Socio-Demographic Determinants of Climate-Smart Agriculture Adoption Among Smallholder Crop Producers in Bushbuckridge, Mpumalanga Province of South Africa
Abstract
:1. Introduction
2. Literature Review
2.1. Overview of Climate-Smart Agriculture
2.2. Socio-Demographic Determinants of Climate-Smart Agriculture Adoption
3. Theoretical Framework: The Innovation-Decision Process Theory
4. Materials and Methods
4.1. Study Area
4.2. Research Design
4.3. Sampling Method
4.4. Sample Size
4.5. Data Collection
4.6. Data Analysis
5. Results
5.1. Socio-Demographic Factors of Smallholder Crop Production Farmers
5.2. The Relationship Between Socio-Demographic Variables and the Desire to Adopt CSA Practices
6. Discussion
6.1. Socio-Demographic Factors of Smallholder Crop Production Farmers
6.2. The Relationship Between Socio-Demographic Variables and the Desire to Adopt CSA Practices
6.3. Study Limitations
7. Study Summary and Its Applicability to Other Agricultural Contexts
8. Conclusions and Recommendations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bedeke, S.B. Climate change vulnerability and adaptation of crop producers in Sub-Saharan Africa: A review on concepts, approaches, and methods. J. Environ. Dev. Sustain. 2023, 25, 1017–1051. [Google Scholar] [CrossRef]
- Malhi, G.S.; Kaur, M.; Kaushik, P. Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review. Sustainability 2021, 13, 1318. [Google Scholar] [CrossRef]
- Morepje, M.T.; Agholor, A.I.; Sithole, M.Z.; Mgwenya, L.I.; Msweli, N.S.; Thabane, V.N. An Analysis of the Acceptance of Water Management Systems among Smallholder Farmers in Numbi, Mpumalanga Province, South Africa. Sustainability 2024, 16, 1952. [Google Scholar] [CrossRef]
- Matteoli, F.; Schnetzer, J.; Jacobs, H.; December, A. Climate-Smart Agriculture (CSA): An Integrated Approach for Climate Change Management in the Agriculture Sector. In Handbook of Climate Change Management; Leal Filho, W.L., Ed.; Springer: Cham, Switzerland, 2020; pp. 1–29. [Google Scholar] [CrossRef]
- Ngoma, H.; Arild, A.; Thomas, J.; Antony, C. Understanding adoption and impacts of conservation Agriculture in Eastern and South Africa: A review. J. Front. Agron. 2021, 3, 671690. [Google Scholar] [CrossRef]
- Aidoo, J.A.; Agyei, P.A.; Dougill, A.J.; Ogbanje, C.E.; Eze, E. Adoption of climate-smart agricultural practices by smallholder farmers in rural Ghana: An application of the theory of planned behavior. PLOS Clim. J. 2022, 1, e0000082. [Google Scholar] [CrossRef]
- Ogunyiola, A.; Gardezi, M.; Vij, S. Smallholder farmers’ engagement with climate-smart agriculture in Africa: Role of local knowledge and upscaling. Clim. Pol. 2022, 22, 411–426. [Google Scholar] [CrossRef]
- Hossain, A.; Mottaleb, K.A.; Maitra, S.; Mitra, B.; Ahmed, S.; Sarker, S.; Chaki, A.K.; Laing, A.M. Conservation agriculture: Next-generation, climate resilient crop management practices for food security and environmental health. In Conservation Agriculture: A Sustainable Approach for Soil Health and Food Security: Conservation Agriculture for Sustainable Agriculture; Springer: Singapore, 2021; pp. 585–609. [Google Scholar] [CrossRef]
- Agholor, A.I.; Olorunfemi, O.D.; Ogujiuba, K. Socio-demographic context of resilience for adaptation to climate change and implication for agricultural extension in Buffelspruit, South Africa. S. Afr. J. Agric. Ext. 2023, 51, 210–233. [Google Scholar] [CrossRef]
- Malik, A.I.; Bell, R.; Zang, H.; Boitt, G.; Whalley, W.R. Exploring the plant and soil mechanisms by which crop rotations benefit farming systems. Plant Soil 2024, 1–9. [Google Scholar] [CrossRef]
- Deguine, J.P.; Aubertot, J.N.; Flor, R.J.; Lescourret, F.; Wyckhuys, K.A.; Ratnadass, A. Integrated pest management: Good intentions, hard realities. A review. Agron. Sustain. Dev. 2021, 41, 38. [Google Scholar] [CrossRef]
- Angon, P.B.; Mondal, S.; Jahan, I.; Datto, M.; Antu, U.B.; Ayshi, F.J.; Islam, M.S. Integrated pest management (IPM) in agriculture and its role in maintaining ecological balance and biodiversity. Adv. Agric. 2023, 2023, 5546373. [Google Scholar] [CrossRef]
- Fahad, S.; Chavan, S.B.; Chichaghare, A.R.; Uthappa, A.R.; Kumar, M.; Kakade, V.; Pradhan, A.; Jinger, D.; Rawale, G.; Yadav, D.K.; et al. Agroforestry Systems for Soil Health Improvement and Maintenance. Sustainability 2022, 14, 14877. [Google Scholar] [CrossRef]
- Gisladottir, G.; Stocking, M. Land degradation control and its global environmental benefits. Land Degrad. Dev. 2005, 16, 99–112. [Google Scholar] [CrossRef]
- Mensah, H.; Ahadzie, D.K.; Takyi, S.A.; Amponsah, O. Climate change resilience: Lessons from local climate-smart agricultural practices in Ghana. Energy Ecol. Environ. 2021, 6, 271–284. [Google Scholar] [CrossRef]
- Adego, T.; Woldie, G. The complementarity and determinants of adoption of climate change adaptation strategies: Evidence from smallholder farmers in North-West Ethiopia. Clim. Change Dev. 2022, 14, 487–498. [Google Scholar] [CrossRef]
- Tessema, I.; Simane, B. Vulnerability analysis of smallholder farmers to climate variability: An agroecological system-based approach in the Fincha’a sub-basin of the upper Blue Nile Basin of Ethiopia. Ecol. Process 2019, 8, 5. [Google Scholar] [CrossRef]
- Li, J.; Ma, W.; Zhu, H. A systematic literature review of factors influencing the adoption of climate-smart agricultural practices. Mitig. Adapt. Strateg. Glob. Change 2024, 29, 2. [Google Scholar] [CrossRef]
- Olabanji, M.; Davis, N.; Ndarana, T.; Kuhundzai, A.; Mohlobo, D. Assessment of smallholder farmers’ perception and adaptation response to climate change change in the Olifants catchment, South Africa. J. Water Clim. Change. 2021, 12, 1–16. [Google Scholar] [CrossRef]
- Mutengwa, C.S.; Mnkeni, P.; Kondwakwenda, A. Climate-Smart Agriculture and Food Security in Southern Africa: A Review of the Vulnerability of Smallholder Agriculture and Food Security to Climate Change. Sustainability 2023, 15, 2882. [Google Scholar] [CrossRef]
- Nyang’au, J.; Mohamed, J.; Mango, N.; Makate, C.; Wangeci, A. Smallholder farmers’ perception of climate change and adoption of climate-smart agriculture practices in Masaba South Sub-country, Kisii Kenya. Heliyon 2021, 7, e06789. [Google Scholar] [CrossRef]
- MoFA. Agriculture in Ghana. In Facts and Figures 2016 Statistics; Ministry of Food and Agriculture, Research and Information Directorate: Accra, Ghana, 2017. Available online: https://mofa.gov.gh/site/publications/research-reports/374-agriculture-in-ghana-facts-figures-2016 (accessed on 16 August 2024).
- Essegbey, G.; Nutsukpo, D.; Karbo, N.; Zougmore, R.; National Climate-Smart Agriculture and Food Security Action Plan of Ghana. CCAFs Working Paper. 2015. Available online: https://cgspace.cgiar.org/server/api/core/bitstreams/0eff09b0-0231-49ad-beb1-28616cc5e72e/content (accessed on 16 August 2024).
- Antwi, A.P.; Abalo, E.; Dougil, A.; Baffour-Ata, F. Motivations, enablers and barriers to the adoption of climate-smart agricultural practices by smallholder farmers: Evidence from the transitional and savannah agroecological zones of Ghana. Reg. Sustain. 2022, 2, 375–386. [Google Scholar] [CrossRef]
- Zakaria, A.; Azumah, S.; Appiah, T.M.; Dagunga, G. Adoption of climate-smart agricultural practices among farm households in Ghana: The role of farmer participation in training programs. Technol. Soc. 2020, 63, 101338. [Google Scholar] [CrossRef]
- Msweli, N.S.; Agholor, I.A.; Sithole, M.Z.; Morepje, M.T.; Thabane, V.N.; Mgwenya, L.I. The determinants and acceptance of climate smart agriculture practices in South Africa. Afr. J. Food Agric. Nutr. Dev. 2024, 24, 1–20. [Google Scholar] [CrossRef]
- Kemboi, E.; Muendo, K.; Kiprotich, C. Crop diversification analysis amongst smallholder farmers in Kenya (empirical evidence from Kamariny ward, Elgeyo Marakwet County). Cogent Food Agric. 2020, 6, 1834669. [Google Scholar] [CrossRef]
- Jha, S.; Kaechele, H.; Sieber, S. Factors influencing the adoption of agroforestry by smallholder farmer households in Tanzania: Case studies from Morogoro and Dodoma. Land Use Policy 2021, 103, 105308. [Google Scholar] [CrossRef]
- Sithole, M.Z.; Agholor, A.I.; Ndlovu, S.M. The Implications of Conservation Agriculture in Forests Management against Soil Erosion and Degradation. In Vegetation Dynamics, Changing Ecosystems and Human Responsibility; IntechOpen: Rijeka, Croatia, 2023. [Google Scholar] [CrossRef]
- Davis, K.E.; Ekboir, J.; Spielman, D.J. Strengthening Agricultural Education and Training in sub-Saharan Africa from an Innovation Systems Perspective: A Case Study of Mozambique. J. Agric. Educ. Ext. 2008, 14, 35–51. [Google Scholar] [CrossRef]
- Ouédraogo, M.; Houessionon, P.; Zougmoré, R.B.; Partey, S.T. Uptake of climate-smart agricultural technologies and practices: Actual and potential adoption rates in the climate-smart village site of Mali. Sustainability 2019, 11, 4710. [Google Scholar] [CrossRef]
- Traore, B.; Birhanu, B.Z.; Sangaré, S.; Gumma, M.K.; Tabo, R.; Whitbread, A.M. Contribution of climate-smart agriculture technologies to food self-sufficiency of smallholder households in Mali. Sustainability 2021, 13, 7757. [Google Scholar] [CrossRef]
- Zighe, K.E. Adoption of Climate-Smart Agriculture (CSA) Technologies Among Female Smallholder Farmers in Malawi. Doctoral Dissertation, Norwegian University of life Sciences, Ås, Norway, 2016. [Google Scholar]
- Rogers, E.M.; Adhikarya, R. Diffusion of innovations: An up-to-date review and commentary. Ann. Int. Commun. Assoc. 1979, 3, 67–81. [Google Scholar] [CrossRef]
- Sahin, I. Detailed review of Rogers’ diffusion of innovations theory and educational technology-related studies based on Rogers’ theory. Turk. Online J. Educ. Technol. 2006, 5, 14–23. [Google Scholar]
- Olorunfemi, T.O.; Olorunfemi, O.D.; Oladele, O.I. Determinants of the involvement of extension agents in disseminating climate-smart agricultural initiatives: Implication for scaling up. J. Saudi Soc. Agric. Sci. 2020, 19, 285–292. [Google Scholar] [CrossRef]
- Landau, R.F.; Rozanov, Y.M.; Ungar, O.A. Using Rogers’ diffusion of innovation theory to conceptualize the mobile-learning adoption process in teacher education in the COVID-19 era. Educ. Inf. Technol. 2022, 27, 1–9. [Google Scholar] [CrossRef]
- Bahati, M.A.; Mohan, G.; Hirotaka, M.; Indrek, M.; Mohamed, K.; Fukushi, K. Understanding the farmers’ choices and adoption of adaptation strategies and plans to climate change impact in Africa: A systematic review. Clim. Change Serv. 2023, 30, 100–362. [Google Scholar] [CrossRef]
- Bushbuckridge Municipality. Welcome to Bushbuckridge Local Municipality. Available online: https://www.bushbuckridge.gov.za/ (accessed on 1 November 2024).
- Obi, A.; Maya, O. Innovative Climate-Smart Agriculture (CSA) Practices in the Smallholder Farming System of South Africa. Sustainability 2021, 13, 6848. [Google Scholar] [CrossRef]
- Hlongwana, K.W.; Zitha, A.; Mabuza, A.M.; Maharaj, R. Knowledge and practices towards malaria amongst residents of Bushbuckridge, Mpumalanga, South Africa. Afr J Prm Health Care Fam Med. 2011, 3, 9. [Google Scholar] [CrossRef]
- Martínez-García, C.G.; Ugoretz, S.J.; Arriaga-Jordán, C.M.; Wattiaux, M.A. Farm, household, and farmer characteristics associated with changes in management practices and technology adoption among dairy smallholders. Trop. Anim. Health Prod. 2015, 47, 311–316. [Google Scholar] [CrossRef]
- Boudalia, S.; Teweldebirhan, M.D.; Ariom, T.O.; Diouf, N.S.; Nambeye, E.; Gondwe, T.M.; Tchouawou, M.M.; Okoth, S.A.; Huyer, S. Gendered Gaps in the Adoption of Climate-Smart Agriculture in Africa and How to Overcome them. Sustainability 2024, 16, 5539. [Google Scholar] [CrossRef]
- Sanogo, K.; Toure, I.; Arinloye, D.D.; Yovo, E.R.D.; Bayala, J. Factors affecting the adoption of climate-smart agriculture technologies in rice farming systems in Mali, West Africa. Smart Agric. Technol. 2023, 5, 100283. [Google Scholar] [CrossRef]
- Waaswa, A.; Nkurumwa, A.O.; Kibe, A.M.; Ng’eno, J.K. Understanding the socioeconomic determinants of adoption of climate-smart agricultural practices among smallholder potato farmers in Gilgil Sub-County, Kenya. Discov. Sustain. 2021, 2, 41. [Google Scholar] [CrossRef]
- Ugwu, P.C. Women in Agriculture: Challenges Facing Women in African Farming. 2019, pp. 1–13. Available online: https://www.researchgate.net/profile/Paula-Ugwu/publication/332053861_WOMEN_IN_AGRICULTURE_CHALLENGES_FACING_WOMEN_IN_AFRICAN_FARMING/links/5dc934d1299bf1a47b2d2596/WOMEN-IN-AGRICULTURE-CHALLENGES-FACING-WOMEN-IN-AFRICAN-FARMING.pdf (accessed on 16 August 2024).
- Kom, Z.; Nethengwe, N.S.; Mpandeli, N.S. Determinants of small-scale farmers’ choice and adaptive strategies in response to climatic shocks in Vhembe District, South Africa. GeoJ. 2022, 87, 677–700. [Google Scholar] [CrossRef]
- Ma, W.; Rahut, D.B. Climate-smart agriculture: Adoption, impacts, and implications for sustainable development. Mitig. Adapt. Strateg. Glob. Change 2024, 29, 44. [Google Scholar] [CrossRef]
- Atube, F.; Malinga, G.; Okello, D.; Peter, A.; Uma, I. Determinants of smallholder farmers’ adaptation strategies to the effects of climate change: Evidence from northern Uganda. Agric. Food Secur. 2021, 10, 6. [Google Scholar] [CrossRef]
- Fadina, A.; Barjolle, D. Farmers’ adaptation strategies to climate change and their implications in the Zou department of South Benin. Environments 2018, 5, 15. [Google Scholar] [CrossRef]
- Omotoso, A.B.; Omotayo, A.O. Impact of behavioural intention to adopt climate-smart agricultural practices on the food and nutrition security of farming households: A microeconomic level evidence. Clim. Change 2024, 177, 117. [Google Scholar] [CrossRef]
- Chiappori, P.A.; Giménez-Nadal, J.I.; Molina, J.A.; Velilla, J. Household Labor Supply: Collective Evidence in Developed Countries. In Handbook of Labor, Human Resources and Population Economics; Zimmermann, K.F., Ed.; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Agyekum, T.P.; Antwi-Agyei, P.; Dougill, A.J.; Stringer, L.C. Benefits and barriers to the adoption of climate-smart agriculture practices in West Africa: A systematic review. Clim. Resil. Sustain. 2024, 3, e279. [Google Scholar] [CrossRef]
- Chevallier, R. Strengthening Africa’s climate-smart agriculture and food systems through enhanced policy coherence and coordinated action. S. Afr. J. Int. Aff. 2023, 30, 595–618. [Google Scholar] [CrossRef]
- Kassa, B.A.; Abdi, A.T. Factors Influencing the Adoption of Climate-Smart Agricultural Practice by Small-Scale Farming Households in Wondo Genet, Southern Ethiopia. Sage Open 2022, 12, 21582440221121604. [Google Scholar] [CrossRef]
- Abid, M.; Scheffran, J.; Schneider, U.A.; Ashfaq, M.J.E.S.D. Farmers’ perceptions of and adaptation strategies to climate change and their determinants: The case of Punjab province, Pakistan. Earth Syst. Dyn. 2015, 6, 225–243. [Google Scholar] [CrossRef]
- Abegunde, V.O.; Sibanda, M.; Obi, A. Determinants of the Adoption of Climate-Smart Agricultural Practices by Small-Scale Farming Households in King Cetshwayo District Municipality, South Africa. Sustainability 2019, 12, 195. [Google Scholar] [CrossRef]
- Ouda, S.; Zohry, A.; Noreldin, T. Crop rotation maintains soil sustainability. In Crop Rotation; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Diallo, A.; Donkor, E.; Owusu, V. Climate change adaptation strategies, productivity and sustainable food security in Southern Mali. Clim. Change 2020, 159, 309–327. [Google Scholar] [CrossRef]
- Adeagbo, O.A.; Ojo, T.O.; Adetoro, A.A. Understanding the determinants of climate change adaptation strategies among smallholder maize farmers in South-West, Nigeria. Heliyon 2021, 7, e06231. [Google Scholar] [CrossRef]
- Mgwenya, L.I.; Agholor, I.A.; Sithole, M.Z.; Morepje, M.T.; Thabane, V.N.; Msweli, N.S.; Mgwenya, L.I. Extent of acceptance of government projects for food security in Kabokweni Ehlanzeni District, South Africa. Afr. J. Food Agric. Nutr. Dev. 2024, 24, 24893–24911. [Google Scholar] [CrossRef]
- Mthethwa, K.N.; Ngidi, M.S.C.; Ojo, T.O.; Hlatshwayo, S.I. The Determinants of Adoption and Intensity of Climate-Smart Agricultural Practices among Smallholder Maize Farmers. Sustainability 2022, 14, 16926. [Google Scholar] [CrossRef]
Socio-Demographic Characteristics | Variables | Percentage (%) |
---|---|---|
Age | <36 years | 9.5 |
36–45 years | 10.8 | |
46–55 years | 17.6 | |
56–60 years | 20.6 | |
>60 years | 40.7 | |
Gender | Male | 41.0 |
Female | 59.0 | |
Educational level | No school | 6.7 |
Adult school (ABET) | 3.0 | |
Primary school | 20.3 | |
Secondary school | 61.7 | |
Tertiary education | 8.3 | |
Household Size | <3 members | 17.0 |
4–6 members | 54.0 | |
7–9 members | 20.0 | |
>10 members | 9.0 | |
Farm experience | <5 years | 30.7 |
6–10 years | 20.7 | |
11–15 years | 15.3 | |
16–20 years | 10.3 | |
>20 years | 23.0 |
Step | −2 Log Likelihood | Cox and Snell R Square | Nagelkerke R Square |
---|---|---|---|
1 | 357.103 | 0.171 | 0.228 |
Step | Chi-Square | Df | Sig. |
---|---|---|---|
1 | 5.937 | 8 | 0.654 |
Predictor Variables | B | S.E. | Wald | Df | Sig. | Exp(B) | 95% C.I. for EXP(B) | |
---|---|---|---|---|---|---|---|---|
Lower | Upper | |||||||
Gender | −0.409 | 0.318 | 1.655 | 1 | 0.198 | 0.665 | 0.357 | 1.239 |
Age | 0.204 | 0.623 | 0.107 | 1 | 0.743 | 1.227 | 0.361 | 4.163 |
Level of education | 1.554 | 0.630 | 6.080 | 1 | 0.014 * | 4.730 | 1.375 | 16.265 |
Household size | −1.307 | 0.481 | 7.373 | 1 | 0.007 * | 0.271 | 0.105 | 0.695 |
Source of income | −1.326 | 1.070 | 1.538 | 1 | 0.215 | 0.265 | 0.033 | 2.160 |
Land ownership | −1.055 | 0.784 | 1.811 | 1 | 0.178 | 0.348 | 0.075 | 1.619 |
Farm experience | 1.023 | 0.530 | 3.733 | 1 | 0.053 * | 2.782 | 0.985 | 7.853 |
Farm size | −1.341 | 0.897 | 2.231 | 1 | 0.135 | 0.262 | 0.045 | 1.520 |
Crop type | −0.076 | 0.069 | 1.239 | 1 | 0.266 | 0.927 | 0.810 | 1.060 |
Land’s fertility | 0.262 | 0.132 | 3.936 | 1 | 0.047 * | 1.300 | 1.003 | 1.684 |
Source of water | −1.110 | 0.906 | 1.500 | 1 | 0.221 | 0.330 | 0.056 | 1.947 |
Constant | 21.473 | 40,193.085 | 0.000 | 1 | 1.000 | 2,115,488,200.163 | ||
−2 Log likelihood | 357.103 | |||||||
Cox and Snell R Square | 0.171 | |||||||
Nagelkerke R Square | 0.228 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thabane, V.N.; Agholor, I.A.; Sithole, M.Z.; Morepje, M.T.; Msweli, N.S.; Mgwenya, L.I. Socio-Demographic Determinants of Climate-Smart Agriculture Adoption Among Smallholder Crop Producers in Bushbuckridge, Mpumalanga Province of South Africa. Climate 2024, 12, 202. https://doi.org/10.3390/cli12120202
Thabane VN, Agholor IA, Sithole MZ, Morepje MT, Msweli NS, Mgwenya LI. Socio-Demographic Determinants of Climate-Smart Agriculture Adoption Among Smallholder Crop Producers in Bushbuckridge, Mpumalanga Province of South Africa. Climate. 2024; 12(12):202. https://doi.org/10.3390/cli12120202
Chicago/Turabian StyleThabane, Variety Nkateko, Isaac Azikiwe Agholor, Moses Zakhele Sithole, Mishal Trevor Morepje, Nomzamo Sharon Msweli, and Lethu Inneth Mgwenya. 2024. "Socio-Demographic Determinants of Climate-Smart Agriculture Adoption Among Smallholder Crop Producers in Bushbuckridge, Mpumalanga Province of South Africa" Climate 12, no. 12: 202. https://doi.org/10.3390/cli12120202
APA StyleThabane, V. N., Agholor, I. A., Sithole, M. Z., Morepje, M. T., Msweli, N. S., & Mgwenya, L. I. (2024). Socio-Demographic Determinants of Climate-Smart Agriculture Adoption Among Smallholder Crop Producers in Bushbuckridge, Mpumalanga Province of South Africa. Climate, 12(12), 202. https://doi.org/10.3390/cli12120202