Enhancing Agricultural Soil Carbon Sequestration: A Review with Some Research Needs
Abstract
:1. Agriculture and GHGs
2. Soil C, GHGs, the C Cycle, and Enhancements
2.1. Conservation Tillage
2.2. Cover Crop
2.3. Prescribed Grazing
2.4. Biochar Amendment
3. Soil C in Markets
4. Non-C Benefits of Soil C
5. Soil C Sequestration and Dynamics
5.1. Approach to a New Equilibrium
5.2. Rapid Reversibility
5.3. Uncertainty
5.4. Tradeoffs with Other Gases
6. Economic Viability and Funding Effectiveness
6.1. Farmer/Rancher Supply
Long-Term Liability
6.2. Value to a Buyer
6.2.1. Buyer Concerns about Entry into Markets
6.2.2. The Social Cost of Carbon
6.2.3. Transaction Costs for Farmers and Intermediaries
6.2.4. Valuing Co-Benefits
6.2.5. Misleading Cost Estimates
7. Research Needs/Policy Considerations and Outlook
7.1. OneSize Does Not Fit All
7.2. Embrace Imperfections and Grading Standards
7.3. Mainstreaming
7.4. Research Needs
7.5. Crediting Calls for Regional Consistency & Integrity
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shukla, P.R.; Skea, J.; Calvo Buendia, E.; Masson-Delmotte, V.; Pörtner, H.O.; Roberts, D.C.; Zhai, P.; Slade, R.; Connors, S.; Van Diemen, R. (Eds.) Intergovernmental Panel on Climate Change Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Friedlingstein, P.; O’Sullivan, M.; Jones, M.W.; Andrew, R.M.; Hauck, J.; Olsen, A.; Peters, G.P.; Peters, W.; Pongratz, J.; Sitch, S.; et al. Global Carbon Budget 2020. Earth Syst. Sci. Data 2020, 12, 3269–3340. [Google Scholar] [CrossRef]
- Friedlingstein, P.; O’Sullivan, M.; Jones, M.W.; Andrew, R.M.; Bakker, D.C.E.; Hauck, J.; Landschützer, P.; Le Quéré, C.; Luijkx, T.T.T.; Asner, G.P.; et al. Global Carbon Budget 2023. Earth Syst. Sci. Data 2023, 15, 5301–5369. [Google Scholar] [CrossRef]
- United States of America Nationally Determined Contribution Reducing Greenhouse Gases in the United States: A 2030 Emissions Target (after Rejoining the Paris Agreement). 2021. Available online: https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/United%20States%20of%20America%20First/United%20States%20NDC%20April%2021%202021%20Final.pdf (accessed on 23 September 2024).
- United States Congress Inflation Reduction Act of 2022. Available online: https://www.congress.gov/bill/117th-congress/house-bill/5376 (accessed on 23 September 2024).
- Shukla, P.S.; Mantin, E.G.; Adil, M.; Bajpai, S.; Critchley, A.T.; Prithiviraj, B. Ascophyllum Nodosum-Based Biostimulants: Sustainable Applications in Agriculture for the Stimulation of Plant Growth, Stress Tolerance, and Disease Management. Front. Plant Sci. 2019, 10, 462648. [Google Scholar] [CrossRef]
- Moore, J.M.; Manter, D.K.; Bowman, M.; Hunter, M.; Bruner, E.; McClelland, S.C. A Framework to Estimate Climate Mitigation Potential for US Cropland Using Publicly Available Data. J. Soil Water Conserv. 2023, 78, 193–206. [Google Scholar] [CrossRef]
- Novara, A.; Favara, V.; Novara, A.; Francesca, N.; Santangelo, T.; Columba, P.; Chironi, S.; Ingrassia, M.; Gristina, L. Soil Carbon Budget Account for the Sustainability Improvement of a Mediterranean Vineyard Area. Agronomy 2020, 10, 336. [Google Scholar] [CrossRef]
- Vendrame, N.; Tezza, L.; Pitacco, A. Study of the Carbon Budget of a Temperate-Climate Vineyard: Inter-Annual Variability of CO2 Flux. Am. J. Enol. Vitic. 2019, 70, 34. [Google Scholar] [CrossRef]
- Lemus, R.; Lal, R. Bioenergy Crops and Carbon Sequestration. Crit. Rev. Plant Sci. 2005, 24, 1–21. [Google Scholar] [CrossRef]
- Conant, R.T.; Six, J.; Paustian, K.H. Land Use Effects on Soil Carbon Fractions in the Southeastern United States. I. Management-Intensive versus Extensive Grazing. Biol. Fertil. Soils 2003, 38, 386–392. [Google Scholar] [CrossRef]
- Conant, R.T.; Smith, G.R.; Paustian, K.H. Spatial Variability of Soil Carbon in Forested and Cultivated Sites: Implications for Change Detection. J. Environ. Qual. 2003, 32, 278–286. [Google Scholar] [CrossRef]
- Zomer, R.J.; Bossio, D.A.; Sommer, R.; Verchot, L.V. Global Sequestration Potential of Increased Organic Carbon in Cropland Soils. Sci. Rep. 2017, 7, 15554. [Google Scholar] [CrossRef]
- Li, Y.; Feng, H.; Dong, Q.; Xia, L.; Li, J.; Li, C.; Zang, H.; Andersen, M.N.; Olesen, J.E.; Jørgensen, U.; et al. Ammoniated Straw Incorporation Increases Wheat Yield, Yield Stability, Soil Organic Carbon and Soil Total Nitrogen Content. Field Crops Res. 2022, 284, 108558. [Google Scholar] [CrossRef]
- Luo, M.; Moorhead, D.L.; Ochoa-Hueso, R.; Mueller, C.W.; Ying, S.C.; Chen, J. Nitrogen Loading Enhances Phosphorus Limitation in Terrestrial Ecosystems with Implications for Soil Carbon Cycling. Funct. Ecol. 2022, 36, 2845–2858. [Google Scholar] [CrossRef]
- Luo, Z.; Wang, E.; Sun, O.J. Can No-Tillage Stimulate Carbon Sequestration in Agricultural Soils? A Meta-Analysis of Paired Experiments. Agric. Ecosyst. Environ. 2010, 139, 224–231. [Google Scholar] [CrossRef]
- Lal, R.; Negassa, W.; Lorenz, K. Carbon Sequestration in Soil. Curr. Opin. Environ. Sustain. 2015, 15, 79–86. [Google Scholar] [CrossRef]
- West, T.O.; Six, J. Considering the Influence of Sequestration Duration and Carbon Saturation on Estimates of Soil Carbon Capacity. Clim. Chang. 2007, 80, 25–41. [Google Scholar] [CrossRef]
- Conant, R.T.; Paustian, K.H. Potential Soil Carbon Sequestration in Overgrazed Grassland Ecosystems. Glob. Biogeochem. Cycles 2002, 16, 90–91. [Google Scholar] [CrossRef]
- West, T.O.; Post, W.M. Soil Organic Carbon Sequestration Rates by Tillage and Crop Rotation: A Global Data Analysis. Soil Sci. Soc. Am. J. 2002, 66, 1930–1946. [Google Scholar] [CrossRef]
- Liang, A.; Zhang, X.; Fang, H.; Yang, X.; Drury, C.F. Short-Term Effects of Tillage Practices on Organic Carbon in Clay Loam Soil of Northeast China. Pedosphere 2007, 17, 619–623. [Google Scholar] [CrossRef]
- Paustian, K.H.; Lehmann, J.; Ogle, S.M.; Reay, D.; Robertson, G.P.; Smith, P. Climate-Smart Soils. Nature 2016, 532, 49–57. [Google Scholar] [CrossRef]
- Tian, G.; Kang, B.; Kolawole, G.; Idinoba, P.; Salako, F. Long-Term Effects of Fallow Systems and Lengths on Crop Production and Soil Fertility Maintenance in West Africa. Nutr. Cycl. Agroecosyst. 2005, 71, 139–150. [Google Scholar] [CrossRef]
- Abdalla, K.; Chivenge, P.; Ciais, P.; Chaplot, V. No-Tillage Lessens Soil CO2 Emissions the Most under Arid and Sandy Soil Conditions: Results A Meta-Analysis. Biogeosciences 2016, 13, 3619–3633. [Google Scholar] [CrossRef]
- Bai, X.; Huang, Y.; Ren, W.; Coyne, M.; Jacinthe, P.A.; Tao, B.; Hui, D.; Yang, J.; Matocha, C. Responses of Soil Carbon Sequestration to Climate-Smart Agriculture Practices: A Meta-Analysis. Glob. Chang. Biol. 2019, 25, 2591–2606. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhang, Y.; Zong, Y.; Hu, Z.; Wu, S.; Zhou, J.; Jin, Y.; Zou, J. Response of Soil Carbon Dioxide Fluxes, Soil Organic Carbon and Microbial Biomass Carbon to Biochar Amendment: A Meta-Analysis. GCB Bioenergy 2015, 8, 392–406. [Google Scholar] [CrossRef]
- Poeplau, C.; Don, A. Carbon Sequestration in Agricultural Soils via Cultivation of Cover Crops—A Meta-Analysis. Agric. Ecosyst. Environ. 2015, 200, 33–41. [Google Scholar] [CrossRef]
- US Department of Agriculture Office of Chief Economist Marginal Abatement Cost Curves for Greenhouse Gas Mitigation on U.S. Farms and Ranches. 2023. Available online: https://www.usda.gov/sites/default/files/documents/Marginal-Abatement-Cost-Curve-Estimate-Methodology-Report.pdf (accessed on 23 September 2024).
- Claassen, R.; Bowman, M.; McFadden, J.; Smith, D.; Wallander, S. Tillage Intensity and Conservation Cropping in the United States; United States Department of Agriculture (USDA), Economic Research Service: Washington, DC, USA, 2018. [Google Scholar]
- Allen, R.R.; Fenster, C.R. Stubble-Mulch Equipment for Soil and Water Conservation in the Great Plains. J. Soil Water Conserv. 1986, 41, 11. [Google Scholar]
- Unger, P.W.; Baumhardt, R.L. Historical Development of Conservation Tillage in the Southern Great Plains. In Proceedings of the 24th Annual Southern Conservation Tillage Conference for Sustainable Agriculture, Oklahoma City, OK, USA, 9–11 July 2001; pp. 9–11. [Google Scholar]
- US Department of Agriculture Natural Resources Conservation Service Conservation Practice Standard Overview: Residue and Tillage Management, Reduced Tillage. 2016. Available online: https://www.nrcs.usda.gov/sites/default/files/2022-09/Residue_And_Tillage_Management_Reduced_Till_345_PS_Sept_2016.pdf (accessed on 23 September 2024).
- Blanco-Canqui, H.; Lal, R. No-Till Farming. In Principles of Soil Conservation and Management; Blanco-Canqui, H., Lal, R., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 195–221. ISBN 978-90-481-8529-0. [Google Scholar]
- Davey, K.A.; Furtan, W.H. Factors That Affect the Adoption Decision of Conservation Tillage in the Prairie Region of Canada. Can. J. Agric. Econ. 2008, 56, 257–275. [Google Scholar] [CrossRef]
- Ding, Y.; Schoengold, K.; Tadesse, T. The Impact of Weather Extremes on Agricultural Production Methods: Does Drought Increase Adoption of Conservation Tillage Practices? J. Agric. Resour. Econ. 2009, 34, 395–411. [Google Scholar] [CrossRef]
- Pautsch, G.R.; Kurkalova, L.A.; Babcock, B.A.; Kling, C.L. The Efficiency of Sequestering Carbon in Agricultural Soils. Contemp. Econ. Policy 2001, 19, 123–134. [Google Scholar] [CrossRef]
- US Department of Agriculture Natural Resources Conservation Service Conservation Practice Standard Cover Crop Code 340. 2014. Available online: https://www.nrcs.usda.gov/resources/guides-and-instructions/cover-crop-ac-340-conservation-practice-standard (accessed on 23 September 2024).
- Wallander, S.; Smith, D.; Claassen, R. Cover Crop Trends, Programs, and Practices in the United States; U.S. Department of Agriculture Economic Research Service: Washington, DC, USA, 2021; p. 33. Available online: https://www.ers.usda.gov/webdocs/publications/100551/eib-222.pdf (accessed on 23 September 2024).
- Sustainable Agriculture Research and Education 2019–2020 National Cover Crop Surveys. Cover Crops for Sustainable Crop Rotations; Sustinable Agriculture Research and Education. 2020. Available online: https://www.sare.org/wp-content/uploads/2019-2020-National-Cover-Crop-Survey.pdf (accessed on 23 September 2024).
- Jones, D.A.; O’Hara, K.L. Carbon and Biomass Models for Five Sierra Nevada Mixed Conifer Species. Can. J. For. Res. 2023, 54, 192–206. [Google Scholar] [CrossRef]
- Eash, L.; Ogle, S.; McClelland, S.C.; Fonte, S.J.; Schipanski, M.E. Climate Mitigation Potential of Cover Crops in the United States Is Regionally Concentrated and Lower than Previous Estimates. Glob. Chang. Biol. 2024, 30, e17372. [Google Scholar] [CrossRef]
- US Environmental Protection Agency Emission Factors for Greenhouse Gas Inventories. 2022. Available online: https://www.epa.gov/system/files/documents/2022-04/ghg_emission_factors_hub.pdf (accessed on 23 September 2024).
- US Department of Agriculture Natural Resources Conservation Service Conservation Practice Standard 528. 2017. Available online: https://www.nrcs.usda.gov/sites/default/files/2022-09/Cover_Crop_340_CPS.pdf (accessed on 23 September 2024).
- Parikh, S.J.; Winfield, E. Climate-Smart Agriculture: Biochar Amendments; USDA California Climate Hub: Washington, DC, USA, 2020. [Google Scholar]
- Spokas, K.A. Review of the Stability of Biochar in Soils: Predictability of O:C Molar Ratios. Carbon Manag. 2010, 1, 289–303. [Google Scholar] [CrossRef]
- Neukirch, A.; Page-Dumroese, D.S.; Anderson, N.; McCollum, D.; Archuleta, J.; Salix, J. Biochar Basics: An A-to-Z Guide to Biochar Production, Use, and Benefits; Rocky Mountain Research Station: Fort Collins, CO, USA, 2022; p. 11. [Google Scholar]
- Dokoohaki, H.; Miguez, F.E.; Laird, D.; Dumortier, J. Where Should We Apply Biochar? Environ. Res. Lett. 2019, 14, 044005. [Google Scholar] [CrossRef]
- Amonette, J.E.; Blanco-Canqui, H.; Hassebrook, C.; Laird, D.A.; Lal, R.; Lehmann, J.; Page-Dumroese, D. Integrated Biochar Research: A Roadmap. J. Soil Water Conserv. 2021, 76, 24A. [Google Scholar] [CrossRef]
- Lehmann, J.; Cowie, A.; Masiello, C.A.; Kammann, C.; Woolf, D.; Amonette, J.E.; Cayuela, M.L.; Camps-Arbestain, M.; Whitman, T. Biochar in Climate Change Mitigation. Nat. Geosci. 2021, 14, 883–892. [Google Scholar] [CrossRef]
- Sabbaghi, O.; Sabbaghi, N. Carbon Financial Instruments, Thin Trading, and Volatility: Evidence from the Chicago Climate Exchange. Q. Rev. Econ. Financ. 2011, 51, 399–407. [Google Scholar] [CrossRef]
- US Department of Agriculture A General Assessment of the Role of Agriculture and Forestry in U.S. Carbon Markets. 2023. Available online: https://www.usda.gov/media/press-releases/2023/10/23/usda-releases-assessment-agriculture-and-forestry-carbon-markets (accessed on 23 September 2024).
- Wongpiyabovorn, O.; Plastina, A.; Crespi, J.M. Challenges to Voluntary Ag Carbon Markets. Appl. Econ. Perspect. Policy 2023, 45, 1154–1167. [Google Scholar] [CrossRef]
- Blaufelder, C.; Levy, C.; Mannion, P.; Pinner, D. A Blueprint for Scaling Voluntary Carbon Markets to Meet the Climate Challenge. 2021. Available online: https://www.mckinsey.com/capabilities/sustainability/our-insights/a-blueprint-for-scaling-voluntary-carbon-markets-to-meet-the-climate-challenge/ (accessed on 23 September 2024).
- Skopek, J.M. Uncommon Goods: On Environmental Virtues and Voluntary Carbon Offsets. Harv. Law Rev. 2010, 123, 2065–2087. [Google Scholar]
- Dupla, X.; Bonvin, E.; Deluz, C.; Lugassy, L.; Verrecchia, E.; Baveye, P.C.; Grand, S.; Boivin, P. Are Soil Carbon Credits Empty Promises? Shortcomings of Current Soil Carbon Quantification Methodologies and Improvement Avenues. Soil Use Manag. 2024, 40, e13092. [Google Scholar] [CrossRef]
- Follett, R.F.; Reed, D.A. Soil Carbon Sequestration in Grazing Lands: Societal Benefits and Policy Implications. Rangel. Ecol. Manag. 2010, 63, 4–15. [Google Scholar] [CrossRef]
- Lehmann, J.; Bossio, D.A.; Kögel-Knabner, I.; Rillig, M.C. The Concept and Future Prospects of Soil Health. Nat. Rev. Earth Environ. 2020, 1, 544–553. [Google Scholar] [CrossRef]
- Barrett, C.B.; Bevis, L.E.M. The Self-Reinforcing Feedback between Low Soil Fertility and Chronic Poverty. Nat. Geosci. 2015, 8, 907–912. [Google Scholar] [CrossRef]
- Prokopy, L.S.; Floress, K.; Arbuckle, J.G.; Church, S.P.; Eanes, F.R.; Gao, Y.; Gramig, B.M.; Ranjan, P.; Singh, A.S. Adoption of Agricultural Conservation Practices in the United States: Evidence from 35 Years of Quantitative Literature. J. Soil Water Conserv. 2019, 74, 520. [Google Scholar] [CrossRef]
- Li, C.S.; Frolking, S.; Butterbach-Bahl, K. Carbon Sequestration in Arable Soils Is Likely to Increase Nitrous Oxide Emissions, Offsetting Reductions in Climate Radiative Forcing. Clim. Chang. 2005, 72, 321–338. [Google Scholar] [CrossRef]
- Xiao, C. Soil Organic Carbon Storage (Sequestration) Principles and Management; Department of Ecology, State of Washington: Lacey, WA, USA, 2015. Available online: https://apps.ecology.wa.gov/publications/documents/1507005.pdf (accessed on 23 September 2024).
- Lal, R. Carbon Management in Agricultural Soils. Mitig. Adapt. Strateg. Glob. Chang. 2007, 12, 303–322. [Google Scholar] [CrossRef]
- Paustian, K.H.; Collins, H.P.; Paul, E.A. Management Controls on Soil Carbon. In Soil Organic Matter in Temperate Agroecosystems; Paul, E.A., Paustian, K.H., Elliott, E.T., Cole, C.V., Eds.; CRC Press: Boca Raton, FL, USA, 2019; pp. 15–49. [Google Scholar]
- Grandy, A.S.; Robertson, G.P. Land-Use Intensity Effects on Soil Organic Carbon Accumulation Rates and Mechanisms. Ecosystems 2007, 10, 59–74. [Google Scholar] [CrossRef]
- Stewart, C.E.; Paustian, K.H.; Conant, R.T.; Plante, A.F.; Six, J. Soil Carbon Saturation: Concept, Evidence and Evaluation. Biogeochemistry 2007, 86, 19–31. [Google Scholar] [CrossRef]
- Ogle, S.M.; Conant, R.T.; Fischer, B.L.; Haya, B.; Manning, D.T.; McCarl, B.A.; Zelikova, T.J. Policy Challenges to Enhance Soil Carbon Sinks: The Dirty Part of Making Contributions to the Paris Agreement by the United States. Carbon Manag. 2023, 14, 2268071. [Google Scholar] [CrossRef]
- Post, W.M.; Izaurralde, R.C.; Jastrow, J.; McCarl, B.A.; Amonette, J.E.; Bailey, V.; Jardine, P.; West, T.O.; Zhou, J. Enhancement of Carbon Sequestration in US Soils. BioScience 2004, 54, 895–908. [Google Scholar] [CrossRef]
- Reicosky, D.C.; Dugas, W.A.; Torbert, H.A. Tillage-Induced Soil Carbon Dioxide Loss from Different Cropping Systems. Soil Tillage Res. 1997, 41, 105–118. [Google Scholar] [CrossRef]
- Kim, B.; Roque, R.; Lee, S. Cost Analysis for Use of SBS Modifier in Asphalt Pavement Using a Performance-Based Fracture Criterion. Road Mater. Pavement Des. 2008, 9, 571–588. [Google Scholar] [CrossRef]
- Kim, M.K.; McCarl, B.A.; Murray, B.C. Permanence Discounting for Land-Based Carbon Sequestration. Ecol. Econ. 2008, 64, 763–769. [Google Scholar] [CrossRef]
- Antle, J.M.; McCarl, B.A. The Economics of Carbon Sequestration in Agricultural Soils. Int. Yearb. Environ. Resour. Econ. 2002, 2003, 278–310. [Google Scholar]
- Alix-Garcia, J.; Wolff, H. Payment for Ecosystem Services from Forests. Annu. Rev. Environ. Resour. 2014, 6, 361–380. [Google Scholar] [CrossRef]
- Fry, I. Reducing Emissions from Deforestation and Forest Degradation: Opportunities and Pitfalls in Developing a New Legal Regime. Rev. Eur. Community Int. Environ. Law 2008, 17, 166–182. [Google Scholar] [CrossRef]
- Ghazoul, J.; Butler, R.A.; Mateo-Vega, J.; Koh, L.P. REDD: A Reckoning of Environment and Development Implications. Trends Ecol. Evol. 2010, 25, 396–402. [Google Scholar] [CrossRef]
- Kerr, S.C. The Economics of International Policy Agreements to Reduce Emissions from Deforestation and Degradation. Rev. Environ. Econ. Policy 2013, 7, 47–66. [Google Scholar] [CrossRef]
- Lawrence, D.; Van de Car, K. Effects of Tropical Deforestation on Climate and Agriculture. Nat. Clim. Chang. 2015, 5, 27–36. [Google Scholar] [CrossRef]
- Pistorius, T. From RED to REDD+: The Evolution of a Forest-Based Mitigation Approach for Developing Countries. Curr. Opin. Environ. Sustain. 2012, 4, 638–645. [Google Scholar] [CrossRef]
- Siddique, I.A.; Grados, D.; Chen, J.; Lærke, P.E.; Jørgensen, U. Soil Organic Carbon Stock Change Following Perennialization: A Meta-Analysis. Agron. Sustain. Dev. 2023, 43, 58. [Google Scholar] [CrossRef]
- Chen, J.; Luo, Y.; Kätterer, T.; Olesen, J.E. Depth-Dependent Responses of Soil Organic Carbon Stock under Annual and Perennial Cropping Systems. Proc. Natl. Acad. Sci. USA 2022, 119, e2203486119. [Google Scholar] [CrossRef]
- Sun, S.; Liu, X.; Lu, S.; Cao, P.; Hui, D.; Chen, J.; Guo, J.; Yang, Y. Depth-Dependent Response of Particulate and Mineral-Associated Organic Carbon to Long-Term Throughfall Reduction in a Subtropical Natural Forest. Catena 2023, 223, 106904. [Google Scholar] [CrossRef]
- Heckman, K.; Hicks Pries, C.E.; Lawrence, C.R.; Rasmussen, C.; Crow, S.E.; Hoyt, A.M.; von Fromm, S.F.; Shi, Z.; Stoner, S.; McGrath, C. Beyond Bulk: Density Fractions Explain Heterogeneity in Global Soil Carbon Abundance and Persistence. Glob. Chang. Biol. 2022, 28, 1178–1196. [Google Scholar] [CrossRef] [PubMed]
- Jenny, H. Factors of Soil Formation: A System of Quantitative Pedology; Dover Publications, Inc.: New York, NY, USA, 1941. [Google Scholar]
- Hutchinson, J.J.; Campbell, C.A.; Desjardins, R.L. Some Perspectives on Carbon Sequestration in Agriculture. Agric. For. Meteorol. 2007, 142, 288–302. [Google Scholar] [CrossRef]
- Patzold, S.; Mertens, F.M.; Bornemann, L.; Koleczek, B.; Franke, J.; Feilhauer, H.; Welp, G. Soil Heterogeneity at the Field Scale: A Challenge for Precision Crop Protection. Precis. Agric. 2008, 9, 367–390. [Google Scholar] [CrossRef]
- Premke, K.; Attermeyer, K.; Augustin, J.; Cabezas, A.; Casper, P.; Deumlich, D.; Gelbrecht, J.; Gerke, H.H.; Gessler, A.; Grossart, H.P. The Importance of Landscape Diversity for Carbon Fluxes at the Landscape Level: Small-Scale Heterogeneity Matters. Wiley Interdiscip. Rev. Water 2016, 3, 601–617. [Google Scholar] [CrossRef]
- O’Rourke, S.M.; Angers, D.A.; Holden, N.M.; McBratney, A.B. Soil Organic Carbon across Scales. Glob. Chang. Biol. 2015, 21, 3561–3574. [Google Scholar] [CrossRef]
- Kim, M.K.; McCarl, B.A. Uncertainty Discounting for Land-Based Carbon Sequestration. J. Agric. Appl. Econ. 2009, 41, 1–11. [Google Scholar] [CrossRef]
- UNFCCC Secretariat (Ed.) Canada Methodological Issues Inventories and Uncertainties. In Approaches to Resolving Methodological Issues Related to National Communications from Annex I Parties: Additional Submissions by Parties; United Nations Framework Convention on Climate Change: Buenos Aires, Argentina, 1998. [Google Scholar]
- Smith, P. How Long before a Change in Soil Organic Carbon Can Be Detected? Glob. Chang. Biol. 2004, 10, 1878–1883. [Google Scholar] [CrossRef]
- Mooney, D.F.; Larson, J.A.; English, B.C.; Tyler, D.D. Effect of Dry Matter Loss on Profitability of Outdoor Storage of Switchgrass. Biomass Bioenergy 2012, 44, 33–41. [Google Scholar] [CrossRef]
- Smith, P.; Soussana, J.F.; Angers, D.; Schipper, L.; Chenu, C.; Rasse, D.P.; Batjes, N.H.; van Egmond, F.; McNeill, S.; Kuhnert, M.; et al. How to Measure, Report and Verify Soil Carbon Change to Realize the Potential of Soil Carbon Sequestration for Atmospheric Greenhouse Gas Removal. Glob. Chang. Biol. 2020, 26, 219–241. [Google Scholar] [CrossRef]
- Bronick, C.J.; Lal, R. Soil Structure and Management: A Review. Geoderma 2005, 124, 3–22. [Google Scholar] [CrossRef]
- Conant, R.T.; Ryan, M.G.; Ågren, G.I.; Birge, H.E.; Davidson, E.A.; Eliasson, P.E.; Evans, S.E.; Frey, S.D.; Giardina, C.P.; Hopkins, F.M.; et al. Temperature and Soil Organic Matter Decomposition Rates—Synthesis of Current Knowledge and a Way Forward. Glob. Chang. Biol. 2011, 17, 3392–3404. [Google Scholar] [CrossRef]
- Hobbie, S.E.; Schimel, J.P.; Trumbore, S.E.; Randerson, J.T. Controls over Carbon Storage and Turnover in High-latitude Soils. Glob. Chang. Biol. 2000, 6, 196–210. [Google Scholar] [CrossRef]
- Jobbágy, E.G.; Jackson, R.B. The Vertical Distribution of Soil Organic Carbon and Its Relation to Climate and Vegetation. Ecol. Appl. 2000, 10, 423–436. [Google Scholar] [CrossRef]
- Lal, R. Soil Carbon Sequestration to Mitigate Climate Change. Geoderma 2004, 123, 1–22. [Google Scholar] [CrossRef]
- Luo, Y.; Su, B.O.; Currie, W.S.; Dukes, J.S.; Finzi, A.; Hartwig, U.; Hungate, B.; McMurtrie, R.E.; Oren, R.A.M.; Parton, W.J. Progressive Nitrogen Limitation of Ecosystem Responses to Rising Atmospheric Carbon Dioxide. Bioscience 2004, 54, 731–739. [Google Scholar] [CrossRef]
- Raich, J.W.; Schlesinger, W.H. The Global Carbon Dioxide Flux in Soil Respiration and Its Relationship to Vegetation and Climate. Tellus B 1992, 44, 81–99. [Google Scholar] [CrossRef]
- Attavanich, W.; McCarl, B.A. How Is CO2 Affecting Yields and Technological Progress? A Statistical Analysis. Clim. Chang. 2014, 124, 747–762. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change Climate Change 2022: Mitigation of Climate Change. In Working Group III Contribution to the IPCC Sixth Assessment Report; Cambridge University Press: New York, NY, USA; Cambridge, UK, 2022; Available online: https://www.ipcc.ch/report/ar6/wg3/ (accessed on 23 September 2024).
- Grant, T.; Beer, T. Life Cycle Assessment of Greenhouse Gas Emissions from Irrigated Maize and Their Significance in the Value Chain. Aust. J. Exp. Agric. 2008, 48, 375–381. [Google Scholar] [CrossRef]
- Schlesinger, W.H. Carbon Sequestration in Soils: Some Cautions amidst Optimism. Agric. Ecosyst. Environ. 2000, 82, 121–127. [Google Scholar] [CrossRef]
- Bessou, C.; Tailleur, A.; Godard, C.; Gac, A.; de la Cour, J.; Boissy, J.; Mischler, P.; Caldeira-Pires, A.; Benoist, A. Accounting for Soil Organic Carbon Role in Land Use Contribution to Climate Change in Agricultural LCA: Which Methods? Which Impacts? Int. J. Life Cycle Assess 2020, 25, 1217–1230. [Google Scholar] [CrossRef]
- Goglio, P.; Smith, W.N.; Grant, B.B.; Desjardins, R.L.; McConkey, B.G.; Campbell, C.A.; Nemecek, T. Accounting for Soil Carbon Changes in Agricultural Life Cycle Assessment (LCA): A Review. J. Clean. Prod. 2015, 104, 23–39. [Google Scholar] [CrossRef]
- Amundson, R.; Biardeau, L. Soil Carbon Sequestration Is an Elusive Climate Mitigation Tool. Proc. Natl. Acad. Sci. USA 2018, 115, 11652–11656. [Google Scholar] [CrossRef] [PubMed]
- McCarl, B.A.; Murray, B.C.; Antle, J.M. Agricultural Soil Carbon Sequestration: Economic Issues and Research Needs. Available online: https://agecon2.tamu.edu/people/faculty/mccarl-bruce/papers/0875.pdf (accessed on 23 September 2024).
- Albrecht, W.A. Loss of Soil Organic Matter and Its Restoration. In Soils and Men: Yearbook of Agriculture; US Department of Agriculture: Washington, DC, USA, 1938; pp. 348–360. [Google Scholar]
- Gosnell, H.; Charnley, S.; Stanley, P. Climate Change Mitigation as a Co-Benefit of Regenerative Ranching: Insights from Australia and the United States. Interface Focus 2020, 10, 20200027. [Google Scholar] [CrossRef] [PubMed]
- Pannell, D.J.; Crawford, M. Post 371: Challenges in Making Soil Sequestration a Worthwhile Policy. Pannell Discussions 2022. Available online: https://www.pannelldiscussions.net/2022/05/371-soil-carbon-policy/ (accessed on 23 September 2024).
- Thamo, T.; Pannell, D.J. Challenges in Developing Effective Policy for Soil Carbon Sequestration: Perspectives on Additionality, Leakage, and Permanence. Clim. Policy 2016, 16, 973–992. [Google Scholar] [CrossRef]
- Bennett, J.F.; Mitchell, D. Emissions Trading and the Transfer of Risk: Concerns for Farmers. In Agricultural Practices and Policies for Carbon Sequestration in Soil; Kimble, J.M., Lal, R., Follett, R.F., Eds.; CRC Press: Boca Raton, FL, USA, 2002; pp. 373–380. [Google Scholar]
- McCarl, B.A.; Schneider, U.A.; Murray, B.C.; Williams, J.R.; Sands, R.D. Economic Potential of Greenhouse Gas Emission Reductions: Comparative Role for Soil Sequestration in Agriculture and Forestry. In Proceedings of the First Department of Energy National Conference on Carbon Sequestration, Washington, DC, USA, 14–17 May 2001. [Google Scholar]
- Marland, G.; McCarl, B.A.; Schneider, U.A. Soil Carbon: Policy and Economics. Clim. Chang. 2001, 51, 101–117. [Google Scholar] [CrossRef]
- Owen, M.D.K.; Zelaya, I.A. Herbicide-Resistant Crops and Weed Resistance to Herbicides. Pest Manag. Sci. 2005, 61, 301–311. [Google Scholar] [CrossRef]
- Murray, B.C.; McCarl, B.A.; Lee, H.C. Estimating Leakage from Forest Carbon Sequestration Programs. Land Econ. 2004, 80, 109. [Google Scholar] [CrossRef]
- Smith, G.; McCarl, B.A.; Li, C.S.; Reynolds, J.H.; Hammerschlag, R.; Sass, R.L.; Parton, W.J.; Ogle, S.M.; Paustian, K.H.; Holtkamp, J.A.; et al. Harnessing Farms and Forests in the Low-Carbon Economy: How to Create, Measure, and Verify Greenhouse Gas Offsets; Chameides, W., Willey, Z., Eds.; Duke University Press: Durham, NC, USA, 2007. [Google Scholar]
- Brandão, M.; Levasseur, A.; Kirschbaum, M.U.F.; Weidema, B.P.; Cowie, A.L.; Jørgensen, S.V.; Hauschild, M.Z.; Pennington, D.W.; Chomkhamsri, K. Key Issues and Options in Accounting for Carbon Sequestration and Temporary Storage in Life Cycle Assessment and Carbon Footprinting. Int. J. Life Cycle Assess 2013, 18, 230–240. [Google Scholar] [CrossRef]
- Stavins, R.N. What Can We Learn from the Grand Policy Experiment? Lessons from SO2 Allowance Trading. J. Econ. Perspect. 1998, 12, 69–88. [Google Scholar] [CrossRef]
- Ogle, S.M.; Breidt, F.J.; Easter, M.; Williams, S.A.; Killian, K.; Paustian, K.H. Scale and Uncertainty in Modeled Soil Organic Carbon Stock Changes for US Croplands Using a Process-Based Model. Glob. Chang. Biol. 2010, 16, 810–822. [Google Scholar] [CrossRef]
- Murray, B.C.; Sohngen, B.L.; Ross, M.T. Economic Consequences of Consideration of Permanence, Leakage and Additionality for Soil Carbon Sequestration Projects. Clim. Chang. 2007, 80, 127–143. [Google Scholar] [CrossRef]
- Deines, J.; Guan, K.; Lopez, B.; Zhou, Q.; White, C.; Wang, S.; Lobell, D.B. Recent Cover Crop Adoption Is Associated with Small Maize and Soybean Yield Losses in the United States. Glob. Chang. Biol. 2023, 29, 794–807. [Google Scholar] [CrossRef]
- Lobell, D.B.; Villoria, N.B. Reduced Benefits of Climate-Smart Agricultural Policies from Land-Use Spillovers. Nat. Sustain. 2023, 6, 941–948. [Google Scholar] [CrossRef]
- Rennert, K.; Errickson, F.; Prest, B.C.; Rennels, L.; Newell, R.G.; Pizer, W.A.; Kingdon, C.; Wingenroth, J.; Cooke, R.; Parthum, B.; et al. Comprehensive Evidence Implies a Higher Social Cost of CO2. Nature 2022, 610, 687–692. [Google Scholar] [CrossRef] [PubMed]
- US Environmental Protection Agency. Supplementary Material for the Regulatory Impact Analysis for the Supplemental Proposed Rulemaking, “Standards of Performance for New, Reconstructed, and Modified Sources and Emissions Guidelines for Existing Sources: Oil and Natural Gas Sector Climate Review”; US Environmental Protection Agency: Washington, DC, USA, 2022; p. 137. [Google Scholar]
- Fei, C.J.; McCarl, B.A. Agricultural Soils and the Quest for Net Zero Emissions. Choices 2023, 38. [Google Scholar]
- Kim, S.W. The Effect of Transaction Costs on Greenhouse Gas Emission Mitigation for Agriculture and Forestry; Texas A & M University: College Station, TX, USA, 2011; Available online: https://oaktrust.library.tamu.edu/items/df702b1b-2f1f-40e5-a311-b33aaedc9c99 (accessed on 23 September 2024).
- Alston, J.M.; Hurd, B.H. Some Neglected Social Costs of Government Spending in Farm Programs. Am. J. Agric. Econ. 1990, 72, 149–156. [Google Scholar] [CrossRef]
- Post, W.M.; Amonette, J.E.; Birdsey, R.A.; Rice, C.W.; Izaurralde, R.C.; Jardine, P.; Jastrow, J.; Lal, R.; Marland, G.H.; McCarl, B.A.; et al. Terrestrial Biological Carbon Sequestration: Science for Enhancement and Implementation. In Carbon Sequestration and Its Role in the Global Carbon Cycle; McPherson, B.P., Sundquist, E.T., Eds.; Geophysical Monograph Series; American Geophysical Union: Devon, UK, 2009; pp. 73–88. [Google Scholar]
- McCann, L.; Easter, K.W. Estimates of Public Sector Transaction Costs in NRCS Programs. J. Agric. Appl. Econ. 2000, 32, 555–563. [Google Scholar] [CrossRef]
- Cook, S.L.; Ma, Z. The Interconnectedness between Landowner Knowledge, Value, Belief, Attitude, and Willingness to Act: Policy Implications for Carbon Sequestration on Private Rangelands. J. Environ. Manag. 2014, 134, 90–99. [Google Scholar] [CrossRef]
- Elbakidze, L.; McCarl, B.A. Sequestration Offsets versus Direct Emission Reductions: Consideration of Environmental Co-Effects. Ecol. Econ. 2007, 60, 564–571. [Google Scholar] [CrossRef]
- McCarl, B.A.; Schneider, U.A. Greenhouse Gas Mitigation in U.S. Agriculture and Forestry. Science 2001, 294, 2481–2482. [Google Scholar] [CrossRef] [PubMed]
- Bell, J.; DeLaune, P.B.; Fischer, B.L.; Foster, J.L.; Lewis, K.L.; McCarl, B.A.; Outlaw, J.L. Carbon Sequestration and Water Management in Texas—One Size Does Not Fit All. Agrosyst. Geosci. Environ. 2023, 6, e20372. [Google Scholar] [CrossRef]
- Conant, R.T.; Steinweg, J.M.; Haddix, M.L.; Paul, E.A.; Plante, A.F.; Six, J. Experimental Warming Shows That Decomposition Temperature Sensitivity Increases with Soil Organic Matter Recalcitrance. Ecology 2008, 89, 2384–2391. [Google Scholar] [CrossRef]
- Ogle, S.M.; Breidt, F.J.; Easter, M.; Williams, S.A.; Paustian, K.H. An Empirically Based Approach for Estimating Uncertainty Associated with Modelling Carbon Sequestration in Soils. Ecol. Model. 2007, 205, 453–463. [Google Scholar] [CrossRef]
- Oldfield, E.E.; Eagle, A.J.; Rubin, R.L.; Rudek, J.; Sanderman, J.; Gordon, D.R. Crediting Agricultural Soil Carbon Sequestration: Regional Consistency Is Necessary for Carbon Credit Integrity. Science 2022, 375, 1222. [Google Scholar] [CrossRef]
- Chambwera, M.; Heal, G.; Dubeux, C.; Hallegatte, S.; Leclerc, L.; Markandya, A.; McCarl, B.A.; Mechler, R.; Neumann, J.E. Economics of Adaptation. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Rodrigues, C.I.D.; Brito, L.M.; Nunes, L.J.R. Soil Carbon Sequestration in the Context of Climate Change Mitigation: A Review. Soil Syst. 2023, 7, 64. [Google Scholar] [CrossRef]
- Oldfield, E.E.; Eagle, A.J.; Rubin, R.L.; Rudek, J.; Sanderman, J.; Gordon, D.R. Agricultural Soil Carbon Credits: Making Sense of Protocols for Carbon Sequestration and Net Greenhouse Gas Removals; Environmental Defense Fund: New York, NY, USA, 2021. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.; Liu, Z.; McCarl, B.A.; Fei, C.J. Enhancing Agricultural Soil Carbon Sequestration: A Review with Some Research Needs. Climate 2024, 12, 151. https://doi.org/10.3390/cli12100151
Zhang K, Liu Z, McCarl BA, Fei CJ. Enhancing Agricultural Soil Carbon Sequestration: A Review with Some Research Needs. Climate. 2024; 12(10):151. https://doi.org/10.3390/cli12100151
Chicago/Turabian StyleZhang, Kaiyi, Zehao Liu, Bruce A. McCarl, and Chengcheng J. Fei. 2024. "Enhancing Agricultural Soil Carbon Sequestration: A Review with Some Research Needs" Climate 12, no. 10: 151. https://doi.org/10.3390/cli12100151
APA StyleZhang, K., Liu, Z., McCarl, B. A., & Fei, C. J. (2024). Enhancing Agricultural Soil Carbon Sequestration: A Review with Some Research Needs. Climate, 12(10), 151. https://doi.org/10.3390/cli12100151