Impact of CS-IPM on Key Social Welfare Aspects of Smallholder Farmers’ Livelihoods
Abstract
:1. Introduction
2. Theoretical Statement
2.1. Definition of Welfare
2.2. Climate-Smart Agriculture Integrated Pest Management (CS-IPM) Impact on Key Social Welfare Aspects of Small-Holder Farmers’ Livelihoods
3. Methodology and Data
3.1. Methodology
3.2. Identification of Relevant Studies, Their Selection, and Data
4. Results on the Impact of CS-IPM Practices on Key Small Holder Households’ Social Welfare Aspects
4.1. CS-IPM Knowledge Pest Preventions and Water Management Practices Impact on Key Smallholder Households’ Social Welfare Aspects
4.2. CS-IPM Modifying Habitat Management Crop Diversification and Rotation Practices Affect Key Smallholder Households’ Social Welfare Aspects
4.3. CS-IPM Put in Place Developing Climate Responsive National Extensive System, No Chemical Technic and Resistant Plant Varieties Impact on Key Small Holder Households’ Social Welfare Aspects
5. Discussions
6. Theoretical and Methodological Implication
7. Limitation
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Branca, G.; McCarthy, N.; Lipper, L.; Jolejole, M.C. Climate Smart Agriculture: A Synthesis of Empirical Evidence of Food Security and Mitigation Benefits from Improved Cropland Management; Working paper; FAO: Rome, Italy, 2011. [Google Scholar]
- Beattie, S.; Sallu, S.M. How Does Nutrition Feature in Climate-Smart Agricultural Policy in Southern Africa? A Systematic Policy Review. Sustainability 2021, 13, 2785. [Google Scholar] [CrossRef]
- Zhou, X.; Tian, F. Integrated Pest Management and Plant Health. J. Integr. Agric. 2022, 21, 3417–3419. [Google Scholar] [CrossRef]
- Zougmoré, R.B.; Läderach, P.; Campbell, B.M. Transforming Food Systems in Africa under Climate Change Pressure: Role of Climate-Smart Agriculture. Sustainability 2021, 13, 4305. [Google Scholar] [CrossRef]
- Van den Berg, H.; Jiggins, J. Investing in Farmers—The Impacts of Farmer Field Schools in Relation to Integrated Pest Management. World Dev. 2007, 35, 663–686. [Google Scholar] [CrossRef]
- Heeb, L.; Jenner, E.; Cock, M.J.W. Climate-Smart Pest Management: Building Resilience of Farms and Landscapes to Changing Pest Threats. J. Pest. Sci. 2019, 92, 951–969. [Google Scholar] [CrossRef]
- Misango, V.G.; Nzuma, J.M.; Irungu, P.; Kassie, M. Intensity of Adoption of Integrated Pest Management Practices in Rwanda: A Fractional Logit Approach. Heliyon 2022, 8, e08735. [Google Scholar] [CrossRef] [PubMed]
- Fentie, A.; Beyene, A.D. Climate-Smart Agricultural Practices and Welfare of Rural Smallholders in Ethiopia: Does Planting Method Matter? Land Use Policy 2019, 85, 387–396. [Google Scholar] [CrossRef]
- Zerssa, G.; Feyssa, D.; Kim, D.-G.; Eichler-Löbermann, B. Challenges of Smallholder Farming in Ethiopia and Opportunities by Adopting Climate-Smart Agriculture. Agriculture 2021, 11, 192. [Google Scholar] [CrossRef]
- Paul, A.; Egan David Chikoye, E. Harnessing Nature-Based Solutions for Smallholder Plant Health in a Changing Climate; CGIAR: Hyderabad, India, 2021; p. 32. [Google Scholar]
- Santika, T.; Wilson, K.A.; Meijaard, E.; Budiharta, S.; Law, E.E.; Sabri, M.; Struebig, M.; Ancrenaz, M.; Poh, T.-M. Changing Landscapes, Livelihoods and Village Welfare in the Context of Oil Palm Development. Land Use Policy 2019, 87, 104073. [Google Scholar] [CrossRef]
- Venkatramanan, V.; Shah, S. Climate Smart Agriculture Technologies for Environmental Management: The Intersection of Sustainability, Resilience, Wellbeing and Development. In Sustainable Green Technologies for Environmental Management; Shah, S., Venkatramanan, V., Prasad, R., Eds.; Springer: Singapore, 2019; pp. 29–51. ISBN 9789811327711. [Google Scholar]
- Sardar, A.; Kiani, A.K.; Kuslu, Y. Does Adoption of Climate-Smart Agriculture (CSA) Practices Improve Farmers’ Crop Income? Assessing the Determinants and Its Impacts in Punjab Province, Pakistan. Environ. Dev. Sustain. 2021, 23, 10119–10140. [Google Scholar] [CrossRef]
- Nyasimi, M.; Kimeli, P.; Sayula, G.; Radeny, M.; Kinyangi, J.; Mungai, C. Adoption and Dissemination Pathways for Climate-Smart Agriculture Technologies and Practices for Climate-Resilient Livelihoods in Lushoto, Northeast Tanzania. Climate 2017, 5, 63. [Google Scholar] [CrossRef] [Green Version]
- Kakzan, D.; Arslan, A.; Lipper, L. Climate-Smart Agriculture? A Review of Current Practice of Agroforestry and Conservation. Agriculture 2013, 62. [Google Scholar]
- Mango, N.; Makate, C.; Tamene, L.; Mponela, P.; Ndengu, G. Adoption of Small-Scale Irrigation Farming as a Climate-Smart Agriculture Practice and Its Influence on Household Income in the Chinyanja Triangle, Southern Africa. Land 2018, 7, 49. [Google Scholar] [CrossRef] [Green Version]
- Crop, A.; Society, S.; Mtambanengwe, F.; Mapfumo, P.; Chikowo, R.; Chamboko, T.; Pleasant, M. Climate change and variability: Smallholder farming communities in zimbabwe portray a varied understanding. Afr. Crop Sci. J. 2012, 20, 227–241. [Google Scholar]
- Sain, G.; Loboguerrero, A.M.; Corner-Dolloff, C.; Lizarazo, M.; Nowak, A.; Martínez-Barón, D.; Andrieu, N. Costs and Benefits of Climate-Smart Agriculture: The Case of the Dry Corridor in Guatemala. Agric. Syst. 2017, 151, 163–173. [Google Scholar] [CrossRef]
- Holman, I.P.; Brown, C.; Janes, V.; Sandars, D. Can We Be Certain about Future Land Use Change in Europe? A Multi-Scenario, Integrated-Assessment Analysis. Agric. Syst. 2017, 151, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Kehinde, M.O.; Shittu, A.M.; Ogunnaike, M.G.; Oyawole, F.P.; Fapojuwo, O.E. Land Tenure and Property Rights, and the Impacts on Adoption of Climate-Smart Practices among Smallholder Farmers in Selected Agro-Ecologies in Nigeria. Bio-Based Appl. Econ. 2022, 11, 75–87. [Google Scholar] [CrossRef]
- Akinsete, E.; Apostolaki, S.; Chatzistamoulou, N.; Koundouri, P.; Tsani, S. The Link between Ecosystem Services and Human Wellbeing in the Implementation of the European Water Framework Directive: Assessing Four River Basins in Europe. Water 2019, 11, 508. [Google Scholar] [CrossRef] [Green Version]
- Sekabira, H.; Tepa-Yotto, G.T.; Djouaka, R.; Clottey, V.; Gaitu, C.; Tamò, M.; Kaweesa, Y.; Ddungu, S.P. Determinants for Deployment of Climate-Smart Integrated Pest Management Practices: A Meta-Analysis Approach. Agriculture 2022, 12, 1052. [Google Scholar] [CrossRef]
- Regehr, E.V.; Runge, M.C.; Von Duyke, A.; Wilson, R.R.; Polasek, L.; Rode, K.D.; Hostetter, N.J.; Converse, S.J. Demographic Risk Assessment for a Harvested Species Threatened by Climate Change: Polar Bears in the Chukchi Sea. Ecol. Appl. 2021, 31, 21. [Google Scholar] [CrossRef] [PubMed]
- Richard, B.; Qi, A.; Fitt, B.D. Control of Crop Diseases through Integrated Crop Management to Deliver Climate-Smart Farming Systems for Low-and High-Input Crop Production. Plant Pathol. 2022, 71, 187–206. [Google Scholar] [CrossRef]
- Ochago, R. Gender and Pest Management: Constraints to Integrated Pest Management Uptake among Smallholder Coffee Farmers in Uganda. Cogent. Food Agric. 2018, 4, 1540093. [Google Scholar] [CrossRef]
- Deguine, J.-P.; Aubertot, J.-N.; Flor, R.J.; Lescourret, F.; Wyckhuys, K.A.G.; Ratnadass, A. Integrated Pest Management: Good Intentions, Hard Realities. A Review. Agron. Sustain. Dev. 2021, 41, 38. [Google Scholar] [CrossRef]
- Shirsath, P.B.; Aggarwal, P.K.; Thornton, P.K.; Dunnett, A. Prioritizing Climate-Smart Agricultural Land Use Options at a Regional Scale. Agric. Syst. 2017, 151, 174–183. [Google Scholar] [CrossRef]
- La Placa, V.; McNaught, A.; Knight, A. Discourse on Wellbeing in Research and Practice. Intnl. J. Wellbeing 2013, 3, 116–125. [Google Scholar] [CrossRef] [Green Version]
- Awotide, B.A.; Ogunniyi, A.; Olagunju, K.O.; Bello, L.O.; Coulibaly, A.Y.; Wiredu, A.N.; Kone, B.; Ahamadou, A.; Manyong, V.; Abdoulaye, T. Evaluating the Heterogeneous Impacts of Adoption of Climate-Smart Agricultural Technologies on Rural Households’ Welfare in Mali. Agriculture 2022, 12, 1853. [Google Scholar] [CrossRef]
- Mujeyi, A.; Mudhara, M.; Mutenje, M. The Impact of Climate Smart Agriculture on Household Welfare in Smallholder Integrated Crop–Livestock Farming Systems: Evidence from Zimbabwe. Agric. Food Secur. 2021, 10, 4. [Google Scholar] [CrossRef]
- Misselbrook, D. W Is for Wellbeing and the WHO Definition of Health. Br. J. Gen. Pract. 2014, 64, 582. [Google Scholar] [CrossRef] [Green Version]
- Shahzad, M.F.; Abdulai, A. The Heterogeneous Effects of Adoption of Climate-Smart Agriculture on Household Welfare in Pakistan. Appl. Econ. 2021, 53, 1013–1038. [Google Scholar] [CrossRef]
- Birch, A.N.E.; Begg, G.S.; Squire, G.R. How Agro-Ecological Research Helps to Address Food Security Issues under New IPM and Pesticide Reduction Policies for Global Crop Production Systems. J. Exp. Bot. 2011, 62, 3251–3261. [Google Scholar] [CrossRef] [Green Version]
- Ceccato, P.; Cressman, K.; Giannini, A.; Trzaska, S. The Desert Locust Upsurge in West Africa (2003–2005): Information on the Desert Locust Early Warning System and the Prospects for Seasonal Climate Forecasting. Int. J. Pest Manag. 2007, 53, 7–13. [Google Scholar] [CrossRef]
- Cressman, K. Desert Locust. In Biological and Environmental Hazards, Risks, and Disasters; Elsevier: Amsterdam, The Netherlands, 2016; pp. 87–105. ISBN 978-0-12-394847-2. [Google Scholar]
- Skendžić, S.; Zovko, M.; Živković, I.P.; Lešić, V.; Lemić, D. The Impact of Climate Change on Agricultural Insect Pests. Insects 2021, 12, 440. [Google Scholar] [CrossRef] [PubMed]
- Amelework, A.B.; Bairu, M.W.; Maema, O.; Venter, S.L.; Laing, M. Adoption and Promotion of Resilient Crops for Climate Risk Mitigation and Import Substitution: A Case Analysis of Cassava for South African Agriculture. Front. Sustain. Food Syst. 2021, 5, 617783. [Google Scholar] [CrossRef]
- Murage, A.W.; Pittchar, J.O.; Midega, C.A.O.; Onyango, C.O.; Khan, Z.R. Gender Specific Perceptions and Adoption of the Climate-Smart Push–Pull Technology in Eastern Africa. Crop Prot. 2015, 76, 83–91. [Google Scholar] [CrossRef] [Green Version]
- Ayoub, L.; Irshad, S.S.; Yaqoob, M.; Siraj, M.; Gull, A.; Wani, F.F.; Bhat, T.A.; Fayaz, S.; Sheikh, M.A.; Rasool, J.; et al. Insect Pests under Changing Climate and Climate-Smart Pest Management. Pharma Innov. J. 2022, 11, 648–652. [Google Scholar]
- Ajzen, I.; Kruglanski, A.W. Reasoned Action in the Service of Goal Pursuit. Psychol. Rev. 2019, 126, 774–786. [Google Scholar] [CrossRef] [PubMed]
- Simbeko, G.; Nguezet, P.-M.D.; Sekabira, H.; Yami, M.; Masirika, S.A.; Bheenick, K.; Bugandwa, D.; Nyamuhirwa, D.-M.A.; Mignouna, J.; Bamba, Z.; et al. Entrepreneurial Potential and Agribusiness Desirability among Youths in South Kivu, Democratic Republic of the Congo. Sustainability 2023, 15, 873. [Google Scholar] [CrossRef]
- Altieri, M.A.; Koohafkan, P. Enduring Farms: Climate Change, Smallholders and Traditional Farming Communities; Third World Network (TWN): George Town, Malaysia, 2008; ISBN 978-983-2729-55-6. [Google Scholar]
- Botha, A.M.; Kunert, K.J.; Maling’a, J.; Foyer, C.H. Defining Biotechnological Solutions for Insect Control in SubSaharan Africa. Food Energy Secur. 2019, 9, e191. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Int. J. Surg. 2010, 8, 336–341. [Google Scholar] [CrossRef] [Green Version]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef]
- Rosenstock, T.S.; Nowak, A.; Girvetz, E. (Eds.) The Climate-Smart Agriculture Papers: Investigating the Business of a Productive, Resilient and Low Emission Future; Springer International Publishing: Cham, Switzerland, 2019; ISBN 978-3-319-92797-8. [Google Scholar]
- Bai, X.; Huang, Y.; Ren, W.; Coyne, M.; Jacinthe, P.; Tao, B.; Hui, D.; Yang, J.; Matocha, C. Responses of Soil Carbon Sequestration to Climate-smart Agriculture Practices: A Meta-analysis. Glob. Chang. Biol. 2019, 25, 2591–2606. [Google Scholar] [CrossRef]
- Gwara, S.; Wale, E.; Odindo, A.; Buckley, C. Attitudes and Perceptions on the Agricultural Use of Human Excreta and Human Excreta Derived Materials: A Scoping Review. Agriculture 2021, 11, 153. [Google Scholar] [CrossRef]
- Martín-Martín, A.; Orduna-Malea, E.; Thelwall, M.; Delgado López-Cózar, E. Google Scholar, Web of Science, and Scopus: A Systematic Comparison of Citations in 252 Subject Categories. J. Informetr. 2018, 12, 1160–1177. [Google Scholar] [CrossRef] [Green Version]
- Falagas, M.E.; Pitsouni, E.I.; Malietzis, G.A.; Pappas, G. Comparison of PubMed, Scopus, Web of Science, and Google Scholar: Strengths and Weaknesses. FASEB J. 2008, 22, 338–342. [Google Scholar] [CrossRef] [PubMed]
- Moed, H.F. New Developments in the Use of Citation Analysis in Research Evaluation. Arch. Immunol. Ther. Exp. 2009, 57, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Mizik, T. Climate-Smart Agriculture on Small-Scale Farms: A Systematic Literature Review. Agronomy 2021, 11, 1096. [Google Scholar] [CrossRef]
- Moutouama, F.T.; Tepa-Yotto, G.T.; Agboton, C.; Gbaguidi, B.; Sekabira, H.; Tamò, M. Farmers’ Perception of Climate Change and Climate-Smart Agriculture in Northern Benin, West Africa. Agronomy 2022, 12, 1348. [Google Scholar] [CrossRef]
- Haq, S.U.; Boz, I.; Shahbaz, P. Adoption of Climate-Smart Agriculture Practices and Differentiated Nutritional Outcome among Rural Households: A Case of Punjab Province, Pakistan. Food Secur. 2021, 13, 913–931. [Google Scholar] [CrossRef]
- Bijarniya, D.; Parihar, C.M.; Jat, R.K.; Kalvania, K.; Kakraliya, S.K.; Jat, M.L. Portfolios of Climate Smart Agriculture Practices in Smallholder Rice-Wheat System of Eastern Indo-Gangetic Plains—Crop Productivity, Resource Use Efficiency and Environmental Foot Prints. Agronomy 2020, 10, 1561. [Google Scholar] [CrossRef]
- Taylor, J.E.; Martin, P.L. Human capital: Migration and rural population change. In Handbook of Agricultural Economics; Elsevier: Amsterdam, The Netherlands, 2001; Volume 1, pp. 457–511. [Google Scholar]
- Bissessar, A.M. (Ed.) Development, Political, and Economic Difficulties in the Caribbean; Springer International Publishing: Cham, Switzerland, 2019; ISBN 978-3-030-02993-7. [Google Scholar]
- Khatri-Chhetri, A.; Aggarwal, P.K.; Joshi, P.K.; Vyas, S. Farmers’ Prioritization of Climate-Smart Agriculture (CSA) Technologies. Agric. Syst. 2017, 151, 184–191. [Google Scholar] [CrossRef]
- Scherr, S.J.; Shames, S.; Friedman, R. From Climate-Smart Agriculture to Climate-Smart Landscapes. Agric. Food Secur. 2012, 1, 12. [Google Scholar] [CrossRef] [Green Version]
- Zuidberg, B. The DRC Entrepreneurial Ecosystem Its Challenges and the Rationale for the Creation of “Ingenious City ”—An Incubation Platform in Kinshasa. Democratic Republic of the Congo, Elan, RD Congo. 2018, pp. 1–17. Available online: https://static1.squarespace.com/static/5bc4882465019f632b2f8653/t/5c7378ee971a18427790b8c0/1551071476214/25+-+The+DRC+startup+ecosystem+and+its+challenges_formatting.pdf (accessed on 19 March 2023).
- Mwadzingeni, L.; Mugandani, R.; Mafongoya, P.L. Gendered Perception of Change in Prevalence of Pests and Management in Zimbabwe Smallholder Irrigation Schemes. Agron. Sustain. Dev. 2022, 42, 90. [Google Scholar] [CrossRef]
- McCarthy, N.; Lipper, L.; Branca, G. Climate Smart Agriculture: Smallholder Adoption and Implications for Climate Change Adaptation and Mitigation; FAO: Rome, Italy, 2011; p. 37. [Google Scholar]
- Hasan, M.K.; Desiere, S.; D’Haese, M.; Kumar, L. Impact of Climate-Smart Agriculture Adoption on the Food Security of Coastal Farmers in Bangladesh. Food Sec. 2018, 10, 1073–1088. [Google Scholar] [CrossRef]
- Manda, J.; Alene, A.D.; Tufa, A.H.; Abdoulaye, T.; Wossen, T.; Chikoye, D.; Manyong, V. The Poverty Impacts of Improved Cowpea Varieties in Nigeria: A Counterfactual Analysis. World Dev. 2019, 122, 261–271. [Google Scholar] [CrossRef] [PubMed]
- Wekesa, B.M.; Ayuya, O.I.; Lagat, J.K. Effect of Climate-Smart Agricultural Practices on Household Food Security in Smallholder Production Systems: Micro-Level Evidence from Kenya. Agric. Food Secur. 2018, 7, 80. [Google Scholar] [CrossRef] [Green Version]
- Day, R.; Haggblade, S.; Moephuli, S.; Mwang’ombe, A.; Nouala, S. Institutional and Policy Bottlenecks to IPM. Curr. Opin. Insect Sci. 2022, 52, 100946. [Google Scholar] [CrossRef]
- Bullock, R.; Crane, T. Young Women’s and Men’s Opportunity Spaces in Dairy Intensification in Kenya*. Rural. Sociol. 2021, 86, 777–808. [Google Scholar] [CrossRef]
- Ogada, M.J.; Rao, E.J.O.; Radeny, M.; Recha, J.W.; Solomon, D. Climate-Smart Agriculture, Household Income and Asset Accumulation among Smallholder Farmers in the Nyando Basin of Kenya. World Dev. Perspect. 2020, 18, 100203. [Google Scholar] [CrossRef]
- Sarker, N.I.; Wu, M.; Alam, G.M.M.; Islam, S. Role of Climate Smart Agriculture in Promoting Sustainable Agriculture: A Systematic Literature Review. Int. J. Agric. Resour. Gov. Ecol. 2020, 15, 323–337. [Google Scholar] [CrossRef]
- Lipper, L.; McCarthy, N.; Zilberman, D.; Asfaw, S.; Branca, G. (Eds.) Climate Smart Agriculture: Building Resilience to Climate Change; Natural Resource Management and Policy; Springer International Publishing: Cham, Switzerland, 2018; Volume 52, ISBN 978-3-319-61193-8. [Google Scholar]
- Lipper, L.; Thornton, P.; Campbell, B.M.; Baedeker, T.; Braimoh, A.; Bwalya, M.; Caron, P.; Cattaneo, A.; Garrity, D.; Henry, K.; et al. Climate-Smart Agriculture for Food Security. Nat. Clim. Chang. 2014, 4, 1068–1072. [Google Scholar] [CrossRef]
- Abegunde, V.O.; Sibanda, M.; Obi, A. Mainstreaming Climate-Smart Agriculture in Small-Scale Farming Systems: A Holistic Nonparametric Applicability Assessment in South Africa. Agriculture 2020, 10, 52. [Google Scholar] [CrossRef] [Green Version]
- Imran, M.; Ali, A.; Ashfaq, M.; Hassan, S.; Culas, R.; Ma, C. Impact of Climate Smart Agriculture (CSA) Practices on Cotton Production and Livelihood of Farmers in Punjab, Pakistan. Sustainability 2018, 10, 2101. [Google Scholar] [CrossRef] [Green Version]
- Makate, C.; Makate, M.; Mango, N. Farm Household Typology and Adoption of Climate-Smart Agriculture Practices in Smallholder Farming Systems of Southern Africa. Afr. J. Sci. Technol. Innov. Dev. 2018, 10, 421–439. [Google Scholar] [CrossRef]
- Ayanlade, A.; Radeny, M. COVID-19 and Food Security in Sub-Saharan Africa: Implications of Lockdown during Agricultural Planting Seasons. NPJ Sci. Food 2020, 4, 13. [Google Scholar] [CrossRef] [PubMed]
- Makate, C.; Makate, M.; Mango, N. Farm Types and Adoption of Proven Innovative Practices in Smallholder Bean Farming in Angonia District of Mozambique. Int. J. Soc. Econ. 2018, 45, 140–157. [Google Scholar] [CrossRef]
- Hanley, A.; Brychkova, G.; Barbon, W.J.; Noe, S.M.; Myae, C.; Thant, P.S.; McKeown, P.C.; Gonsalves, J.; Spillane, C. Community-Level Impacts of Climate-Smart Agriculture Interventions on Food Security and Dietary Diversity in Climate-Smart Villages in Myanmar. Climate 2021, 9, 166. [Google Scholar] [CrossRef]
- Kurgat, B.K.; Lamanna, C.; Kimaro, A.; Namoi, N.; Manda, L.; Rosenstock, T.S. Adoption of Climate-Smart Agriculture Technologies in Tanzania. Front. Sustain. Food Syst. 2020, 4, 55. [Google Scholar] [CrossRef]
- Barasa, P.M.; Botai, C.M.; Botai, J.O.; Mabhaudhi, T. A Review of Climate-Smart Agriculture Research and Applications in Africa. Agronomy 2021, 11, 1255. [Google Scholar] [CrossRef]
- Tepa-Yotto, G.T.; Tonnang, H.E.Z.; Goergen, G.; Subramanian, S.; Kimathi, E.; Abdel-Rahman, E.M.; Flø, D.; Thunes, K.H.; Fiaboe, K.K.M.; Niassy, S.; et al. Global Habitat Suitability of Spodoptera Frugiperda (JE Smith) (Lepidoptera, Noctuidae): Key Parasitoids Considered for Its Biological Control. Insects 2021, 12, 273. [Google Scholar] [CrossRef]
- Khatri-Chhetri, A.; Regmi, P.P.; Chanana, N.; Aggarwal, P.K. Potential of Climate-Smart Agriculture in Reducing Women Farmers’ Drudgery in High Climatic Risk Areas. Clim. Chang. 2020, 158, 29–42. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, M.M.; International Livestock Research Institute (Eds.) Economic and Nutritional Impacts of Market-Oriented Dairy Production in the Ethiopian Highlands; Socio-economics and policy research working paper; ILRI: Nairobi, Kenya, 2003; ISBN 978-92-9146-139-4. [Google Scholar]
- Teklewold, H.; Gebrehiwot, T.; Bezabih, M. Climate Smart Agricultural Practices and Gender Differentiated Nutrition Outcome: An Empirical Evidence from Ethiopia. World Dev. 2019, 122, 38–53. [Google Scholar] [CrossRef]
- Steenwerth, K.L.; Hodson, A.K.; Bloom, A.J.; Carter, M.R.; Cattaneo, A.; Chartres, C.J.; Hatfield, J.L.; Henry, K.; Hopmans, J.W.; Horwath, W.R.; et al. Climate-Smart Agriculture Global Research Agenda: Scientific Basis for Action. Agric. Food Secur. 2014, 3, 11. [Google Scholar] [CrossRef] [Green Version]
- Arslan, A.; McCarthy, N.; Lipper, L.; Asfaw, S.; Cattaneo, A.; Kokwe, M. Climate Smart Agriculture? Assessing the Adaptation Implications in Zambia. J. Agric. Econ. 2015, 66, 753–780. [Google Scholar] [CrossRef]
- Abegunde, V.O.; Sibanda, M.; Obi, A. The Dynamics of Climate Change Adaptation in Sub-Saharan Africa: A Review of Climate-Smart Agriculture among Small-Scale Farmers. Climate 2019, 7, 132. [Google Scholar] [CrossRef] [Green Version]
- Khatri-Chhetri, A.; Aryal, J.P.; Sapkota, T.B.; Khurana, R. Economic Benefits of Climate-Smart Agricultural Practices to Smallholder Farmers in the Indo-Gangetic Plains of India. Curr. Sci. 2016, 110, 6. [Google Scholar]
- Onyeneke, R.U.; Igberi, C.O.; Uwadoka, C.O.; Aligbe, J.O. Status of Climate-Smart Agriculture in Southeast Nigeria. GeoJournal 2018, 83, 333–346. [Google Scholar] [CrossRef]
- Justin, E. Bagley Biophysical Impacts of Climate-Smart Agriculture in the Midwest United States; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
- Imran, M.A.; Ali, A.; Ashfaq, M.; Hassan, S.; Culas, R.; Ma, C. Impact of Climate Smart Agriculture (CSA) through Sustainable Irrigation Management on Resource Use Efficiency: A Sustainable Production Alternative for Cotton. Land Use Policy 2019, 88, 104113. [Google Scholar] [CrossRef]
- Zougmore, R.B.; Partey, S.T.; Ouedraogo, M.; Torquebiau, E.; Campbell, B.M. Facing Climate Variability in Sub-Saharan Africa: Analysis of Climate-Smart Agriculture Opportunities to Manage Climate-Related Risks. Cah. Agric. 2018, 27, 34001. [Google Scholar] [CrossRef] [Green Version]
- Murage, A.W.; Midega, C.A.O.; Pittchar, J.O.; Pickett, J.A.; Khan, Z.R. Determinants of Adoption of Climate-Smart Push-Pull Technology for Enhanced Food Security through Integrated Pest Management in Eastern Africa. Food Sec. 2015, 7, 709–724. [Google Scholar] [CrossRef]
- Gwada, R.O. Effect of integrated pest management technology on the livelihoods of small-scale maize producers. Raae 2021, 24, 37–55. [Google Scholar] [CrossRef]
- Mazid, A.; Al-Hashimy, M.J.; Zwain, A.; Haddad, N.; Hadwan, H. Improved Livelihoods of Smallholder Farmers in Iraq through Integrated Pest Management and Use of Organic Fertilizer; University of Minesota: Minneapolos, MS, USA, 2013. [Google Scholar]
- Islam, M.T.; Gupta, D.R.; Hossain, A.; Roy, K.K.; He, X.; Kabir, M.R.; Singh, P.K.; Khan, A.R.; Rahman, M.; Wang, G.-L. Wheat Blast: A New Threat to Food Security. Phytopathol. Res. 2020, 2, 28. [Google Scholar] [CrossRef]
- Flint, M.L.; Daar, S.; Molinar, R. Establishing Integrated Pest Management Policies and Programs: A Guide for Public Agencies; University of California, Agriculture and Natural Resources: Los Angeles, CA, USA, 2003; ISBN 978-1-60107-267-2. [Google Scholar]
- Alonso Chavez, V.; Milne, A.E.; van den Bosch, F.; Pita, J.; McQuaid, C.F. Modelling Cassava Production and Pest Management under Biotic and Abiotic Constraints. Plant Mol. Biol. 2021, 109, 325–349. [Google Scholar] [CrossRef] [PubMed]
- Frost, C.; Jayaram, K.; Pais, G. What Climate-Smart Agriculture Means for Smallholder Farmers|McKinsey. Available online: https://www.mckinsey.com/industries/agriculture/our-insights/what-climate-smart-agriculture-means-for-smallholder-farmers#/ (accessed on 19 March 2023).
- Harzing, A.-W.; Alakangas, S. Google Scholar, Scopus and the Web of Science: A Longitudinal and Cross-Disciplinary Comparison. Scientometrics 2016, 106, 787–804. [Google Scholar] [CrossRef]
- Hicks, D.; Wang, J. Coverage and Overlap of the New Social Science and Humanities Journal Lists. J. Am. Soc. Inf. Sci. Technol. 2011, 62, 284–294. [Google Scholar] [CrossRef]
References | CS-IPM Practice Studied | Key Result on Area of Impact |
---|---|---|
Teklewold et al., 2019 [83] | Diversification of the cropping system.Soil and water conservation. Conservation of water and soil. | Increase in dietary diversity. Improvement in calorie and protein availability. |
Manda et al., 2019 [64] | Adoption of improved cowpea varieties. | Increased per capita household income. Increased asset ownership by 17 and 24 percentage points. |
Lipper et al., 2014 [71] | Crop, livestock, and aquaculture integration Agroforestry techniques. enhanced control of pests, water, and nutrients. improved forestry and grassland management. | A short-term reduction in poverty and food insecurity. helping to lessen the long-term threat that climate change poses to food security |
Nyasimi et al., 2017 [14] | Improved crop varieties, agroforestry, and scientific weather forecast information. | Increasing agricultural productivity and incomes. Minimizing agriculture’s contribution to greenhouse gas emissions. |
Hasan et al., 2018 [63] | Tolerant of salinity crop cultivars. crops tolerant of flooding. Rice that matures quickly, vegetables grown in a floating bed, and the “sorjan” farming method. vegetable farming around a pond. Relay trimming and deep urea placement. Mulching and organic fertilization. pheromone trap usage. collecting rainwater. Glass bottles or plastic bags are used for seed storage. | Enhancement of food security. |
Steenwerth et al., 2014 [84] | Water management for fisheries and food production. Managing forest biodiversity. | Economic expansion food security and the reduction in poverty. preserving and increasing farm production. |
Scherr et al., 2012 [59] | Management of nutrients, water, and soil. management of livestock, husbandry, and agroforestry. strategies for managing grasslands and forests. | Improved rural lives and food security. facilitating adaptation to climate change. |
Arslan et al., 2015 [85] | less tillage. Intercropping of legumes with crop rotation. use of inorganic fertilizer and better seeds. | Increased productivity and the resilience of smallholder farmers in Zambia. |
Rosenstock et al., 2019 [46] | Reduced tillage. Water harvest/storage. Increased diversity of crops. Intercropping with Legumes. | Improve the livelihoods and food security. resilience in the face of climate change realities. |
McCarthy et al., 2011 [62] | Agro-forestry. Conservation agriculture. Cropping patterns. Grazing land management. | Food security. Soil conservation for prolonged productivity. |
Taylor and Martin, 2018 [56] | Rainwater harvesting for peasant agriculture. no-till mono cropping. | Increased food production, distribution, and consumption. |
Imran et al., 2018 [73] | Conjunctive use of water. Drainage management. Minimum tillage. Crop rotation and improved varieties. | Higher yield and financial returns. Improved gross value of cotton product. |
Abegunde et al., 2019 [86] | organic manure, crop rotation and crop diversification | Improved household incomes. |
Khatri-Chhetri et al., 2016 [87] | crop varieties that are better. land leveling with lasers. tilling. Residue control. Site-specific control of nutrients | Improved crop yields in rice and wheat. Improved net return (income for farmers). |
Onyeneke et al., 2018 [88] | Adjusting agricultural production systems. Diversification on and beyond the farm. | Improvement of ecological resilience. Increase in agricultural productivity. |
Bai et al., 2019 [47] | Conservation tillage. Cover crop. Bio char application. | Reduce greenhouse gas emissions. Increased crop productivity. |
E. Bagley et al., 2015 [89] | No-till agriculture. Retaining crop debris. | Retain or improve crop yields. Retain soil quality. Increase climate resilience. |
Imran et al., 2019 [90] | Water-smart practices. Energy-smart. Carbon-smart. Knowledge-smart. | Improved agricultural productivity. Enhanced farm income on a sustainable basis. Enhanced water and nutrients use efficiency. Resilient to climatic stresses. |
Makate et al., 2018 [76] | Conservation agriculture, drought tolerant maize, and improved legume varieties. | Farm productivity and income. |
Shahzad et al., 2021 [32] | Changing input mix. Changing cropping calendar. Diversifying seed variety. Soil and water conservation measures. | Improved farm net returns. Reduced farmers’ exposure to downside risks and crop failure. |
Zougmore et al., 2018 [91] | High yielding drought tolerant crop varieties. Climate information services. Agroforestry. Water harvesting techniques. Integrated soil fertility management practices. | Sustainable improvement of farm productivity. Rural livelihoods and adaptive capacity of farmers. |
Khatri-Chhetri et al., 2020 [81] | Direct seeded rice. Green manuring. Laser land leveling. | Reduce women’s drudgery in agriculture. Improvement in productivity and farm income. |
Kakzan et al., 2013 [15] | Use of agroforestry. Conservation agriculture. | Increased yields. Reduced vulnerability to climate change. Reduced greenhouse gas emissions. |
Ayoub et al., 2022 [39] | Insect pests under changing climate and climate-smart pest management | CSPM also contributes to climate change mitigation; reducing pest-related yield losses. |
Fentie & Beyene, 2019 [8] | Row planting technology. | Improved per capita consumption. Increased crop income per hectare. |
Hanley et al., 2021 [77] | Diversification and intensification of key CS-IPM strategies such as Integration of fruit trees in farms. | Diversifying and improving the quality of food consumed by households. |
Sarker et al., 2020 [69] | Zero tillage systems. Altering the period of irrigation. Pest resistant varieties. | Increased agricultural production and income of poor households. |
Robert Ochago, 2018 [25] | The effect of CS-IPM practices on gender roles among smallholders cofee in Uganda | Using pesticides makes managing pests easier, results in increased yields, and creates high-quality coffee that appeals to consumers. Because of their high labor needs and expense, CSB IPM procedures are less desirable and hence a restraint, especially for women and the elderly. |
Mwadzingeni et al., 2022 [61] | Pest management in irrigated agriculture and the prevalence of gender in the context of climate change irrigating techniques | Pest prevalence and pest management strategies differ by gender. Development of smallholder irrigation farming system and scientific research. |
Murage et al., 2021 [92] | Push-Pull Technology as a Climate-Smart Integrated Pest Management Strategy | Push-pull technology (PPT) reduces yield losses due to fall armyworm (FAW). PPT increased maize yield by for the adopted farmers. |
Gwada et al., 2021 [93] | Effect of integrated pest management technology on the livelihoods of small-scale maize producers | Uptake of PPT had a positive and significant effect on household consumption expenditure and household dietary diversity |
Henk van denberg and Jiggins, 2007 [5] | Investing in Farmers—The Impacts of Farmer Field Schools in Relation to Integrated Pest Management | Participatory training approach in changing crop protection by farmers from chemically dependent, to more sustainable practices in line with the tenets IPM. |
Mazid et al., 2013 [94] | Improved livelihoods of smallholder farmers in Iraq through integrated pest management and use of organic fertilizer | Increases in the productivity of date palm and cereal/food/legume-based production systems can be achieved |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sekabira, H.; Tepa-Yotto, G.T.; Kaweesa, Y.; Simbeko, G.; Tamò, M.; Agboton, C.; Tahidu, O.D.; Abdoulaye, T. Impact of CS-IPM on Key Social Welfare Aspects of Smallholder Farmers’ Livelihoods. Climate 2023, 11, 97. https://doi.org/10.3390/cli11050097
Sekabira H, Tepa-Yotto GT, Kaweesa Y, Simbeko G, Tamò M, Agboton C, Tahidu OD, Abdoulaye T. Impact of CS-IPM on Key Social Welfare Aspects of Smallholder Farmers’ Livelihoods. Climate. 2023; 11(5):97. https://doi.org/10.3390/cli11050097
Chicago/Turabian StyleSekabira, Haruna, Ghislain T. Tepa-Yotto, Yusuf Kaweesa, Guy Simbeko, Manuele Tamò, Cyriaque Agboton, Osman Damba Tahidu, and Tahirou Abdoulaye. 2023. "Impact of CS-IPM on Key Social Welfare Aspects of Smallholder Farmers’ Livelihoods" Climate 11, no. 5: 97. https://doi.org/10.3390/cli11050097
APA StyleSekabira, H., Tepa-Yotto, G. T., Kaweesa, Y., Simbeko, G., Tamò, M., Agboton, C., Tahidu, O. D., & Abdoulaye, T. (2023). Impact of CS-IPM on Key Social Welfare Aspects of Smallholder Farmers’ Livelihoods. Climate, 11(5), 97. https://doi.org/10.3390/cli11050097