Reviewing the Status of Droughts, Early Warning Systems and Climate Services in South India: Experiences Learned
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data and Methodology
2.1.1. Rainfall Anomaly Analysis
2.1.2. Field Visits and Surveys
2.1.3. Forecast Verification Using IMD Criteria
Probability of False Detection
2.1.4. MODIS Satellite Data
3. Results and Discussions
3.1. Drought Proofing of three South Indian States in General
3.1.1. Drought Status of Tamil Nadu
3.1.2. Drought Status of Telangana
3.1.3. Drought Status of Kerala
3.2. Drought Early Warning in Parambikulam Aliyar basin (PAP), Tamil Nadu, a Case Study
Utility of Early Warning and Agromet Advisory Services (AAS)
4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC, Assessment Report 6, 2022. Available online: https://www.ipcc.ch/report/sixth-assessment-report-working-group-ii/ (accessed on 14 November 2022).
- Mishra, V.; Bhatia, U.; Tiwari, A.D. Bias-corrected climate projections for South Asia from Coupled Model Intercomparison Project-6. Sci. Data 2020, 7, 338. [Google Scholar] [CrossRef] [PubMed]
- Tannehill, I.R. Drought, Its Causes and Effects; Princeton University Press: Princeton, NJ, USA, 1947. [Google Scholar]
- IPCC. 2022. Available online: https://www.ipcc.ch/sr15/chapter/spm/chapter (accessed on 16 April 2022).
- FAO. Handbook on Climate Information for Farming Communities, What Farmers Need and What is Available; FAO: Rome, Italy, 2019; p. 184.
- FAO. The State of Food Security and Nutrition in the World 2020: Transforming Food Systems for Affordable Healthy Diets; FAO: Rome, Italy, 2020.
- Van Dijk, M.; Morley, T.; Rau, M.L.; Saghai, Y. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nat. Food 2021, 2, 494–501. [Google Scholar] [CrossRef]
- World Bank. A Year in the Lives of Smallholder Farmers. 2016. Available online: https://www.worldbank.org/en/news/feature/2016/02/25/a-year-in-the-lives-of-smallholder-farming-families (accessed on 21 December 2021).
- Mittal, S.; Mehar, M. Socio-economic factors affecting adoption of modern information and communication technology by farmers in India: Analysis using multivariate probit model. J. Agric. Educ. Ext. 2016, 22, 199–212. [Google Scholar] [CrossRef]
- Chaturvedi, R.K.; Joshi, J.; Jayaraman, M.; Govindasamy, B.; Ravindranath, N.H. Multi model climate change projections for India under representative concentration pathways. Curr. Sci. 2012, 103, 1–12. [Google Scholar]
- Rhee, J.; Im, J.; Carbone, G.J. Monitoring agricultural drought for arid and humid regions using multi-sensor remote sensing data. Remote Sens. Environ. 2010, 114, 2875–2887. [Google Scholar] [CrossRef]
- Wilhite, D.A.; Glanz, M.H. Understanding the drought phenomenon: The role of definitions. Water Int. 1989, 10, 111–120. [Google Scholar] [CrossRef] [Green Version]
- UNDRR. 2023. Available online: https://sendaiframework-mtr.undrr.org/about-sendai-framework-midterm-review (accessed on 25 December 2022).
- Parvaze, S.; Parvaze, S.; Ahmad, L. Meteorological Drought Quantification with Standardized Precipitation Index for Jhelum Basin in Kashmir Valley. Int. J. Adv. Res. Sci. Eng. 2018, 7, 688–697. [Google Scholar]
- Niranjan Kumar, K.; Rajeevan, M.; Pai, D.S.; Srivastava, A.K.; Preethi, B. On the observed variability of monsoon droughts over India. Weather Clim. Extrem. 2013, 1, 42–50. [Google Scholar] [CrossRef] [Green Version]
- IMD. Standard Operating Procedure (SOP) for Agromet Advisory Services. 2020. Available online: https://mausam.imd.gov.in/imd_latest/contents/pdf/gkms_sop.pdf (accessed on 20 February 2021).
- Kothiyal, S.; Singh, R.; Nain, A.; Padalia, H.; Chaturvedi, G. Verification of Medium Range Weather Forecast for Udham Singh Nagar Region in order to Improve Methodology Followed. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 1995–2005. [Google Scholar] [CrossRef]
- Gao, B.C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Das, S. Geographic information system and AHP-based flood hazard zonation of Vaitarna basin, Maharashtra, India. Arab. J. Geosci. 2018, 11, 576. [Google Scholar] [CrossRef]
- Nathan, K.K. Droughts in Tamil Nadu: A qualitative and quantitative appraisal. Drought Netw. News 1998, 10, 1–6. [Google Scholar]
- Stephen. Contingency and Compensatory Agriculture Plans for Droughts and Floods in India 2012. J. Acad. Ind. Res. 2012, 1, 59–67. [Google Scholar]
- Vengateswari, M.; Geethalakshmi, V.; Bhuvaneswari, K.; Jagannathan, R.; Panneerselvam, S. District level drought assessment over Tamil Nadu. Madras Agric. J. 2019, 106, 225–227. [Google Scholar] [CrossRef]
- Knutson, C.; Hayes, M.; Phillips, T. How to Reduce Drought Risk. A Guide Prepared by the Preparedness and Mitigation Working Group of the Western Drought Coordination Council. National Drought Mitigation Center, Lincoln, Nebraska. 1998. Available online: http://enso.unl.edu/ndmc/handbook/handbook.htm (accessed on 29 September 2021).
- Kokilavani, S.; Geethalakshmi, V.; Balasubramanian, T.N. Evaluation of Weather based Crop Insurance Products for Kharif Rice. Indian J. Sci. Technol. 2015, 8, 1866–1871. [Google Scholar] [CrossRef]
- Dhanya, P.; Jagannathan, R.; Cuba, P.; Jonnalagadda, S.S.; Geethalakshmi, V. Simulated aridity and climate related multi threats to the state of Telangana, South India. Int. J. Ecol. Environ. Sci. 2021, 3, 78–84. [Google Scholar]
- Mission Kakatiya Report. 2018. Available online: https://missionkakatiya.cgg.gov.in/ (accessed on 10 April 2020).
- Vijaya Kumar, P.; Subba Rao, A.V.M.; Sarath Chandran, M.A.; Venkatesh, H.; Rao, V.U.M.; Srinivasa, C. Micro–level Agromet advisory services using block level weather forecast—A new concept–based approach. Curr. Sci. 2017, 112, 227–228. [Google Scholar]
- Srinivasarao, C.; Rao, K.V.; Gopinath, K.A.; Prasad, Y.G.; Arunachalam, A.; Ramana, D.B.V.; Chary, G.R.; Gangaiah, B.; Venkateswarlu, B.; Mohapatra, T. Chapter Two—Agriculture contingency plans for managing weather aberrations and extreme climatic events: Development, implementation and impacts in India. In Advances in Agronomy; Spark, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2020; Volume 159, pp. 35–91. [Google Scholar] [CrossRef]
- Patel, H.R.; Sheikh, A.M.; Venkatesh, H. Status of present day weather forecasting to farmers: A case study of middle Gujarat region. Ann. Agric. Res. 1998, 19, 285–289. [Google Scholar]
- Chaubey, D.; Prakash, V.; Patel, A.B.; Yadav, T.C. Role of Agro-Meteological Advisory Services on Risk Mitigation in Agriculture. Int. J. Pure Appl. Biosci. 2018, 6, 27–32. [Google Scholar]
- Dumanski, J.; Peiretti, R.; Benetis, J.; McGarry, D.; Pieri, C. The paradigm of conservation tillage. Proc. World Assoc. Soil Water Conserv. 2006, P1, 58–64. [Google Scholar]
- Manatsa, D.; Unganai, L.; Gadzirai, C.; Behera, S.K. An innovative tailored seasonal rainfall forecasting production in Zimbabwe. Nat. Hazards 2012, 64, 1187–1207. [Google Scholar] [CrossRef]
- Nyadzi, E.; Nyamekye, A.B.; Werners, S.E.; Biesbroek, R.G.; Dewulf, A.; Van Slobbe, E.; Long, H.P.; Termeer, C.J.; Ludwig, F. Diagnosing the potential of hydro-climatic information services to support rice farming in northern Ghana NJAS-Wageningen. J. Life Sci. 2018, 86, 51–63. [Google Scholar] [CrossRef]
- Hyman, G.; Barona, E.; Biradar, C.; Guevara, E.; Dixon, J.; Beebe, S.; Castano, S.; Alabi, T.; Krishna Gumma, M.; Sivasankar, S.; et al. Atlas DCL CGIAR—Research Program on Dryland Cereals and Legumes Agri-Food Systems (DCL); Harvard Dataverse: Cambridge, MA, USA, 2022. [Google Scholar] [CrossRef]
- Nanditha, J.S.; van der Wiel, K.; Bhatia, U.; Stone, D.; Selton, F.; Mishra, V. A seven-fold rise in the probability of exceeding the observed hottest summer in India in a 2 °C warmer world. Environ. Res. Lett. 2020, 15, 044028. [Google Scholar]
- Lobo, C.; Chattopadhyay, N.; Rao, K. Making smallholder farming climatesmart. Econ. Political Wkly. 2017, 52, 53–58. [Google Scholar]
- Jagadeesha, N.; Ravindrababu, B.T.; Pankaja, H.K.; Rajegowda, M.B. Adoption of Agromet Advisory Services (AAS) for improving livelihood of rural farmers. Int. J. Agric. Sci. 2010, 6, 584–586. [Google Scholar]
- Kalanda-Joshua, M.; Ngongondo, C.; Chipeta, L.; Mpembeka, F. Integrating indigenous knowledge with conventional science: Enhancing localized climate and weather forecasts in Nesa, Malunje, Malawi. Phys. Chem. Earth 2011, 36, 996–1003. [Google Scholar] [CrossRef]
- Kenneth, I.; Cheng, H.W.J.; Kristinn, S.H.; Marcelo, L. Frontier Technologies for Smallholder Farmers: Addressing Information Asymmetries and Deficiencies. Frontier Technology Issues, Department of Economic and Social Affairs, United Nation. 2021. Available online: https://bit.ly/UNDESAfrontiertech (accessed on 3 December 2022).
- Lazo, J.K. Survey of Mozambique Public on Weather, Water, and Climate Information; Technical Notes NCAR/TN-521+ STR; National Center for Atmospheric Research: Boulder, CO, USA, 2015. [Google Scholar]
- Gokceoglu, C.; Sonmez, H.; Nefeslioglu, H.A.; Duman, T.Y.; Can, T. The 17 March 2005 Kuzulu landslide (Sivas, Turkey) and landslidesusceptibility map of its near vicinity. Eng. Geol. 2005, 81, 65–83. [Google Scholar] [CrossRef]
- Pande, C.B.; Al-Ansari, N.; Kushwaha, N.L.; Srivastava, A.; Noor, R.; Kumar, M.; Moharir, K.N.; Elbeltagi, A. Forecasting of SPI and Meteorological Drought Based on the Artificial Neural Network and M5P Model Tree. Land 2022, 11, 2040. [Google Scholar] [CrossRef]
- Machingura, F.; Nyamwanza, A.; Hulme, D.; Stuart, S. Climate information services, integrated knowledge systems and the 2030 Agenda for Sustainable Development. Sustain. Earth 2018, 1, 1–7. [Google Scholar] [CrossRef]
- Maponya, P.; Mpandeli, S.; Oduniyi, S. Climate change awareness in Mpumalanga, province, South Africa. J. Agric. Sci. 2013, 5, 273–285. [Google Scholar] [CrossRef] [Green Version]
- Pulwarty, R.S.; Sivakumar, M.V.K. Information systems in a changing climate: Early warnings and drought risk management. Weather Clim. Extrem. 2014, 3, 14–21. [Google Scholar] [CrossRef] [Green Version]
- McKee, T.B.N.; Doesken, J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the Eighth Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 179–184. [Google Scholar]
- Stigter, K.; Winarto, Y.T.; Ofori, E.; Zuma-Netshiukhwi, G.N.; Nanja, D.; Walker, S. Extension agrometeorology as the answer to stakeholder realities: Response farming and the consequences of climate change. Special Issue on Agrometeorology: From Scientific Analysis to Operational Application. Atmosphere 2013, 4, 237–253. [Google Scholar] [CrossRef] [Green Version]
- The Energy and Resources Institute (TERI). Economics of Desertification, Land Degradation and Drought in India: Vol. 1. Macroeconomic Assessment of the Costs of Land Degradation in India. 2016. Available online: https://www.teriin.org/sites/default/files/2018-04/Vol-I%20Macroeconomic%20assessment%20of%20the%20costs%20of%20land%20degradation%20in%20India_0.pdf (accessed on 7 March 2021).
- Available online: https://climate-adapt.eea.europa.eu/en/metadata/case-studies (accessed on 2 February 2023).
- Available online: https://edo.jrc.ec.europa.eu/edov2/ (accessed on 15 February 2023).
- Meque, A.; Abiodun, B.J. Simulating the link between ENSO and summer drought in Southern Africa using regional climate models. Clim. Dyn. 2015, 44, 1881–1900. [Google Scholar] [CrossRef]
- Shukla, S.; Landsfeld, M.; Anthony, M.; Budde, M.; Husak, G.J.; Rowland, J.; Funk, C. Enhancing the Application of Earth Observations for Improved Environmental Decision-Making Using the Early Warning eXplorer (EWX). Front. Clim. 2021, 2, 583509. [Google Scholar] [CrossRef]
- Karnieli, A.; Agam, N.; Pinker, R.T.; Anderson, M.; Imhoff, M.L.; Gutman, G.G.; Panov, N.; Goldberg, A. Use of NDVI and land surface temperature for drought assessment: Merits and limitations. J. Clim. 2010, 23, 618–633. [Google Scholar] [CrossRef]
- U.S. Drought Monitor Forum. Available online: https://droughtmonitor.unl.edu/ (accessed on 18 February 2023).
- IWMI Research Report on Mapping Drought Patterns and Impacts: A Global Perspective. Available online: https://www.iwmi.cgiar.org/Publications/IWMI_Research_Reports/PDF/PUB133/RR133.pdf (accessed on 18 February 2023).
Sl.No | Vegetation Catogaries | Khariff2021 | Khariff2016 | Difference (%) | Rabi2021 | Rabi-2016 | Difference (%) |
1 | Barren land | 695.40487 | 2998.8038 | −76.8106 | 4930.524 | 8880.031 | −44.4763 |
2 | Low Vegetation | 75140.717 | 206007.23 | −63.5252 | 305519.7 | 189453.7 | 61.26349 |
3 | Medium Vegetation | 267719.77 | 139096.09 | 92.47109 | 259649 | 231002.9 | 12.40077 |
4 | High Vegetation | 245889.92 | 241028.94 | 2.016762 | 157319.8 | 153873.9 | 2.239421 |
Sl.No | TWI Category Range | Area (Km2) | Area (%) |
1 | Below 2 | 8.54 | 0.36 |
2 | 2–4 | 18.38 | 0.77 |
3 | 4–6 | 676.31 | 28.36 |
4 | 6–8 | 1136.25 | 47.64 |
5 | Above 8 | 545.44 | 22.87 |
Total | 2384.92 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhanya, P.; Geethalakshmi, V. Reviewing the Status of Droughts, Early Warning Systems and Climate Services in South India: Experiences Learned. Climate 2023, 11, 60. https://doi.org/10.3390/cli11030060
Dhanya P, Geethalakshmi V. Reviewing the Status of Droughts, Early Warning Systems and Climate Services in South India: Experiences Learned. Climate. 2023; 11(3):60. https://doi.org/10.3390/cli11030060
Chicago/Turabian StyleDhanya, Punnoli, and Vellingiri Geethalakshmi. 2023. "Reviewing the Status of Droughts, Early Warning Systems and Climate Services in South India: Experiences Learned" Climate 11, no. 3: 60. https://doi.org/10.3390/cli11030060
APA StyleDhanya, P., & Geethalakshmi, V. (2023). Reviewing the Status of Droughts, Early Warning Systems and Climate Services in South India: Experiences Learned. Climate, 11(3), 60. https://doi.org/10.3390/cli11030060