Reliability and Exploratory Factor Analysis of a Measure of the Psychological Distance from Climate Change
Abstract
:1. Introduction
1.1. Construal Level Theory and Psychological Distance
1.2. Psychological Distance and Climate Change
1.3. Measuring the Psychological Distance from Climate Change
1.4. Research Questions
- To what extent are the 18 items of the PDCC scale reliable over a two-week test–retest interval?
- Given the correlation matrices of the PDCC items, how many latent variables are required to best reproduce these correlations? Relatedly, for the given latent variables, what are the relations (factor structure) of the measured variables to them?
2. Study 1: Test–Retest Reliability
2.1. Materials and Methods
2.1.1. Participants and Procedures
2.1.2. Data Analysis
2.2. Results
2.2.1. Sample Characteristics
2.2.2. Item-to-Total Correlations, Internal Consistency, and Test–Retest Correlations
2.3. Discussion
3. Study 2: Exploratory Factor Analyses
3.1. Materials and Methods
3.1.1. Participants and Procedures
3.1.2. Data Analysis
3.2. Results
3.2.1. Sample Characteristics
3.2.2. Item Descriptive Statistics
3.2.3. EFA Using Polychoric Correlations with the DWLS Extraction
3.2.4. EFA Using Pearson Correlations with the ML Extraction
3.2.5. Descriptive Statistics for the PDCC Full Scale and Factor Subscales
3.3. Discussion
3.4. Limitations
4. Conclusions and Recommendations
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Wang’s PDCC Scale Items, Instructions, Rating Scale, and Scoring Procedure [1]
1. I feel geographically far from the effects of climate change. (G) |
2. Serious effects of climate change will mostly occur in areas far away from here. (G) |
3. My local area will be affected by climate change. (G) |
4. Climate change will have consequences for every region, including where I live. (G) |
5. I don’t see myself as someone who will be affected by climate change. (S) |
6. Serious effects of climate change will mostly affect people who are distant from me. (S) |
7. My family and I will be safe from the effects of climate change. (S) |
8. I can identify with victims of climate related disasters. (S) |
9. Climate change is happening now. (T) |
10. We will see the serious effects of climate change in my lifetime. (T) |
11. If climate change is to happen, it will happen in the remote future. (T) |
12. The region where I live is already experiencing serious effects of climate change. (T,S) |
13. Climate change will not change my life, or my family’s lives anytime soon. (T,G) |
14. Climate change is virtually certain to affect the world. (H) |
15. It is almost certain that climate change will change my life for the worse. (H) |
16. It is extremely unlikely that climate change will affect me. (H) |
17. My local area is very unlikely to be affected by climate change. (H,G) |
18. It is virtually certain that my family will be safe from the effects of climate change. (H,S) |
The following instructions were provided for responding to the items: |
Please read each statement and then indicate the extent to which you disagree or agree with each statement using the following scale: |
1 = Strongly Disagree |
2 = Somewhat Disagree |
3 = Neither Disagree nor Agree |
4 = Somewhat Agree |
5 = Strongly Agree |
Scoring: |
Most of the scale items are designed so that a greater level of agreement (higher numerical ratings) corresponds to a greater degree of psychological distance from climate change. The ratings of the following items should be reversed in the scoring process: 3, 4, 8, 9,10, 12, 14, and 15. The total score of psychological distance from climate change is the sum of the 18 items after reverse-scoring the listed items. |
PDCC Item | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
1 | 1.000 | ||||||||
2 | 0.697 | 1.000 | |||||||
3 | 0.501 | 0.459 | 1.000 | ||||||
4 | 0.436 | 0.345 | 0.788 | 1.000 | |||||
5 | 0.616 | 0.493 | 0.575 | 0.587 | 1.000 | ||||
6 | 0.588 | 0.775 | 0.310 | 0.317 | 0.522 | 1.000 | |||
7 | 0.609 | 0.571 | 0.531 | 0.503 | 0.720 | 0.619 | 1.000 | ||
8 | 0.140 | 0.104 | 0.127 | 0.074 | 0.101 | 0.071 | 0.031 | 1.000 | |
9 | 0.321 | 0.263 | 0.577 | 0.708 | 0.604 | 0.231 | 0.471 | 0.040 | 1.000 |
10 | 0.362 | 0.300 | 0.503 | 0.648 | 0.570 | 0.210 | 0.465 | 0.125 | 0.783 |
11 | 0.180 | 0.318 | 0.181 | 0.187 | 0.294 | 0.291 | 0.235 | 0.046 | 0.250 |
12 | 0.358 | 0.434 | 0.467 | 0.423 | 0.359 | 0.289 | 0.328 | 0.348 | 0.351 |
13 | 0.473 | 0.490 | 0.485 | 0.497 | 0.676 | 0.423 | 0.642 | 0.047 | 0.523 |
14 | 0.331 | 0.188 | 0.415 | 0.616 | 0.470 | 0.166 | 0.326 | 0.118 | 0.703 |
15 | 0.333 | 0.240 | 0.417 | 0.537 | 0.531 | 0.202 | 0.459 | 0.222 | 0.635 |
16 | 0.513 | 0.468 | 0.492 | 0.601 | 0.762 | 0.404 | 0.664 | 0.064 | 0.639 |
17 | 0.548 | 0.496 | 0.578 | 0.656 | 0.702 | 0.434 | 0.652 | 0.005 | 0.667 |
18 | 0.488 | 0.437 | 0.421 | 0.472 | 0.651 | 0.408 | 0.683 | 0.007 | 0.481 |
PDCC Item | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
10 | 1.000 | ||||||||
11 | 0.301 | 1.000 | |||||||
12 | 0.424 | 0.119 | 1.000 | ||||||
13 | 0.595 | 0.363 | 0.398 | 1.000 | |||||
14 | 0.587 | 0.128 | 0.291 | 0.408 | 1.000 | ||||
15 | 0.666 | 0.196 | 0.434 | 0.570 | 0.581 | 1.000 | |||
16 | 0.647 | 0.390 | 0.388 | 0.703 | 0.552 | 0.604 | 1.000 | ||
17 | 0.596 | 0.299 | 0.460 | 0.687 | 0.520 | 0.502 | 0.856 | 1.000 | |
18 | 0.508 | 0.303 | 0.320 | 0.614 | 0.407 | 0.468 | 0.743 | 0.726 | 1.000 |
PDCC Item | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
1 | 1.000 | ||||||||
2 | 0.591 | 1.000 | |||||||
3 | 0.421 | 0.375 | 1.000 | ||||||
4 | 0.356 | 0.266 | 0.663 | 1.000 | |||||
5 | 0.546 | 0.427 | 0.492 | 0.503 | 1.000 | ||||
6 | 0.512 | 0.682 | 0.252 | 0.261 | 0.456 | 1.000 | |||
7 | 0.538 | 0.488 | 0.451 | 0.421 | 0.648 | 0.552 | 1.000 | ||
8 | 0.118 | 0.084 | 0.129 | 0.084 | 0.091 | 0.055 | 0.025 | 1.000 | |
9 | 0.246 | 0.187 | 0.487 | 0.617 | 0.503 | 0.166 | 0.378 | 0.043 | 1.000 |
10 | 0.304 | 0.240 | 0.442 | 0.583 | 0.501 | 0.173 | 0.398 | 0.110 | 0.697 |
11 | 0.153 | 0.266 | 0.150 | 0.154 | 0.255 | 0.255 | 0.211 | 0.040 | 0.182 |
12 | 0.303 | 0.373 | 0.386 | 0.367 | 0.318 | 0.261 | 0.288 | 0.304 | 0.299 |
13 | 0.398 | 0.414 | 0.395 | 0.398 | 0.597 | 0.368 | 0.575 | 0.035 | 0.424 |
14 | 0.262 | 0.128 | 0.364 | 0.537 | 0.397 | 0.127 | 0.262 | 0.105 | 0.626 |
15 | 0.282 | 0.189 | 0.360 | 0.459 | 0.466 | 0.171 | 0.404 | 0.200 | 0.539 |
16 | 0.442 | 0.393 | 0.413 | 0.511 | 0.693 | 0.351 | 0.582 | 0.059 | 0.534 |
17 | 0.469 | 0.417 | 0.487 | 0.562 | 0.636 | 0.371 | 0.574 | 0.002 | 0.551 |
18 | 0.434 | 0.369 | 0.359 | 0.410 | 0.579 | 0.357 | 0.610 | 0.006 | 0.400 |
PDCC Item | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
10 | 1.000 | ||||||||
11 | 0.251 | 1.000 | |||||||
12 | 0.371 | 0.111 | 1.000 | ||||||
13 | 0.518 | 0.317 | 0.343 | 1.000 | |||||
14 | 0.505 | 0.092 | 0.247 | 0.317 | 1.000 | ||||
15 | 0.591 | 0.178 | 0.383 | 0.506 | 0.493 | 1.000 | |||
16 | 0.572 | 0.330 | 0.332 | 0.622 | 0.456 | 0.522 | 1.000 | ||
17 | 0.528 | 0.251 | 0.399 | 0.580 | 0.435 | 0.433 | 0.773 | 1.000 | |
18 | 0.443 | 0.263 | 0.286 | 0.543 | 0.339 | 0.414 | 0.659 | 0.652 | 1.000 |
References
- Wang, S.; Hurlstone, M.J.; Leviston, Z.; Walker, I.; Lawrence, C. Climate Change from a Distance: An Analysis of Construal Level and Psychological Distance from Climate Change. Front. Psychol. 2019, 10, 438569. [Google Scholar] [CrossRef] [PubMed]
- Maiella, R.; La Malva, P.; Marchetti, D.; Pomarico, E.; Di Crosta, A.; Palumbo, R.; Cetara, L.; Di Domenico, A.; Verrocchio, M.C. The Psychological Distance and Climate Change: A Systematic Review on the Mitigation and Adaptation Behaviors. Front. Psychol. 2020, 11, 568899. [Google Scholar] [CrossRef] [PubMed]
- Keller, E.; Marsh, J.E.; Richardson, B.H.; Ball, L.J. A Systematic Review of the Psychological Distance of Climate Change: Towards the Development of an Evidence-Based Construct. J. Environ. Psychol. 2022, 81, 101822. [Google Scholar] [CrossRef]
- Trope, Y.; Liberman, N. Construal-Level Theory of Psychological Distance. Psychol. Rev. 2010, 117, 440–463. [Google Scholar] [CrossRef] [PubMed]
- Spence, A.; Poortinga, W.; Pidgeon, N. The Psychological Distance of Climate Change. Risk Anal. 2012, 32, 957–972. [Google Scholar] [CrossRef] [PubMed]
- van Valkengoed, A.M.; Steg, L.; Perlaviciute, G. The Psychological Distance of Climate Change Is Overestimated. One Earth 2023, 6, 362–391. [Google Scholar] [CrossRef]
- Chu, H.; Yang, J.Z. Risk or Efficacy? How Psychological Distance Influences Climate Change Engagement. Risk Analysis 2020, 40, 758–770. [Google Scholar] [CrossRef]
- McDonald, R.I.; Chai, H.Y.; Newell, B.R. Personal Experience and the ‘Psychological Distance’ of Climate Change: An Integrative Review. J. Environ. Psychol. 2015, 44, 109–118. [Google Scholar] [CrossRef]
- Milfont, T.L.; Evans, L.; Sibley, C.G.; Ries, J.; Cunningham, A. Proximity to Coast Is Linked to Climate Change Belief. PLoS ONE 2014, 9, 103180. [Google Scholar] [CrossRef]
- Loy, L.S.; Spence, A. Reducing, and Bridging, the Psychological Distance of Climate Change. J. Environ. Psychol. 2020, 67, 101388. [Google Scholar] [CrossRef]
- Chen, M.F. Effects of Psychological Distance Perception and Psychological Factors on Pro-Environmental Behaviors in Taiwan: Application of Construal Level Theory. Int. Sociol. 2020, 35, 70–89. [Google Scholar] [CrossRef]
- Schattman, R.E.; Caswell, M.; Faulkner, J.W. Eyes on the Horizon: Temporal and Social Perspectives of Climate Risk and Agricultural Decision Making among Climate-Informed Farmers. Soc. Nat. Resour. 2021, 34, 763–782. [Google Scholar] [CrossRef]
- Poortvliet, P.M.; Niles, M.T.; Veraart, J.A.; Werners, S.E.; Korporaal, F.C.; Mulder, B.C. Communicating Climate Change Risk: A Content Analysis of Ipcc’s Summary for Policymakers. Sustainability 2020, 12, 4861. [Google Scholar] [CrossRef]
- Allen, M.J.; Yen, W.M. Introduction to Measurement Theory; Brooks/Cole Pub. Co.: Monterey, CA, USA, 1979; ISBN 0818502835. [Google Scholar]
- Rosch, E. Cognitive Representations of Semantic Categories. J. Exp. Psychol. Gen. 1975, 104, 192–233. [Google Scholar] [CrossRef]
- Semin, G.R.; Fiedler, K. The Cognitive Functions of Linguistic Categories in Describing Persons: Social Cognition and Language. J. Pers. Soc. Psychol. 1988, 54, 558–568. [Google Scholar] [CrossRef]
- Medin, D.L.; Smith, E.E. Concepts and Concept Formation. Annu. Rev. Psychol. 1984, 35, 113–138. [Google Scholar] [CrossRef] [PubMed]
- Vallacher, R.R.; Wegner, D.M. What Do People Think They’re Doing? Action Identification and Human Behavior. Psychol. Rev. 1987, 94, 3–15. [Google Scholar] [CrossRef]
- Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.W.; Trisos, C.; Romero, J.; Aldunce, P.; Barrett, K.; Blanco, G.; et al. IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report. of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023. [Google Scholar]
- Bryson, R.A. The Paradigm of Climatology: An Essay. Bull. Am. Meteorol. Soc. 1997, 78, 449–455. [Google Scholar] [CrossRef]
- Fujita, T.T. Mesoscale Classifications: Their History and Their Application to Forecasting. In Mesoscale Meteorology and Forecasting; Ray, P.S., Ed.; American Meteorological Society: Boston, MA, USA, 1986; pp. 18–35. [Google Scholar]
- Stewart, A.E.; Blau, J.J.C. Weather as Ecological Events. Ecol. Psychol. 2019, 31, 107–126. [Google Scholar] [CrossRef]
- Stewart, A.E.; Oh, J. Weather and Climate as Events: Contributions to the Public Idea of Climate Change. Int. J. Big Data Min. Glob. Warm. 2019, 01, 1950005. [Google Scholar] [CrossRef]
- Akerlof, K.; Maibach, E.W.; Fitzgerald, D.; Cedeno, A.Y.; Neuman, A. Do People “Personally Experience” Global Warming, and If so How, and Does It Matter? Glob. Environ. Change 2013, 23, 81–91. [Google Scholar] [CrossRef]
- Sambrook, K.; Konstantinidis, E.; Russell, S.; Okan, Y. The Role of Personal Experience and Prior Beliefs in Shaping Climate Change Perceptions: A Narrative Review. Front. Psychol. 2021, 12, 669911. [Google Scholar] [CrossRef] [PubMed]
- Weber, E.U. Experience-Based and Description-Based Perceptions of Long-Term Risk: Why Global Warming Does Not Scare Us (Yet). Clim. Chang. 2006, 77, 103–120. [Google Scholar] [CrossRef]
- Sisco, M.R.; Bosetti, V.; Weber, E.U. When Do Extreme Weather Events Generate Attention to Climate Change? Clim. Chang. 2017, 143, 227–241. [Google Scholar] [CrossRef]
- Williams, L.E.; Stein, R.; Galguera, L. The Distinct Affective Consequences of Psychological Distance and Construal Level. J. Consum. Res. 2014, 40, 1123–1138. [Google Scholar] [CrossRef]
- Devine-Wright, P. Think Global, Act Local? The Relevance of Place Attachments and Place Identities in a Climate Changed World. Glob. Environ. Change 2013, 23, 61–69. [Google Scholar] [CrossRef]
- Chu, H. Construing Climate Change: Psychological Distance, Individual Difference, and Construal Level of Climate Change. Environ. Commun. 2022, 16, 883–899. [Google Scholar] [CrossRef]
- Jones, C.; Hine, D.W.; Marks, A.D.G. The Future Is Now: Reducing Psychological Distance to Increase Public Engagement with Climate Change. Risk Analysis 2017, 37, 331–341. [Google Scholar] [CrossRef]
- Verplanken, B.; Marks, E.; Dobromir, A.I. On the Nature of Eco-Anxiety: How Constructive or Unconstructive Is Habitual Worry about Global Warming? J. Environ. Psychol. 2020, 72, 101528. [Google Scholar] [CrossRef]
- Većkalov, B.; Zarzeczna, N.; Niehoff, E.; McPhetres, J.; Rutjens, B.T. A Matter of Time… Consideration of Future Consequences and Temporal Distance Contribute to the Ideology Gap in Climate Change Scepticism. J. Environ. Psychol. 2021, 78, 101703. [Google Scholar] [CrossRef]
- Demski, C.; Capstick, S.; Pidgeon, N.; Sposato, R.G.; Spence, A. Experience of Extreme Weather Affects Climate Change Mitigation and Adaptation Responses. Clim. Chang. 2017, 140, 149–164. [Google Scholar] [CrossRef] [PubMed]
- Hornsey, M.J.; Harris, E.A.; Bain, P.G.; Fielding, K.S. Meta-Analyses of the Determinants and Outcomes of Belief in Climate Change. Nat. Clim. Chang. 2016, 6, 622–626. [Google Scholar] [CrossRef]
- van der Linden, S. The Social-Psychological Determinants of Climate Change Risk Perceptions: Towards a Comprehensive Model. J. Environ. Psychol. 2015, 41, 112–124. [Google Scholar] [CrossRef]
- Howe, P.D.; Marlon, J.R.; Mildenberger, M.; Shield, B.S. How Will Climate Change Shape Climate Opinion? Environ. Res. Lett. 2019, 14, 113001. [Google Scholar] [CrossRef]
- Azadi, Y.; Yazdanpanah, M.; Mahmoudi, H. Understanding Smallholder Farmers’ Adaptation Behaviors through Climate Change Beliefs, Risk Perception, Trust, and Psychological Distance: Evidence from Wheat Growers in Iran. J. Environ. Manag. 2019, 250, 109456. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.S.; Zwickle, A.; Bruskotter, J.T.; Wilson, R. The Perceived Psychological Distance of Climate Change Impacts and Its Influence on Support for Adaptation Policy. Environ. Sci. Policy 2017, 73, 93–99. [Google Scholar] [CrossRef]
- Rana, I.A.; Lodhi, R.H.; Zia, A.; Jamshed, A.; Nawaz, A. Three-Step Neural Network Approach for Predicting Monsoon Flood Preparedness and Adaptation: Application in Urban Communities of Lahore, Pakistan. Urban. Clim. 2022, 45, 101266. [Google Scholar] [CrossRef]
- Wang, S.; Hurlstone, M.J.; Leviston, Z.; Walker, I.; Lawrence, C. Construal-Level Theory and Psychological Distancing: Implications for Grand Environmental Challenges. One Earth 2021, 4, 482–486. [Google Scholar] [CrossRef]
- Brennan, R.L. An Essay on the History and Future of Reliability from the Perspective of Replications. J. Educ. Meas. 2001, 38, 295–317. [Google Scholar] [CrossRef]
- Matheson, G.J. We Need to Talk about Reliability: Making Better Use of Test-Retest Studies for Study Design and Interpretation. PeerJ 2019, 7, e6918. [Google Scholar] [CrossRef]
- R Core Team. R. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 26 June 2023).
- Revelle, W. Psych: Procedures for Psychological, Psychometric, and Personality Research; Northwestern University: Evanston, IL, USA, 2023. [Google Scholar]
- McNeish, D. Thanks Coefficient Alpha, We’ll Take It from Here. Psychol. Methods 2018, 23, 412–433. [Google Scholar] [CrossRef] [PubMed]
- McDonald, R.P. Test Theory: A Unified Treatment; L. Erlbaum Associates: Mahwah, NJ, USA, 1999; ISBN 0805830758. [Google Scholar]
- Hulme, M. Why We Disagree about Climate Change: Understanding Controversy, Inaction and Opportunity; Cambridge University Press: Cambridge, UK, 2009; ISBN 9780511841200. [Google Scholar]
- Fabrigar, L.R.; Wegener, D.T.; MacCallum, R.C.; Strahan, E.J. Evaluating the Use of Exploratory Factor Analysis in Psychological Research. Psychol. Methods 1999, 4, 272–299. [Google Scholar] [CrossRef]
- Rogers, P. Best Practices for Your Exploratory Factor Analysis: A Factor Tutorial. Rev. Adm. Contemp. 2022, 26, e210085. [Google Scholar] [CrossRef]
- Watkins, M.W. Exploratory Factor Analysis: A Guide to Best Practice. J. Black Psychol. 2018, 44, 219–246. [Google Scholar] [CrossRef]
- Korkmaz, S.; Goksuluk, D.; Zararsiz, G. MVN: An R Package for Assessing Multivariate Normality. R. J. 2014, 6, 151–162. [Google Scholar] [CrossRef]
- Steiner, M.; Grieder, S. EFAtools: An R Package with Fast and Flexible Implementations of Exploratory Factor Analysis Tools. J. Open Source Softw. 2020, 5, 2521. [Google Scholar] [CrossRef]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Lorenzo-Seva, U.; Ferrando, P.J. Factor 92: A Comprehensive Program for Fitting Exploratory and Semiconfirmatory Factor Analysis and IRT Models. Appl. Psychol. Meas. 2013, 37, 497–498. [Google Scholar] [CrossRef]
- Baglin, J. Improving Your Exploratory Factor Analysis for Ordinal Data: A Demonstration Using FACTOR. Pract. Assess. Res. Eval. 2014, 19, 5. [Google Scholar]
- Barendse, M.T.; Oort, F.J.; Timmerman, M.E. Using Exploratory Factor Analysis to Determine the Dimensionality of Discrete Responses. Struct. Equ. Model. 2015, 22, 87–101. [Google Scholar] [CrossRef]
- Timmerman, M.E.; Lorenzo-Seva, U. Dimensionality Assessment of Ordered Polytomous Items with Parallel Analysis. Psychol. Methods 2011, 16, 209–220. [Google Scholar] [CrossRef]
- Coenders, G.; Saris, W.E. Categorization and Measurement Quality. The Choice between Pearson and Polychoric Correlations. In The Multitrait-Multimethod Approach to Evaluate Measurement Instruments; Eötvös University Press: Budapest, Hungary, 1995. [Google Scholar]
- Choi, J.; Peters, M.; Mueller, R.O. Correlational Analysis of Ordinal Data: From Pearson’s r to Bayesian Polychoric Correlation. Asia Pac. Educ. Rev. 2010, 11, 459–466. [Google Scholar] [CrossRef]
- Choi, J.; Kim, S.; Chen, J.; Dannels, S. A Comparison of Maximum Likelihood and Bayesian Estimation for Polychoric Correlation Using Monte Carlo Simulation. J. Educ. Behav. Stat. 2011, 36, 523–549. [Google Scholar] [CrossRef]
- Holgado-Tello, F.P.; Chacón-Moscoso, S.; Barbero-García, I.; Vila-Abad, E. Polychoric versus Pearson Correlations in Exploratory and Confirmatory Factor Analysis of Ordinal Variables. Qual. Quant. 2010, 44, 153–166. [Google Scholar] [CrossRef]
- Liddell, T.M.; Kruschke, J.K. Analyzing Ordinal Data with Metric Models: What Could Possibly Go Wrong? J. Exp. Soc. Psychol. 2018, 79, 328–348. [Google Scholar] [CrossRef]
- Li, C.-H. The Performance of ML, DWLS, and ULS Estimation with Robust Corrections in Structural Equation Models with Ordinal Variables. Psychol. Methods 2016, 21, 369–387. [Google Scholar] [CrossRef] [PubMed]
- Mîndrilă, D. Maximum Likelihood (ML) and Diagonally Weighted Least Squares (DWLS) Estimation Procedures: A Comparison of Estimation Bias with Ordinal and Multivariate Non-Normal Data. Int. J. Digit. Soc. 2010, 1, 60–66. [Google Scholar] [CrossRef]
- Hu, L.; Bentler, P.M. Cutoff Criteria for Fit Indexes in Covariance Structure Analysis: Conventional Criteria versus New Alternatives. Struct. Equ. Model. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Robitzsch, A. Why Ordinal Variables Can (Almost) Always Be Treated as Continuous Variables: Clarifying Assumptions of Robust Continuous and Ordinal Factor Analysis Estimation Methods. Front. Educ. 2020, 5, 589965. [Google Scholar] [CrossRef]
- Curran, P.J.; West, S.G.; Finch, J.F. The Robustness of Test Statistics to Nonnormality and Specification Error in Confirmatory Factor Analysis. Psychol. Methods 1996, 1, 16–29. [Google Scholar] [CrossRef]
- Lorenzo-Seva, U.; Ferrando, P.J. Robust Promin: A Method for Diagonally Weighted Factor Rotation. Liberabit Rev. Peru. Psicol. 2019, 25, 99–106. [Google Scholar] [CrossRef]
- Yang, Y.; Xia, Y. On the Number of Factors to Retain in Exploratory Factor Analysis for Ordered Categorical Data. Behav. Res. Methods 2015, 47, 756–772. [Google Scholar] [CrossRef] [PubMed]
- Bentler, P.M. Factor Simplicity Index and Transformations. Psychometrika 1977, 42, 277–295. [Google Scholar] [CrossRef]
- Ferrando, P.J.; Lorenzo-Seva, U. Assessing the Quality and Appropriateness of Factor Solutions and Factor Score Estimates in Exploratory Item Factor Analysis. Educ. Psychol. Meas. 2018, 78, 762–780. [Google Scholar] [CrossRef] [PubMed]
- Mardia, K.V. Measures of Multivariate Skewness and Kurtosis with Applications. Biometrika 1970, 57, 519. [Google Scholar] [CrossRef]
- Henze, N.; Zirkler, B. A Class of Invariant Consistent Tests for Multivariate Normality. Commun. Stat. Theory Methods 1990, 19, 3595–3617. [Google Scholar] [CrossRef]
- Royston, J.P. Some Techniques for Assessing Multivarate Normality Based on the Shapiro-Wilk W. Appl. Stat. 1983, 32, 121. [Google Scholar] [CrossRef]
- Bruning, J.L.; Kintz, B.L. Computational Handbook of Statistics, 4th ed.; Longman: New York, NY, USA, 1997. [Google Scholar]
- Stewart, A.E.; Chapman, H.E.; Davis, J.B.L. Anxiety and Worry About Six Categories of Climate Change Impacts. Int. J. Environ. Res. Public Health 2023, 21, 23. [Google Scholar] [CrossRef]
Item | First Administration | Second Administration | ||
---|---|---|---|---|
Standardized α If Item Removed | Item-to-Total Correlation | Standardized α If Item Removed | Item-to-Total Correlation | |
1 | 0.90 | 0.68 | 0.91 | 0.67 |
2 | 0.91 | 0.54 | 0.90 | 0.78 |
3 | 0.90 | 0.59 | 0.91 | 0.44 |
4 | 0.91 | 0.48 | 0.91 | 0.70 |
5 | 0.90 | 0.75 | 0.90 | 0.77 |
6 | 0.90 | 0.58 | 0.91 | 0.61 |
7 | 0.90 | 0.55 | 0.90 | 0.75 |
8 | 0.91 | 0.28 | 0.92 | 0.20 |
9 | 0.90 | 0.73 | 0.91 | 0.69 |
10 | 0.90 | 0.71 | 0.91 | 0.62 |
11 | 0.91 | 0.23 | 0.92 | 0.31 |
12 | 0.90 | 0.60 | 0.91 | 0.62 |
13 | 0.90 | 0.84 | 0.90 | 0.75 |
14 | 0.91 | 0.49 | 0.91 | 0.41 |
15 | 0.90 | 0.81 | 0.91 | 0.65 |
16 | 0.90 | 0.66 | 0.90 | 0.81 |
17 | 0.90 | 0.74 | 0.91 | 0.60 |
18 | 0.90 | 0.63 | 0.91 | 0.73 |
PDCC Item | Mean * | Variance | Skew | Kurtosis | Shapiro–Wilk W Statistic ** | Anderson– Darling Statistic † | Item-to-Total Correlation |
---|---|---|---|---|---|---|---|
1 | 2.67 | 0.98 | 0.31 | −0.76 | 0.88 | 19.71 | 0.62 |
2 | 2.68 | 1.06 | 0.34 | −0.86 | 0.87 | 21.42 | 0.58 |
3 | 2.32 | 0.75 | 0.82 | 0.77 | 0.84 | 26.31 | 0.64 |
4 | 1.99 | 0.72 | 1.02 | 1.48 | 0.81 | 26.14 | 0.70 |
5 | 2.35 | 1.04 | 0.62 | −0.23 | 0.87 | 19.05 | 0.79 |
6 | 2.67 | 1.22 | 0.25 | −0.95 | 0.89 | 17.03 | 0.53 |
7 | 2.49 | 0.84 | 0.35 | −0.40 | 0.88 | 18.78 | 0.72 |
8 | 3.39 | 1.04 | −0.16 | −0.63 | 0.90 | 13.71 | 0.15 |
9 | 1.75 | 0.66 | 1.14 | 1.74 | 0.78 | 27.98 | 0.68 |
10 | 2.13 | 1.01 | 0.74 | 0.14 | 0.86 | 17.77 | 0.70 |
11 | 2.83 | 1.05 | 0.03 | −0.65 | 0.91 | 13.55 | 0.33 |
12 | 3.12 | 0.91 | −0.18 | −0.47 | 0.90 | 15.94 | 0.51 |
13 | 2.45 | 0.89 | 0.33 | −0.48 | 0.89 | 17.33 | 0.71 |
14 | 1.93 | 0.82 | 0.97 | 0.86 | 0.82 | 22.78 | 0.55 |
15 | 2.69 | 1.03 | 0.22 | −0.53 | 0.91 | 13.99 | 0.64 |
16 | 2.16 | 0.85 | 0.74 | 0.33 | 0.85 | 21.15 | 0.81 |
17 | 2.22 | 0.80 | 0.64 | 0.33 | 0.86 | 20.55 | 0.79 |
18 | 2.42 | 0.85 | 0.35 | −0.15 | 0.89 | 16.97 | 0.69 |
Polychoric Correlations/DWLS Extraction | Pearson Correlations/ML Extraction | ||||
---|---|---|---|---|---|
Eigenvalue | Proportion of Variance | Cum. Prop. Variance | Eigenvalue | Proportion of Variance | Cum. Prop. Variance |
8.744 | 0.547 | 0.547 | 7.663 | 0.479 | 0.479 |
1.886 | 0.118 | 0.664 | 1.875 | 0.117 | 0.596 |
0.990 | 0.062 | 0.726 | 1.018 | 0.064 | 0.660 |
Fit Index for a 3-Factor Model | Polychoric Correlations/DWLS Extraction | Pearson Correlations/ML Extraction | ||
---|---|---|---|---|
Fit Index Value | 95% CI | Fit Index Value | 95% CI | |
RMSEA | 0.051 | 0.038–0.056 | 0.084 | 0.082–0.087 |
Tucker-Lewis Index | 0.992 | 0.990–0.996 | 0.966 | 0.950–0.970 |
RMSR | 0.044 | 0.038–0.046 | 0.033 | 0.028–0.034 |
Minimum Fit χ2 | 68.997, df = 75, ns | -- | 252.262, df = 75, p < 0.00001 | -- |
Factor Index | Polychoric Correlations with DWLS Extraction | Pearson Correlations with ML Extraction | ||
---|---|---|---|---|
Index Value | 95% CI | Index Value | 95% CI | |
Factor Determinancy Index (FDI) | ||||
Factor 1 | 0.966 | 0.943–0.976 | 0.920 | 0.879–0.937 |
Factor 2 | 0.979 | 0.971–0.994 | 0.966 | 0.956–0.981 |
Factor 3 | 0.958 | 0.927–0.981 | 0.948 | 0.927–0.960 |
Construct Replicability Index (G-H Index) | ||||
Factor 1 | 0.870 | 0.835–0.891 | 0.846 | 0.773–0.877 |
Factor 2 | 0.958 | 0.922–0.991 | 0.932 | 0.914–0.962 |
Factor 3 | 0.893 | 0.844–0.932 | 0.899 | 0.859–0.921 |
Factor Simplicity Index (FSI) | 0.956 | 0.728–0.991 | 0.980 | 0.868–0.996 |
Polychoric Correlations/DWLS Extraction | Pearson Correlations/ML Extraction | |||||||
---|---|---|---|---|---|---|---|---|
PDCC Item | Factor 1 | Factor 2 | Factor 3 | Comm. | Factor 1 | Factor 2 | Factor 3 | Comm. |
1 | 0.578 | 0.597 | 0.555 | 0.524 | ||||
2 | 0.908 | 0.864 | 0.792 | 0.679 | ||||
3 | 0.674 | 0.525 | 0.573 | 0.392 | 0.68 | 0.512 | ||
4 | 0.822 | 0.353 | 0.702 | 0.827 | 0.642 | |||
5 | 0.641 | 0.708 | 0.629 | 0.645 | ||||
6 | 0.715 | 0.739 | 0.728 | 0.617 | ||||
7 | 0.713 | 0.693 | 0.593 | 0.604 | ||||
9 | 0.839 | 0.859 | 0.829 | 0.694 | ||||
10 | 0.701 | 0.747 | 0.668 | 0.622 | ||||
12 | 0.415 | 0.377 | 0.308 | 0.3 | 0.363 | 0.261 | ||
13 | 0.676 | 0.606 | 0.671 | 0.529 | ||||
14 | 0.726 | 0.573 | 0.699 | 0.48 | ||||
15 | 0.54 | 0.557 | 0.467 | 0.455 | ||||
16 | 1.022 | 0.892 | 0.99 | 0.792 | ||||
17 | 0.784 | 0.808 | 0.757 | 0.701 | ||||
18 | 0.986 | 0.681 | 0.884 | 0.588 |
Factors | DWLS Analysis | ML Analysis | ||
---|---|---|---|---|
1 | 2 | 1 | 2 | |
1. Factor 1 | 1.00 | 1.00 | ||
2. Factor 2 | 0.71 | 1.00 | 0.60 | 1.00 |
3. Factor 3 | 0.27 | 0.64 | 0.30 | 0.73 |
Scale | Mean | Median | Stand. Dev. | Skewness | Kurtosis | Cronbach’s α (95% CI) |
---|---|---|---|---|---|---|
PDCC-Full | 38.0 | 37 | 10.38 | 0.41 | 0.74 | 0.92 (0.91–0.94) |
Factor 1 | 15.9 | 16 | 4.76 | 0.88 | 1.94 | 0.86 (0.83–0.89) |
Factor 2 | 14.1 | 13.5 | 4.65 | 0.46 | 0.25 | 0.91 (0.89–0.92) |
Factor 3 | 15.5 | 15 | 4.13 | 0.08 | 0.20 | 0.80 (0.76–0.84) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stewart, A.E. Reliability and Exploratory Factor Analysis of a Measure of the Psychological Distance from Climate Change. Climate 2024, 12, 76. https://doi.org/10.3390/cli12050076
Stewart AE. Reliability and Exploratory Factor Analysis of a Measure of the Psychological Distance from Climate Change. Climate. 2024; 12(5):76. https://doi.org/10.3390/cli12050076
Chicago/Turabian StyleStewart, Alan E. 2024. "Reliability and Exploratory Factor Analysis of a Measure of the Psychological Distance from Climate Change" Climate 12, no. 5: 76. https://doi.org/10.3390/cli12050076
APA StyleStewart, A. E. (2024). Reliability and Exploratory Factor Analysis of a Measure of the Psychological Distance from Climate Change. Climate, 12(5), 76. https://doi.org/10.3390/cli12050076