A Comprehensive AI Approach for Monitoring and Forecasting Medicanes Development
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Products
2.1.1. Atmospheric Reanalysis Data
2.1.2. Meteosat Temperature Observations
2.2. Automated Medicane Center Localization
2.3. CNN-RF Model for Medicanes Prediction
3. Results and Discussion
3.1. Insights into Medicanes Tracking
3.2. Exploring CNN-RF Predictions for Extreme Medicanes
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhatia, K.T.; Vecchi, G.A.; Knutson, T.R.; Murakami, H.; Kossin, J.; Dixon, K.W.; Whitlock, C.E. Recent increases in tropical cyclone intensification rates. Nat. Commun. 2020, 10, 1–9. [Google Scholar] [CrossRef]
- Hicke, J.A.; Lucatello, S.; Mortsch, L.D.; Dawson, J.; Aguilar, M.D.; Enquist, C.A.F. North America. In Climate Change 2022: Impacts, Adaptation and Vulnerability; Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate, Change; Pörtner, H.-O., Roberts, D.C., Tignor, M.M.B., Poloczanska, E., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University: Cambridge, UK; New York, NY, USA, 2022; pp. 1929–2042. [Google Scholar]
- Koseki, S.; Mooney, P.A.; Cabos, W.; Gaertner, M.; de la Vara, A.; González-Alemán, J.J. Modelling a tropical-like cyclone in the Mediterranean Sea under present and warmer climate. Nat. Hazards Earth Syst. Sci. 2021, 21, 53–71. [Google Scholar] [CrossRef]
- Pytharoulis, I. Analysis of a Mediterranean tropical-like cyclone and its sensitivity to the sea surface temperatures. Atmospheric Res. 2018, 208, 167–179. [Google Scholar] [CrossRef]
- Dafis, S.; Claud, C.; Kotroni, V.; Lagouvardos, K.; Rysman, J. Insights into the convective evolution of Mediterranean tropical-like cyclones. Q. J. R. Meteorol. Soc. 2020, 146, 4147–4169. [Google Scholar] [CrossRef]
- Lagouvardos, K.; Karagiannidis, A.; Dafis, S.; Kalimeris, A.; Kotroni, V. Ianos—A Hurricane in the Mediterranean. Bull. Am. Meteorol. Soc. 2021, 103, E1621–E1636. [Google Scholar] [CrossRef]
- Di Muzio, E.; Riemer, M.; Fink, A.H.; Maier-Gerber, M. Assessing the predictability of Medicanes in ECMWF ensemble forecasts using an object-based approach. Q. J. R. Meteorol. Soc. 2019, 145, 1202–1217. [Google Scholar] [CrossRef]
- Nastos, P.; Papadimou, K.K.; Matsangouras, I. Mediterranean tropical-like cyclones: Impacts and composite daily means and anomalies of synoptic patterns. Atmospheric Res. 2018, 208, 156–166. [Google Scholar] [CrossRef]
- Portmann, R.; González-Alemán, J.J.; Sprenger, M.; Wernli, H. How an uncertain short-wave perturbation on the North Atlantic wave guide affects the forecast of an intense Mediterranean cyclone (Medicane Zorbas). Weather. Clim. Dyn. 2020, 1, 597–615. [Google Scholar] [CrossRef]
- Pravia-Sarabia, E.; Gómez-Navarro, J.J.; Jiménez-Guerrero, P.; Montávez, J.P. TITAM (v1.0): The Time-Independent Tracking Algorithm for Medicanes. Geosci. Model Dev. 2020, 13, 6051–6075. [Google Scholar] [CrossRef]
- González-Alemán, J.J.; Pascale, S.; Gutierrez-Fernandez, J.; Murakami, H.; Gaertner, M.A.; Vecchi, G.A. Potential Increase in Hazard From Mediterranean Hurricane Activity With Global Warming. Geophys. Res. Lett. 2019, 46, 1754–1764. [Google Scholar] [CrossRef]
- Ali, E.; Cramer, W.; Carnicer, J.; Georgopoulou, E.; Hilmi, N.J.M.; Cozannet, G.L.; Lionello, P. Cross-Chapter Paper 4: Mediterranean Region. In Climate Change 2022: Impacts, Adaptation and Vulnerability; Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate, Change; Pörtner, H.-O., Roberts, D.C., Tignor, M.M.B., Poloczanska, E., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University: Cambridge, UK; New York, NY, USA, 2022; pp. 2233–2272. [Google Scholar]
- Romero, R.; Emanuel, K. Medicane risk in a changing climate. J. Geophys. Res. Atmos. 2013, 118, 5992–6001. [Google Scholar] [CrossRef]
- Flaounas, E.; Davolio, S.; Raveh-Rubin, S.; Pantillon, F.; Miglietta, M.M.; Gaertner, M.A.; Hatzaki, M.; Homar, V.; Khodayar, S.; Korres, G.; et al. Mediterranean cyclones: Current knowledge and open questions on dynamics, prediction, climatology and impacts. Weather. Clim. Dyn. 2022, 3, 173–208. [Google Scholar] [CrossRef]
- Flaounas, E.; Aragão, L.; Bernini, L.; Dafis, S.; Doiteau, B.; Flocas, H.; Gray, S.L.; Karwat, A.; Kouroutzoglou, J.; Lionello, P.; et al. A composite approach to produce reference datasets for extratropical cyclone tracks: Application to Mediterranean cyclones. Weather. Clim. Dyn. 2023, 4, 639–661. [Google Scholar] [CrossRef]
- Dafis, S.; Rysman, J.; Claud, C.; Flaounas, E.; Dafis, S.; Rysman, J.; Claud, C.; Flaounas, E.; Dafis, S.; Rysman, J.; et al. Remote sensing of deep convection within a tropical-like cyclone over the Mediterranean Sea. Atmospheric Sci. Lett. 2018, 19. [Google Scholar] [CrossRef]
- Menna, M.; Martellucci, R.; Reale, M.; Cossarini, G.; Salon, S.; Notarstefano, G.; Mauri, E.; Poulain, P.-M.; Gallo, A.; Solidoro, C. A case study of impacts of an extreme weather system on the Mediterranean Sea circulation features: Medicane Apollo (2021). Sci. Rep. 2023, 13, 1–15. [Google Scholar] [CrossRef]
- Tous, M.; Romero, R. Meteorological environments associated with medicane development. Int. J. Clim. 2012, 33, 1–14. [Google Scholar] [CrossRef]
- Montella, R.; Di Luccio, D.; Ciaramella, A.; Foster, I. StormSeeker: A Machine-Learning based Mediterranean storm tracer. In Internet and Distributed Computing Systems; Montella, R., Ciaramella, A., Fortino, G., Guerrieri, A., Liotta, A., Eds.; Springer: Cham, Switzerland, 2019; Volume 11874, pp. 444–456. [Google Scholar] [CrossRef]
- Cavicchia, L.; von Storch, H.; Gualdi, S. A long-term climatology of medicanes. Clim. Dyn. 2013, 43, 1183–1195. [Google Scholar] [CrossRef]
- Picornell, M.A.; Campins, J.; Jansà, A. Detection and thermal description of medicanes from numerical simulation. Nat. Hazards Earth Syst. Sci. 2014, 14, 1059–1070. [Google Scholar] [CrossRef]
- Listowski, C.; Forestier, E.; Dafis, S.; Farges, T.; De Carlo, M.; Grimaldi, F.; Le Pichon, A.; Vergoz, J.; Heinrich, P.; Claud, C. Remote Monitoring of Mediterranean Hurricanes Using Infrasound. Remote. Sens. 2022, 14, 6162. [Google Scholar] [CrossRef]
- Romero, R. A method for quantifying the impacts and interactions of potential-vorticity anomalies in extratropical cyclones. Q. J. R. Meteorol. Soc. 2008, 134, 385–402. [Google Scholar] [CrossRef]
- Jourdan, A.; Loubière, P. Sensitivity Analysis in TORUS 1 –Toward an Open Resource Using Services; Laffly, D., Ed.; John Wiley & Sons, Ltd: New York, NY, USA, 2020; pp. 107–128. [Google Scholar] [CrossRef]
- Martinez-Amaya, J.; Longépé, N.; Nieves, V.; Muñoz-Marí, J. Improved forecasting of extreme hurricane events by integrating spatio-temporal CNN-RF learning of tropical cyclone characteristics. Front. Earth Sci. 2023, 11, 1223154. [Google Scholar] [CrossRef]
- Cangialosi, J.P.; Blake, E.; DeMaria, M.; Penny, A.; Latto, A.; Rappaport, E.; Tallapragada, V. Recent Progress in Tropical Cyclone Intensity Forecasting at the National Hurricane Center. Weather. Forecast. 2020, 35, 1913–1922. [Google Scholar] [CrossRef]
- Nystrom, R.G.; Zhang, F. Practical Uncertainties in the Limited Predictability of the Record-Breaking Intensification of Hurricane Patricia (2015). Mon. Weather. Rev. 2019, 147, 3535–3556. [Google Scholar] [CrossRef]
- Gupta, U.; Jitkajornwanich, K.; Elmasri, R.; Fegaras, L. Adapting K-means clustering to identify spatial patterns in storms. In Proceedings of the 2016 IEEE International Conference on Big Data (Big Data), Washington, DC, USA, 5–8 December 2016; pp. 2646–2654. [Google Scholar]
- Martinez-Amaya, J.; Radin, C.; Nieves, V. Advanced Machine Learning Methods for Major Hurricane Forecasting. Remote. Sens. 2022, 15, 119. [Google Scholar] [CrossRef]
- Maskey, M.; Ramachandran, R.; Ramasubramanian, M.; Gurung, I.; Freitag, B.; Kaulfus, A.; Bollinger, D.; Cecil, D.J.; Miller, J. Deepti: Deep-Learning-Based Tropical Cyclone Intensity Estimation System. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2020, 13, 4271–4281. [Google Scholar] [CrossRef]
- Carmo, A.R.; Longepe, N.; Mouche, A.; Amorosi, D.; Cremer, N. Deep Learning Approach for Tropical Cyclones Classification Based on C-Band Sentinel-1 SAR Images. In Proceedings of the IGARSS 2021–2021 IEEE International Geoscience and Remote Sensing Symposium, Brussels, Belgium, 11–16 July 2021; pp. 3010–3013. [Google Scholar]
- Asif, A.; Dawood, M.; Jan, B.; Khurshid, J.; DeMaria, M.; Minhas, F.U.A.A. PHURIE: Hurricane intensity estimation from infrared satellite imagery using machine learning. Neural Comput. Appl. 2018, 32, 4821–4834. [Google Scholar] [CrossRef]
- Song, J.; Duan, Y.; Klotzbach, P.J. Revisiting the Relationship Between Tropical Cyclone Size and Intensity Over the Western North Pacific. Geophys. Res. Lett. 2020, 47. [Google Scholar] [CrossRef]
- Schimanke, S.; Ridal, M.; Le Moigne, P.; Berggren, L.; Undén, P.; Randriamampianina, R.; Andrea, U.; Bazile, E.; Bertelsen, A.; Brousseau, P.; et al. CERRA sub-daily regional reanalysis data for Europe on single levels from 1984 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 2021. Available online: https://cds.climate.copernicus.eu/datasets/reanalysis-cerra-single-levels?tab=overview (accessed on 30 November 2023).
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Hourly Data on Single Levels from 1979 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 2018. Available online: https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview (accessed on 30 November 2023).
- Zhang, W.; Villarini, G.; Scoccimarro, E.; Napolitano, F. Examining the precipitation associated with medicanes in the high-resolution ERA-5 reanalysis data. Int. J. Clim. 2020, 41, E126–E132. [Google Scholar] [CrossRef]
- Ferrarin, C.; Pantillon, F.; Davolio, S.; Bajo, M.; Miglietta, M.M.; Avolio, E.; Carrió, D.S.; Pytharoulis, I.; Sanchez, C.; Patlakas, P.; et al. Assessing the coastal hazard of Medicane Ianos through ensemble modelling. Nat. Hazards Earth Syst. Sci. 2023, 23, 2273–2287. [Google Scholar] [CrossRef]
- Knapp, K.R.; Kruk, M.C.; Levinson, D.H.; Diamond, H.J.; Neumann, C.J. The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone best track data. Bull. Am. Meteorol. Soc. 2010, 91, 363–376. [Google Scholar] [CrossRef]
- Zehr, R.M. Environmental Vertical Wind Shear with Hurricane Bertha (1996). WAF 2003, 18, 345–356. [Google Scholar] [CrossRef]
- Wu, L.; Tian, W.; Liu, Q.; Cao, J.; Knaff, J.A. Implications of the Observed Relationship between Tropical Cyclone Size and Intensity over the Western North Pacific. J. Clim. 2015, 28, 9501–9506. [Google Scholar] [CrossRef]
- Guo, X.; Tan, Z. Tropical cyclone fullness: A new concept for interpreting storm intensity. Geophys. Res. Lett. 2017, 44, 4324–4331. [Google Scholar] [CrossRef]
- Xu, J.; Wang, Y. Dependence of Tropical Cyclone Intensification Rate on Sea Surface Temperature, Storm Intensity, and Size in the Western North Pacific. Weather. Forecast. 2018, 33, 523–537. [Google Scholar] [CrossRef]
- Chen, K.; Chen, G.; Rao, C.; Wang, Z. Relationship of tropical cyclone size change rate with size and intensity over the western North Pacific. Atmospheric Ocean. Sci. Lett. 2021, 14. [Google Scholar] [CrossRef]
- Kwak, G.-H.; Park, C.-W.; Lee, K.-D.; Na, S.-I.; Ahn, H.-Y.; Park, N.-W. Potential of Hybrid CNN-RF Model for Early Crop Mapping with Limited Input Data. Remote. Sens. 2021, 13, 1629. [Google Scholar] [CrossRef]
- Johnson, J.M.; Khoshgoftaar, T.M. Survey on deep learning with class imbalance. J. Big Data 2019, 6, 27. [Google Scholar] [CrossRef]
- Li, Q.; Zhao, C.; He, X.; Chen, K.; Wang, R. The Impact of Partial Balance of Imbalanced Dataset on Classification Performance. Electronics 2022, 11, 1322. [Google Scholar] [CrossRef]
- Joloudari, J.H.; Marefat, A.; Nematollahi, M.A.; Oyelere, S.S.; Hussain, S. Effective Class-Imbalance Learning Based on SMOTE and Convolutional Neural Networks. Appl. Sci. 2023, 13, 4006. [Google Scholar] [CrossRef]
- Dablain, D.; Jacobson, K.N.; Bellinger, C.; Roberts, M.; Chawla, N.V. Understanding CNN fragility when learning with imbalanced data. Mach. Learn. 2023, 113, 4785–4810. [Google Scholar] [CrossRef]
- Mumuni, A.; Mumuni, F. Data augmentation: A comprehensive survey of modern approaches. Array 2022, 16. [Google Scholar] [CrossRef]
- Yamashita, R.; Nishio, M.; Do, R.K.G.; Togashi, K. Convolutional neural networks: An overview and application in radiology. Insights Imaging 2018, 9, 611–629. [Google Scholar] [CrossRef] [PubMed]
- Shorten, C.; Khoshgoftaar, T.M. A survey on Image Data Augmentation for Deep Learning. J. Big Data 2019, 6, 60. [Google Scholar] [CrossRef]
- Carrió, D.S. Improving the predictability of the Qendresa Medicane by the assimilation of conventional and atmospheric motion vector observations. Storm-scale analysis and short-range forecast. Nat. Hazards Earth Syst. Sci. 2023, 23, 847–869. [Google Scholar] [CrossRef]
Storm Name | Beginning Date | Ending Date | Class |
---|---|---|---|
Med1984 | 29 December 1984 | 31 December 1984 | C1 |
Med19851 | 26 October 1985 | 29 October 1985 | C1 |
Med19852 | 13 December 1985 | 16 December 1985 | C1 |
Med1986 | 30 September 1986 | 3 October 1986 | C2 |
Med1989 | 4 October 1989 | 6 October 1989 | C2 |
Med19911 | 23 November 1991 | 23 November 1991 | C2 |
Med19912 | 6 December 1991 | 8 December 1991 | C2 |
Med1992 | 14 October 1992 | 15 October 1992 | C2 |
Med1994 | 21 October 1994 | 25 October 1994 | C1 |
Med19951 | 14 January 1995 | 17 January 1995 | C2 |
Med19952 | 27 September 1995 | 29 September 1995 | C1 |
Med19961 | 11 September 1996 | 13 September 1996 | C2 |
Med19962 (Cornelia) | 6 October 1996 | 11 October 1996 | C2 |
Med19963 | 8 December 1996 | 11 December 1996 | C2 |
Med19971 | 23 September 1997 | 27 September 1997 | C1 |
Med19972 | 28 October 1997 | 31 October 1997 | C2 |
Med19973 | 5 December 1997 | 8 December 1997 | C1 |
Med1998 | 25 January 1998 | 27 January 1998 | C2 |
Med19991 | 25 March 1999 | 28 March 1999 | C1 |
Med19992 | 9 December 1999 | 11 December 1999 | C1 |
Med19993 | 19 March 1999 | 20 March 1999 | C1 |
Med20001 | 7 September 2000 | 9 September 2000 | C1 |
Med20002 | 7 October 2000 | 9 October 2000 | C1 |
Med2001 | 10 November 2001 | 12 November 2001 | C2 |
Med20031 | 25 May 2003 | 26 May 2003 | C1 |
Med20032 | 17 October 2003 | 19 October 2003 | C2 |
Med20041 | 19 September 2004 | 20 September 2004 | C1 |
Med20042 | 3 November 2004 | 5 November 2004 | C1 |
Med20051 | 13 December 2005 | 16 December 2005 | C2 |
Med20052 | 15 September 2005 | 16 September 2005 | C1 |
Med20061 | 31 January 2006 | 2 February 2006 | C2 |
Med20062 | 25 September 2006 | 28 September 2006 | C1 |
Med20071 | 15 November 2007 | 16 November 2007 | C2 |
Med20072 | 19 March 2007 | 22 March 2007 | C2 |
Med20073 | 16 October 2007 | 18 October 2007 | C1 |
Med20074 | 25 October 2007 | 26 October 2007 | C2 |
Med2008 | 2 December 2008 | 4 December 2008 | C2 |
Med2009 | 27 January 2009 | 29 January 2009 | C1 |
Med20101 | 12 October 2010 | 14 October 2010 | C2 |
Med20102 | 2 November 2010 | 3 November 2010 | C1 |
Med2011 (Rolf) | 6 November 2011 | 9 November 2011 | C2 |
Med2012 | 13 April 2012 | 14 April 2012 | C2 |
Med2013 | 18 November 2013 | 22 November 2013 | C2 |
Med20141 (Ilona) | 19 January 2014 | 21 January 2014 | C2 |
Med20142 (Qendresa) | 7 November 2014 | 8 November 2014 | C2 |
Med20143 | 1 December 2014 | 3 December 2014 | C1 |
Med2016 (Trixie) | 29 October 2016 | 31 October 2016 | C1 |
Med2017 (Numa) | 17 November 2017 | 19 November 2017 | C1 |
Med2018 (Zorbas) | 28 September 2018 | 30 September 2018 | C2 |
Med20191 (Detlef) | 10 November 2019 | 11 November 2019 | C1 |
Med20192 (Scott) | 24 October 2019 | 26 October 2019 | C1 |
Med20201 (Ianos) | 15 September 2020 | 20 September 2020 | C2 |
Med20202 (Elaina) | 14 December 2020 | 16 December 2020 | C1 |
Med20203 | 20 November 2020 | 24 November 2020 | C1 |
Med2021 (Apollo) | 25 October 2021 | 29 October 2021 | C1 |
Med20231 (Helios) | 20 January 2023 | 22 January 2023 | C1 |
Med20232 (Hannelore) | 08 February 2023 | 10 February 2023 | C1 |
Med20233 (Juliette) | 27 February 2023 | 02 March 2023 | C1 |
Variable Name | Description |
---|---|
Area (A) | Size of the storm cloud in km2 |
TempDiff (∆T) | Temperature difference between the outer part and the inner core of the storm cloud in °C |
Circularity (C) | Feature representing the symmetry of the storm cloud (unit-free) |
Eccentricity (ε) | Feature representing the eccentricity of the storm cloud (unit-free) |
HSF CNN (CNN) | High-level spatial feature extracted using the CNN algorithm applied to a 10° × 10° window around the storm’s center in °C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinez-Amaya, J.; Nieves, V.; Muñoz-Mari, J. A Comprehensive AI Approach for Monitoring and Forecasting Medicanes Development. Climate 2024, 12, 220. https://doi.org/10.3390/cli12120220
Martinez-Amaya J, Nieves V, Muñoz-Mari J. A Comprehensive AI Approach for Monitoring and Forecasting Medicanes Development. Climate. 2024; 12(12):220. https://doi.org/10.3390/cli12120220
Chicago/Turabian StyleMartinez-Amaya, Javier, Veronica Nieves, and Jordi Muñoz-Mari. 2024. "A Comprehensive AI Approach for Monitoring and Forecasting Medicanes Development" Climate 12, no. 12: 220. https://doi.org/10.3390/cli12120220
APA StyleMartinez-Amaya, J., Nieves, V., & Muñoz-Mari, J. (2024). A Comprehensive AI Approach for Monitoring and Forecasting Medicanes Development. Climate, 12(12), 220. https://doi.org/10.3390/cli12120220