Reducing Fossil Fuel Dependence and Exploring Just Energy Transition Pathways in Indonesia Using OSeMOSYS (Open-Source Energy Modelling System)
Abstract
:1. Introduction
1.1. Overview
1.2. Literature Review
2. Methodology
2.1. OSeMOSYS as a Modelling Approach
2.2. Reference Energy System
2.3. Demand Projection
2.4. Techno-Economic Input Data
2.5. Renewable Energy Potential
2.6. Scenario Definition
- Scenario 1: Baseline Least Cost (Least Cost)
- Scenario 2: Coal Phase-Out 2045
- Scenario 3: Moderate Carbon Tax
- Scenario 4: Aggressive Carbon Tax
- Scenario 5: Unconditional NDC
- Scenario 6: Conditional NDC
- Scenario 7: JETP
3. Results
3.1. Electricity Generation
3.2. Installed Capacity
3.3. CO2 Emissions
3.4. Investment and Cost
4. Discussion
Findings and Policy Insights
- Early CFPP retirement through a policy-based closure, a strategy employed in successful extensive coal decommissioning practices in the UK and US [54]; such policy should be supported with cost-effective mechanisms (as it will drive social reforms, such as employment shift and fostering a significant transition to a green job revolution), compliance to just transition principles, reforming coal subsidies, and adopting a transparent governance system, the cancellation of CFPP construction, and repurposing existing CFPPs. Indonesia’s current CFPP early retirement plan (three CFPPs with a total capacity of 1 GW by 2030 and a coal phase-out in 2050) [55] is insufficient to reach net zero emissions by 2050. And despite requiring the substantial expense of redevelopment and demolition, opting for early CFPP retirement is a more reasonable choice, especially when considering the long-term consequences of owning a stranded asset.
- Levy a more ambitious carbon tax rate: As Denmark’s rate (USD 26.53/tCO2e) is estimated to successfully lower emissions by 13% by 2050, which aligns with Hartono et al.’s (2023) suggestion of a USD 28.88/tCO2e carbon tax rate in Indonesia [56]. Moreover, interventions on the macroeconomic scale will be crucial for the success of the transition [57]. Although implementing carbon pricing may have drawbacks on other sectors such as consumption and employment, this should be implemented alongside increased investments in the expansion of renewable energy technologies.
- Accelerate investment in solar technology and storage infrastructure: Powering beyond coal would necessitate a dependable and secure energy supply to fulfil the demand. Indonesia’s vast renewable energy potential should serve as the backbone of this transition. Because of its geographical condition as an archipelagic nation, Indonesia has to ratify supporting regulations and allocate funds to enhance grid connectivity, ensure grid stability and flexibility, and also expand battery storage capacity to further maximise solar power’s enormous potential throughout the year. Other research [32] supports this notion, recommending government prioritisation in the short term to prevent larger expenditures in the future. Furthermore, this policy may initiate a multiplier effect on investment and encourage behavioural change for a just energy transition.
5. Conclusions
Limitations and Opportunities for Further Research
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
U4RIA Compliance Statement
References
- OECD. Active with Indonesia, France. 2019. Available online: https://www.oecd.org/indonesia/Active-with-Indonesia.pdf (accessed on 1 August 2023).
- PLN. Rencana Usaha Penyediaan Tenaga Listrik (RUPTL) PT PLN–National Electricity Supply Business Plan of 2021–2030, PLN (State Electricity Company), Jakarta. 2021. Available online: https://web.pln.co.id/statics/uploads/2021/10/ruptl-2021-2030.pdf (accessed on 1 August 2023).
- IEA. An Energy Sector Roadmap to Net Zero Emissions in Indonesia, IEA Publications, International Energy Agency, France. 2022. Available online: https://iea.blob.core.windows.net/assets/b496b141-8c3b-47fc-adb2-90740eb0b3b8/AnEnergySectorRoadmaptoNetZeroEmissionsinIndonesia.pdf (accessed on 1 August 2023).
- Hamdi, E.; Adhiguna, P. Indonesia Wants to Go Greener, but PLN Is Stuck with Excess Capacity from Coal-Fired Power Plants; Institute for Energy Economics and Financial Analysis: Cleveland, OH, USA, 2021; Available online: https://ieefa.org/sites/default/files/resources/Indonesia-Wants-to-Go-Greener-but-PLN-Is-Stuck-With-Excess-Capacity_November-2021.pdf (accessed on 1 August 2023).
- MEMR. Handbook of Energy and Economic Statistics of Indonesia; Ministry of Energy and Mineral Resources: Jakarta, Indonesia, 2022; Available online: https://www.esdm.go.id/assets/media/content/content-handbook-of-energy-and-economic-statistics-of-indonesia-2021.pdf (accessed on 1 August 2023).
- BPS. Energy Balances of Indonesia 2017–2021; BPS-Statistics: Indonesia, Jakarta, 2023; Available online: https://www.bps.go.id/id/publication/2023/02/07/3e4c4125bdafee25433e3da0/neraca-energi-indonesia-2017-2021.html (accessed on 1 August 2023).
- Rahman, A.; Dargusch, P.; Wadley, D. The political economy of oil supply in Indonesia and the implications for renewable energy development. Renew. Sustain. Energy Rev. 2021, 144, 111027. [Google Scholar] [CrossRef]
- Ichsan, M.; Lockwood, M.; Ramadhani, M. National oil companies and fossil fuel subsidy regimes in transition: The case of Indonesia. Extr. Ind. Soc. 2022, 11, 101104. [Google Scholar] [CrossRef]
- Ordonez, J.A.; Jakob, M.; Steckel, J.C.; Fünfgeld, A. Fünfgeld, Coal, power and coal-powered politics in Indonesia. Environ. Sci. Policy 2021, 123, 44–57. [Google Scholar] [CrossRef]
- MEF. Laporan Inventarisasi Gas Rumah Kaca (GRK) dan Monitoring, Pelaporan, dan Verifikasi (MPV)–Inventory Report of GHG and MRV; Ministry of Environment and Forestry: Jakarta, Indonesia, 2022; Available online: https://signsmart.menlhk.go.id/v2.1/app/frontend/pedoman/detail/44 (accessed on 1 August 2023).
- Tran, H.M.; Tsai, F.-J.; Lee, Y.-L.; Chang, J.-H.; Chang, L.-T.; Chang, T.-Y.; Chung, K.F.; Kuo, H.-P.; Lee, K.-Y.; Chuang, K.-J.; et al. The impact of air pollution on respiratory diseases in an era of climate change: A review of the current evidence. Sci. Total. Environ. 2023, 898, 166340. [Google Scholar] [CrossRef] [PubMed]
- Rokhmawati, A.; Sugiyono, A.; Efni, Y.; Wasnury, R. Quantifying social costs of coal-fired power plant generation. Geogr. Sustain. 2023, 4, 39–48. [Google Scholar] [CrossRef]
- JakartaPost. False Pollution Solutions. 2023. Available online: https://www.thejakartapost.com/opinion/2023/08/19/false-pollution-solutions.html (accessed on 1 August 2023).
- Muthiariny, D.E.; Arkyasa, M. Air Pollution Top 5 Causes of Death in Indonesia, Says Expert. 2023. Available online: https://en.tempo.co/read/1764100/air-pollution-top-5-causes-of-death-in-indonesia-says-expert# (accessed on 1 August 2023).
- Sarjiya, R.F.; Setya Budi, L. Putra Multanto, Achieving New and Renewable Energy Target: A Case Study of Java-Bali Power System, Indonesia; IEEE: Piscataway, NJ, USA, 2020; pp. 560–565. [Google Scholar] [CrossRef]
- Gupta, K. Techno-Economic Analysis of Implementing Energy-Efficiency and Alternative Fuels in Indonesia Using OSeMOSYS; KTH Royal Institute of Technology: Stockholm, Sweden, 2020; Available online: https://www.diva-portal.org/smash/get/diva2:1466950/FULLTEXT01.pdf (accessed on 1 August 2023).
- Reyseliani, N.; Purwanto, W.W. Pathway towards 100% renewable energy in Indonesia power system by 2050. Renew. Energy 2021, 176, 305–321. [Google Scholar] [CrossRef]
- Paiboonsin, P.; Oluleye, G.; Yeganyan, R.; Tan, N.; Cannone, C.; Howells, M. Pathways to clean energy transition in Indonesia’s electricity sector with OSeMOSYS modelling (Open-Source Energy Modelling System). Energies. 2024, 17, 75–93. [Google Scholar] [CrossRef]
- World Bank. Just Transition For All: The World Bank Group’s Support to Countries Transitioning away from Coal. 2023. Available online: https://www.worldbank.org/en/topic/extractiveindustries/justtransition (accessed on 30 July 2023).
- UNDP. How Just Transition Can Help Deliver the Paris Agreement, New York. 2022. Available online: https://climatepromise.undp.org/sites/default/files/research_report_document/Just%20Transition%20Report%20Jan%2020.pdf (accessed on 1 August 2023).
- Commission, E. The Just Transition Mechanism: Making Sure No One Is Left Behind: The European Green Deal; European Commission: Brussels, Belgium, 2020. [Google Scholar] [CrossRef]
- Babayomi, O.O.; Dahoro, D.A.; Zhang, Z. Affordable clean energy transition in developing countries: Pathways and technologies. iScience 2022, 25, 104178. [Google Scholar] [CrossRef]
- IISD. Making the Leap: The Need for Just Energy Transition Partnerships to Support Leapfrogging Fossil Gas to a Clean Renewable Energy Future; International Institute for Sustainable Development (IISD): Winnipeg, MB, Canada, 2022; Available online: https://www.iisd.org/system/files/2022-11/just-energy-transition-partnerships.pdf (accessed on 1 August 2023).
- Colenbrander, S.; Gouldson, A.; Sudmant, A.H. Papargyropoulou, The economic case for low-carbon development in rapidly growing developing world cities: A case study of Palembang, Indonesia. Energy Policy 2015, 80, 24–35. [Google Scholar] [CrossRef]
- Sambodo, M.T.; Yuliana, C.I.; Hidayat, S.; Novandra, R.; Handoyo, F.W.; Farandy, A.R.; Inayah, I.; Yuniarti, P.I. Breaking barriers to low-carbon development in Indonesia: Deployment of renewable energy. Heliyon 2022, 8, e09304. [Google Scholar] [CrossRef]
- Simarmata, H.A.; Dimastanto, A.; Santoso, S.I.; Kalsuma, D. Institutional Barriers of Low Carbon Development Planning in Indonesian Small Cities. Low Carbon Econ. 2014, 5, 105–116. [Google Scholar] [CrossRef]
- Marquardt, J. A Struggle of Multi-level Governance: Promoting Renewable Energy in Indonesia. Energy Procedia 2014, 58, 87–94. [Google Scholar] [CrossRef]
- Ordonez, J.A.; Fritz, M.; Eckstein, J. Coal vs. renewables: Least-cost optimization of the Indonesian power sector. Energy Sustain. Dev. 2022, 68, 350–363. [Google Scholar] [CrossRef]
- Ministry of Finance of Indonesia. Informasi APBN 2023 (Annual State Budget Spending 2023); Ministry of Finance of Indonesia: Jakarta, Indonesia, 2023; Available online: https://media.kemenkeu.go.id/getmedia/6439fa59-b28e-412d-adf5-e02fdd9e7f68/Informasi-APBN-TA-2023.pdf?ext=.pdf (accessed on 1 August 2023).
- Sekaringtias, A.; Verrier, B.; Cronin, J. Untangling the socio-political knots: A systems view on Indonesia’s inclusive energy transitions. Energy Res. Soc. Sci. 2023, 95, 102911. [Google Scholar] [CrossRef]
- Rahman, A.; Richards, R.; Dargusch, P.; Wadley, D. Pathways to reduce Indonesia’s dependence on oil and achieve longer-term decarbonization. Renew. Energy 2023, 202, 1305–1323. [Google Scholar] [CrossRef]
- Maulidia, M.; Dargusch, P.; Ashworth, P.; Ardiansyah, F. Rethinking renewable energy targets and electricity sector reform in Indonesia: A private sector perspective. Energy Rev. 2019, 101, 231–247. [Google Scholar] [CrossRef]
- Tanoto, Y.; Haghdadi, N.; Bruce, A.; MacGill, I. Reliability-cost trade-offs for electricity industry planning with high variable renewable energy penetrations in emerging economies: A case study of Indonesia’s Java-Bali grid. Energy 2021, 227, 120474. [Google Scholar] [CrossRef]
- Sumarsono, N.; Wahyuni, S.; Sudhartio, L. A paradigm shift of energy sources: Critical review on competitive dynamics of solar PV industry in Indonesia. Renew. Energy Focus 2022, 41, 236–245. [Google Scholar] [CrossRef]
- ILO. ILO Brief: Green Jobs and Just Transition Policy Readiness Assessment in the Energy Sector in Indonesia; International Labour Organization: Bangkok, Thailand, 2023; Available online: https://www.ilo.org/wcmsp5/groups/public/---asia/---ro-bangkok/documents/briefingnote/wcms_873081.pdf (accessed on 1 August 2023).
- Republic of Indonesia. Enhanced Nationally Determined Contribution Republic of Indonesia, UNFCCC, 2022. Available online: https://unfccc.int/sites/default/files/NDC/2022-09/23.09.2022_Enhanced%20NDC%20Indonesia.pdf (accessed on 1 August 2023).
- Singh, R.R.; Clarke, R.M.; Chadee, X.T. A just energy transition for a hydrocarbon rich SIDS. Energy 2023, 279, 128069. [Google Scholar] [CrossRef]
- Bazilian, M.; Rice, A.; Rotich, J.; Howells, M.; DeCarolis, J.; Macmillan, S.; Brooks, C.; Bauer, F.; Liebreich, M. Open source software and crowdsourcing for energy analysis. Energy Policy 2012, 49, 149–153. [Google Scholar] [CrossRef]
- Godínez-Zamora, G.; Victor-Gallardo, L.; Angulo-Paniagua, J.; Ramos, E.; Howells, M.; Usher, W.; De León, F.; Meza, A.; Quirós-Tortós, J. Decarbonising the transport and energy sectors: Technical feasibility and socioeconomic impacts in Costa Rica. Energy Strat. Rev. 2020, 32, 100573. [Google Scholar] [CrossRef]
- Howells, M.; Rogner, H.; Strachan, N.; Heaps, C.; Huntington, H.; Kypreos, S.; Hughes, A.; Silveira, S.; DeCarolis, J.; Bazillian, M.; et al. OSeMOSYS: The Open Source Energy Modeling System: An introduction to its ethos, structure and development. Energy Policy 2011, 39, 5850–5870. [Google Scholar] [CrossRef]
- Welsch, M.; Howells, M.; Bazilian, M.; DeCarolis, J.F.; Hermann, S.; Rogner, H.H. Modelling elements of Smart Grids–Enhancing the OSeMOSYS (Open Source Energy Modelling System) code. Energy 2012, 46, 337–350. [Google Scholar] [CrossRef]
- Howells, M.; Quiros-Tortos, J.; Morrison, R.; Rogner, H.; Godínez, G.; Angulo, J.; Ramos, E.; Gardumi, F.; Hülk, L. Energy system analytics and good governance-U4RIA goals of Energy Modelling for Policy Support. 2021; preprint. [Google Scholar] [CrossRef]
- Bank of Indonesia. BI 7-Day (Reverse) Repo Rate. 2023. Available online: https://www.bi.go.id/en/statistik/indikator/bi-7day-rr.aspx (accessed on 30 July 2023).
- Paiboonsin, P. OSeMOSYS Base SAND Kit: Indonesia. [Data set]. Zenodo 2023. [Google Scholar] [CrossRef]
- Ministry of Energy and Mineral Resources, Embassy of Denmark in Jakarta, Ea Energy. Analyses, Danish Energy Agency, Technology Data for the Indonesian Power Sector–Catalogue for Generation and Storage of Electricity, Ministry of Energy and Mineral Resources. 2021. Available online: https://ens.dk/sites/ens.dk/files/Globalcooperation/technology_data_for_the_indonesian_power_sector_-_final.pdf (accessed on 1 August 2023).
- Hersaputri, L.D. Techno-Economic Dataset for Energy System Modelling in Indonesia (v1.0), [Data set]. Zenodo 2023. [Google Scholar] [CrossRef]
- ADB. Sustainable Infrastructure Assistance Program: Technical Assistance for Energy RPJMN 2015–2019 (Energy Sector White Paper); Asian Development Bank: Mandaluyong, Philippines; Available online: https://www.adb.org/sites/default/files/project-documents//ino-energy-white-paper.pdf (accessed on 1 August 2023).
- DEN. Indonesia Energy Outlook 2022, Indonesia’s National Energy Council, Jakarta. 2022. Available online: https://den.go.id/publikasi/indonesia-energy-outlook (accessed on 1 August 2023).
- ERPS. Briefing: EU Progress on Climate Action–How Are the Member States Doing? ERPS–European Parliamentary Research Service: Brussels, Belgium, 2021; Available online: https://www.europarl.europa.eu/RegData/etudes/BRIE/2021/679106/EPRS_BRI(2021)679106_EN.pdf (accessed on 1 August 2023).
- JETP Indonesia. Just Energy Transition Partnership Indonesia: Comprehensive Investment and Policy Plan 2023; JETP Indonesia: Jakarta, Indonesia, 2023; Available online: https://jetp-id.org/storage/official-jetp-cipp-2023-vshare_f_en-1700532655.pdf (accessed on 10 December 2023).
- Handayani, K.; Anugrah, P.; Goembira, F.; Overland, I.; Suryadi, B.; Swandaru, A. Moving beyond the NDCs: ASEAN pathways to a net-zero emissions power sector in 2050. Appl. Energy 2022, 311, 118580. [Google Scholar] [CrossRef]
- Reyseliani, N.; Hidayatno, A.; Purwanto, W.W. Implication of the Paris agreement target on Indonesia electricity sector transition to 2050 using TIMES model. Energy Policy 2022, 169, 113184. [Google Scholar] [CrossRef]
- World Bank. Carbon Pricing Dashboard. 2023. Available online: https://carbonpricingdashboard.worldbank.org/map_data (accessed on 1 August 2023).
- Srinivasan, S.; Chattopadhyay, D.; Govindarajalu, C.; Zabidin, I. Business models for accelerating phase-out of coal based generation: Developing typologies and a discussion of the relative merits of alternative models. Energy Policy 2022, 35, 107185. [Google Scholar] [CrossRef]
- Ministry of Finance of Indonesia. CIF Accelerating Coal Transition (ACT): Indonesia Country Investment Plan (IP); Fiscal Policy Agency–Ministry of Finance of Indonesia: Jakarta, Indonesia, 2022; Available online: https://fiskal.kemenkeu.go.id/docs/CIF-INDONESIA_ACT_IP-Proposal.pdf (accessed on 1 August 2023).
- Hartono, D.; Indriyani, W.; Iryani, B.S.; Komarulzaman, A.; Nugroho, A.; Kurniawan, R. Carbon tax, energy policy, and sustainable development in Indonesia. Sustain. Dev. 2023, 31, 2332. [Google Scholar] [CrossRef]
- Chattopadhyay, D.; Bazilian, M.D.; Handler, B.; Govindarajalu, C. Accelerating the coal transition. Electr. J. 2021, 34, 106906. [Google Scholar] [CrossRef]
Demand | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
---|---|---|---|---|---|---|---|---|
Electricity Demand | 777.91 | 1005.42 | 1206.80 | 1525.29 | 2000.87 | 2484.82 | 2952.49 | 3329.43 |
Technology | Capital Cost (USD/kW) | Fixed Cost (2020) (USD/kW/year) | Variable Cost (2020) (USD/kWh) | Efficiency (%) | Lifetime (Years) | ||
---|---|---|---|---|---|---|---|
2020 | 2030 | 2050 | |||||
Coal | 1530 | 1480 | 1430 | 47.7 | 2.49 | 30 | 30 |
CCGT | 690 | 660 | 610 | 23.5 | 2.62 | 55 | 25 |
SCGT | 770 | 730 | 680 | 23.2 | 2.62 | 34 | 25 |
Biomass | 2000 | 1820 | 1600 | 47.6 | 0 | 38 | 25 |
Geothermal | 4500 | 3870 | 3200 | 57.5 | 0 | N/A | 30 |
Diesel | 800 | 800 | 780 | 8 | 6.62 | 40 | 25 |
Utility-scale Solar PV | 790 | 560 | 410 | 14.4 | 0 | N/A | 35 |
Large Hydropower | 2080 | 2000 | 1850 | 37.7 | 0 | N/A | 50 |
Medium Hydropower | 2290 | 2200 | 2040 | 41.9 | 0 | N/A | 50 |
Small Hydropower | 2700 | 2590 | 2400 | 53 | 0 | N/A | 50 |
Onshore Wind | 1500 | 1280 | 1080 | 60 | 0 | N/A | 27 |
Offshore Wind | 1300 | 2980 | 2520 | 72.6 | 0 | N/A | 27 |
Nuclear Power | 5500 | 5500 | 5500 | 138 | 0 | 33 | 60 |
Utility-scale PV with 2 h Storage | 1869 | 1079 | 812 | 18.69 | 0 | N/A | 30 |
Onshore Wind with Storage | 2466 | 1737 | 1463 | 98.65 | 0 | N/A | 30 |
Diesel with Standalone Generator (1 kW) | 1500 | 1500 | 1500 | 38 | 6.62 | 42 | 20 |
Solar PV (Distributed with Storage) | 2130 | 1756 | 1626 | 42.62 | 0 | N/A | 41 |
Off-grid Hydropower | 2162 | 2100 | 2055 | 64.86 | 0 | N/A | 40 |
Renewable Energy | Potential (GW) | Realisation (GW) |
---|---|---|
Geothermal | 23.9 | 2.3 |
Bioenergy | 56.9 | 2.3 |
Wind | 154.9 | 0.2 |
Hydropower | 95 | 6.6 |
Solar | 3294 | 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hersaputri, L.D.; Yeganyan, R.; Cannone, C.; Plazas-Niño, F.; Osei-Owusu, S.; Kountouris, Y.; Howells, M. Reducing Fossil Fuel Dependence and Exploring Just Energy Transition Pathways in Indonesia Using OSeMOSYS (Open-Source Energy Modelling System). Climate 2024, 12, 37. https://doi.org/10.3390/cli12030037
Hersaputri LD, Yeganyan R, Cannone C, Plazas-Niño F, Osei-Owusu S, Kountouris Y, Howells M. Reducing Fossil Fuel Dependence and Exploring Just Energy Transition Pathways in Indonesia Using OSeMOSYS (Open-Source Energy Modelling System). Climate. 2024; 12(3):37. https://doi.org/10.3390/cli12030037
Chicago/Turabian StyleHersaputri, Laksmita Dwi, Rudolf Yeganyan, Carla Cannone, Fernando Plazas-Niño, Simone Osei-Owusu, Yiannis Kountouris, and Mark Howells. 2024. "Reducing Fossil Fuel Dependence and Exploring Just Energy Transition Pathways in Indonesia Using OSeMOSYS (Open-Source Energy Modelling System)" Climate 12, no. 3: 37. https://doi.org/10.3390/cli12030037
APA StyleHersaputri, L. D., Yeganyan, R., Cannone, C., Plazas-Niño, F., Osei-Owusu, S., Kountouris, Y., & Howells, M. (2024). Reducing Fossil Fuel Dependence and Exploring Just Energy Transition Pathways in Indonesia Using OSeMOSYS (Open-Source Energy Modelling System). Climate, 12(3), 37. https://doi.org/10.3390/cli12030037