience of a forest fragment exposed to long-term isolation in Singapore. Plant Ecol. Divers. 2016, 9, 397–407. [Google Scholar] [CrossRef]
- Biswas, A.K. Droughts or floods: What is important for Singapore? Glob.-Is-Asian 2012, 13, 40–41. [Google Scholar]
- SCDF Annual Reports. Available online: https://www.scdf.gov.sg/home/about-us/media-room/publications/annual-reports/ (accessed on 30 December 2022).
- Chow, W.T.; Cheong, B.D.; Ho, B.H. A multimethod approach towards assessing urban flood patterns and its associated vulnerabilities in Singapore. Adv. Meteorol. 2016, 2016, 7159132. [Google Scholar] [CrossRef]
- Marzin, C.; Rahmat, R.; Bernie, D.; Bricheno, L.M.; Buonomo, E.; Calvert, D.; Cannaby, H.; Chan, S.; Chattopadhyay, M.; Cheong, W.-K.; et al. Climate Change Projections. In Singapore’s Second National Climate Change Study—Climate Projections to 2100 Science Report; National Climate Change Secretariat: Singapore, 2015. [Google Scholar]
- Tangang, F.; Chung, J.X.; Juneng, L.; Supari; Salimun, E.; Ngai, S.T.; Jamaluddin, A.F.; Mohd, M.S.F.; Cruz, F.; Narisma, G.; et al. Projected future changes in rainfall in Southeast Asia based on CORDEX–SEA multi-model simulations. Clim. Dyn. 2020, 55, 1247–1267. [Google Scholar] [CrossRef]
- Corlett, R.T. Climate change in the tropics: The end of the world as we know it? Biol. Conserv. 2012, 151, 22–25. [Google Scholar] [CrossRef]
Climate Variable | Mean | Standard Deviation | 90th Percentile | 95th Percentile | 98th Percentile |
---|---|---|---|---|---|
Daily rainfall total Rd (mm) | 6.7 | 15.2 | 22.2 | 36.1 | 56.0 |
3-h rainfall total R3h (mm) * | 6.6 | 11.6 | 19.4 | 29.9 | 44.6 |
Daily mean wind speed Wd (m/s) | 2.2 | 1.1 | 3.7 | 4.3 | 5.0 |
3-h mean wind speed W3h (m/s) | 2.1 | 1.6 | 4.3 | 5.1 | 6.0 |
Daily maximum air temperature Tm (°C) | 31.4 | 1.7 | 33.4 | 34.1 | 34.4 |
Consecutive drying days CDD ** | 3.7 | 2.9 | 7 | 9 | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, J.; Kumar, A.; Pattnayak, K.C.; Obbard, J.; Moise, A.F. Characteristics of Compound Climate Extremes and Impacts in Singapore, 1985–2020. Climate 2023, 11, 58. https://doi.org/10.3390/cli11030058
Yu J, Kumar A, Pattnayak KC, Obbard J, Moise AF. Characteristics of Compound Climate Extremes and Impacts in Singapore, 1985–2020. Climate. 2023; 11(3):58. https://doi.org/10.3390/cli11030058
Chicago/Turabian StyleYu, Jianjun, Anupam Kumar, Kanhu Charan Pattnayak, Jeff Obbard, and Aurel Florian Moise. 2023. "Characteristics of Compound Climate Extremes and Impacts in Singapore, 1985–2020" Climate 11, no. 3: 58. https://doi.org/10.3390/cli11030058
APA StyleYu, J., Kumar, A., Pattnayak, K. C., Obbard, J., & Moise, A. F. (2023). Characteristics of Compound Climate Extremes and Impacts in Singapore, 1985–2020. Climate, 11(3), 58. https://doi.org/10.3390/cli11030058