Snowmelt Streamflow Trends over Colorado (U.S.A.) Mountain Watersheds
Abstract
1. Introduction
1.1. Snowmelt Streamflow Timing Metrics
1.2. Objectives of the Paper
2. Methodology
2.1. Snowmelt Streamflow Timing and Volume
2.2. Trend Analysis
2.3. Correlation and Regression
3. Study Domain
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Sample Hydrograph
Appendix B. Station Summary
Name | Number | Latitude (°) | Longitude (°) | Gauge Elevation (m) | Basin Area (km2) |
---|---|---|---|---|---|
Joe Wright Creek | 06746095 | 40.540 | −105.883 | 3045 | 8 |
Michigan River | 06614800 | 40.496 | −105.865 | 3167 | 4 |
Colorado River | 09010500 | 40.326 | −105.857 | 2667 | 165 |
Cabin Creek | 09032100 | 39.986 | −105.745 | 2914 | 13 |
Ranch Creek | 09032000 | 39.950 | −105.766 | 2640 | 52 |
Vasquez Creek | 09025000 | 39.920 | −105.785 | 2673 | 72 |
St. Louis Creek | 09026500 | 39.910 | −105.878 | 2737 | 85 |
Fraser River | 09022000 | 39.846 | −105.752 | 2902 | 27 |
S Fork of Williams | 09035900 | 39.801 | −106.026 | 2728 | 71 |
Darling Creek | 09035800 | 39.797 | −106.026 | 2725 | 23 |
Piney River | 09059500 | 39.796 | −106.574 | 2217 | 219 |
Williams Fork | 09035500 | 39.779 | −105.928 | 2987 | 42 |
Bobtail Creek | 09034900 | 39.760 | −105.906 | 3179 | 15 |
East Meadow Creek | 09058800 | 39.732 | −106.427 | 2882 | 9 |
Dickson Creek | 09058610 | 39.704 | −106.457 | 2818 | 9 |
Freeman Creek | 09058700 | 39.698 | −106.446 | 2845 | 8 |
Red Sandstone Creek | 09066400 | 39.683 | −106.401 | 2808 | 19 |
Booth Creek | 09066200 | 39.648 | −106.323 | 2537 | 16 |
Middle Creek | 09066300 | 39.646 | −106.382 | 2499 | 15 |
Pitkin Creek | 09066150 | 39.644 | −106.303 | 2598 | 14 |
Bighorn Creek | 09066100 | 39.640 | −106.293 | 2629 | 12 |
Gore Creek | 09065500 | 39.626 | −106.278 | 2621 | 38 |
Black Gore Creek | 09066000 | 39.596 | −106.265 | 2789 | 32 |
Keystone Gulch | 09047700 | 39.594 | −105.973 | 2850 | 24 |
Tenmile Creek | 09050100 | 39.575 | −106.111 | 2774 | 239 |
Turkey Creek | 09063400 | 39.523 | −106.337 | 2718 | 61 |
Wearyman Creek | 09063200 | 39.522 | −106.324 | 2829 | 25 |
Eagle River | 09063000 | 39.508 | −106.367 | 2638 | 182 |
Blue River | 09046600 | 39.456 | −106.032 | 2749 | 319 |
Homestake Creek | 09064000 | 39.406 | −106.433 | 2804 | 92 |
Missouri Creek | 09063900 | 39.390 | −106.470 | 3042 | 17 |
Crystal River | 09081600 | 39.233 | −107.228 | 2105 | 433 |
Halfmoon Creek | 07083000 | 39.172 | −106.389 | 2996 | 61 |
Roaring Fork River | 09073300 | 39.141 | −106.774 | 2475 | 196 |
Rock Creek | 07105945 | 38.707 | −104.847 | 2000 | 18 |
Lake Fork | 09124500 | 38.299 | −107.230 | 2386 | 878 |
Uncompahgre River | 09146200 | 38.184 | −107.746 | 2096 | 386 |
Vallecito Creek | 09352900 | 37.478 | −107.544 | 2410 | 188 |
Conejos River | 08245000 | 37.300 | −105.747 | 3007 | 104 |
Appendix C. Daily Maximum, Mean, and Minimum Temperature Time Series
Appendix D. Cross-Correlation of Trends, Parameters, and Variables
Winter P | Peak SWE | Melt Temp | Solar Rad. | Elevation | Slope | Area | Latitude | Longitude | |
---|---|---|---|---|---|---|---|---|---|
NDVI | 0.43 | −0.13 | 0.17 | 0.04 | −0.06 | −0.05 | −0.06 | 0.40 | 0.13 |
Winter P | 0.29 | 0.06 | 0.31 | 0.17 | −0.14 | −0.30 | 0.59 | 0.46 | |
Peak SWE | −0.24 | −0.10 | 0.42 | 0.09 | −0.04 | 0.25 | 0.02 | ||
Melt Temp | 0.13 | 0.04 | 0.01 | 0 | 0.28 | 0.02 | |||
Solar Rad. | 0.14 | −0.01 | −0.45 | 0.33 | 0.36 | ||||
Elevation | 0.44 | −0.03 | 0.19 | 0.20 | |||||
Slope | 0.13 | −0.01 | −0.26 | ||||||
Area | −0.46 | −0.57 | |||||||
Latitude | 0.45 |
tQend | tQstart–end | Q100 | Qstart | Qend | Qstart–end | |
---|---|---|---|---|---|---|
tQstart | 0.12 | −0.56 | 0.29 | 0.34 | 0.37 | 0.37 |
tQend | 0.66 | 0.20 | 0.01 | 0.37 | 0.34 | |
tQstart–end | −0.06 | −0.21 | −0.005 | −0.03 | ||
Q100 | 0.12 | 0.89 | 0.82 | |||
Qstart | 0.08 | −0.09 | ||||
Qend | 0.94 |
Variable | R2 | Sign. F | Intercept | NDVI | Winter P | Peak SWE | Min. Temp | Solar Rad. | Elev. | Slope | Area | Lat. | Long. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(a) Regression with all variables/parameters | |||||||||||||
tQstart | 0.24 | 0.566 | 27.1 | −0.216 | 0.260 | −0.012 | −4.61 * | −0.001 | 0.002 | −0.134 | 0.000 | −0.098 | 0.247 |
tQend | 0.33 | 0.229 | 22.6 | −2.49 | 0.767 | −0.010 | 0.83 | −0.015 * | 0.000 | −0.222 | −0.001 | 0.588 | 0.168 |
tQstart–end | 0.16 | 0.861 | 54.7 | −1.94 | 0.110 | 0.014 | 4.28 | −0.010 | −0.002 | −0.062 | 0.000 | 0.484 | 0.474 |
Q100 | 0.38 | 0.119 | −1794 | −11.9 | 2.98 | 0.482 | −31.5 | −0.052 | 0.014 | −5.29 * | 0.039 | 23.3 | −9.82 |
Qstart | 0.37 | 0.148 | −121 | 5.50 | 1.05 | −0.024 | −7.33 | 0.009 | 0.006 | −0.257 | 0.012 + | −0.724 | −1.18 |
Qend | 0.53 | 0.008 * | −1029 | −26.34 | 7.79 | 0.397 | −27.2 | −0.068 | −0.016 | −3.17 * | −0.004 | 20.8 + | −4.34 |
Qstart–end | 0.48 | 0.025 * | −748 | −27.27 | 4.57 | 0.379 | −36.3 | −0.055 | −0.023 | −3.13 | −0.049 | 21.8 + | −1.39 |
(b) Regression with winter precipitation, minimum temperature, elevation and area | |||||||||||||
tQstart | 0.17 | 0.156 | −1.40 | 0.276 | −4.37 * | 0.001 | 0.000 | ||||||
tQend | 0.13 | 0.304 | 8.16 | 0.705 + | −0.444 | −0.003 | 0.000 | ||||||
tQstart–end | 0.06 | 0.673 | 6.15 | 0.138 | 2.97 | −0.002 | 0.001 | ||||||
Q100 | 0.15 | 0.242 | 103 | 10.8 + | −66.5 | −0.015 | 0.027 | ||||||
Qstart | 0.28 | 0.022 * | −0.263 | 1.25 * | −6.16 | 0.002 | 0.013 * | ||||||
Qend | 0.31 | 0.011 * | 131 | 13.0 * | −56.7 + | −0.026 | −0.015 | ||||||
Qstart–end | 0.31 | 0.011 * | 155 | 10.4 * | −64.0 + | −0.032 | −0.069 + | ||||||
(c) Regression with winter precipitation, minimum temperature and area | |||||||||||||
tQstart | 0.17 | 0.086 + | 0.500 | 0.291 | −4.46 * | 0.000 | |||||||
tQend | 0.09 | 0.345 | −0.857 | 0.631 + | −0.039 | 0.000 | |||||||
tQstart–end | 0.04 | 0.704 | −1.47 | 0.075 | 3.31 | 0.001 | |||||||
Q100 | 0.14 | 0.146 | 53.4 * | 10.4 + | −64.3 | 0.027 | |||||||
Qstart | 0.27 | 0.010 * | 5.53 * | 1.30 * | −6.42 | 0.013 * | |||||||
Qend | 0.29 | 0.007 * | 42.4 * | 12.3 * | −52.8 | −0.016 | |||||||
Qstart–end | 0.19 | 0.054 + | 0.383 * | 0.064 * | 0.046 | 0.000 |
Appendix E. Slope Versus Correlated Snowmelt Trends
References
- Viviroli, D.; Kummu, M.; Meybeck, M.; Kallio, M.; Wada, Y. Increasing dependence of lowland populations on mountain water resources. Nat. Sustain. 2020, 3, 917–928. [Google Scholar] [CrossRef]
- Serreze, M.C.; Clark, M.P.; Armstrong, R.L. Characteristics of the western United States snowpack from snowpack telemetry (SNOTEL) data. Water Resour. Res. 1999, 35, 2145–2160. [Google Scholar] [CrossRef]
- Doesken, N.J.; Pielke, R.A.; Bliss, O.A.P. Climate of Colorado; Climatography of the United States No. 60; Colorado Climate Center, Atmospheric Science Department, Colorado State University: Fort Collins, CO, USA, 2003; Available online: https://hdl.handle.net/10217/236290 (accessed on 14 August 2025).
- Ikeda, K.; Rasmussen, R.; Liu, C.; Newman, A.; Chen, F.; Barlage, M.; Gutmann, E.; Dudhia, J.; Dai, A.; Luce, C.; et al. Snowfall and snowpack in the Western U.S. as captured by convection permitting climate simulations: Current climate and pseudo global warming future climate. Clim. Dyn. 2021, 57, 2191–2215. [Google Scholar] [CrossRef]
- Pfohl, A.K.D.; Fassnacht, S.R. Evaluating Methods of Streamflow Timing to Approximate Snowmelt Contribution in High-Elevation Mountain Watersheds. Hydrology 2023, 10, 75. [Google Scholar] [CrossRef]
- Hammond, J.C.; Kampf, S.K. Subannual streamflow responses to rainfall and snowmelt inputs in snow-dominated watersheds of the western United States. Water Resour. Res. 2020, 56, e2019WR026132. [Google Scholar] [CrossRef]
- Cayan, D.R.; Kammerdiener, S.A.; Dettinger, M.D.; Caprio, J.M.; Peterson, D.H. Changes in the onset of spring in the western United States. Bull. Am. Meteorol. Soc. 2001, 82, 399–415. [Google Scholar] [CrossRef]
- Viviroli, D.; Archer, D.R.; Buytaert, W.; Fowler, H.J.; Greenwood, G.B.; Hamlet, A.F.; Huang, Y.; Koboltschnig, G.; Litaor, M.I.; López-Moreno, J.I.; et al. Climate change and mountain water resources: Overview and recommendations for research, management and policy. Hydrol. Earth Syst. Sci. 2011, 15, 471–504. [Google Scholar] [CrossRef]
- Schlaepfer, D.R.; Lauenforth, W.K.; Bradford, J.B. Consequences of declining snow accumulation for water balance of mid-latitude dry regions. Glob. Change Biol. 2012, 18, 1988–1997. [Google Scholar] [CrossRef]
- Barnhart, T.B.; Tague, C.L.; Molotch, N.P. The counteracting effects of snowmelt rate and timing on runoff. Water Resour. Res. 2020, 56, e2019WR026634. [Google Scholar] [CrossRef]
- Burn, D.H.; Whitfield, P.H. Shifting cold regions streamflow regimes in North America affect flood frequency analysis. Hydrol. Sci. J. 2024, 70, 51–70. [Google Scholar] [CrossRef]
- Leung, L.R.; Qian, Y.; Bian, X.; Washington, W.M.; Han, J.; Roads, J.O. Mid-century ensemble regional climate change scenarios for the western United States. Clim. Change 2004, 62, 75–113. [Google Scholar] [CrossRef]
- Stewart, I.T.; Cayan, D.R.; Dettinger, M.D. Changes toward earlier streamflow timing across Western North America. J. Clim. 2005, 18, 1136–1155. [Google Scholar] [CrossRef]
- Stewart, I.T. Changes in snowpack and snowmelt runoff for key mountain regions. Hydrol. Process. 2009, 23, 78–94. [Google Scholar] [CrossRef]
- Clow, D.W. Changes in timing of snowmelt and streamflow in Colorado: A response to recent warming. J. Clim. 2010, 23, 2293–2306. [Google Scholar] [CrossRef]
- Harpold, A.; Brooks, P.; Rajagopal, S.; Heidbuchel, I.; Jardine, A.; Stielstra, C. Changes in snowpack accumulation and ablation in the intermountain west. Water Resour. Res. 2012, 48, W11501. [Google Scholar] [CrossRef]
- Court, A. Measures of Streamflow Timing. J. Geophys. Res. 1962, 67, 4335–4339. [Google Scholar] [CrossRef]
- Johnson, F.A. Comments on paper by Arnold Court, ‘Measures of streamflow timing’. J. Geophys. Res. 1964, 69, 3525–3527. [Google Scholar] [CrossRef]
- Satterlund, D.R.; Eschner, A.R. Land use, snow, and streamflow regimen in central New York. Water Resour. Res. 1965, 1, 397–405. [Google Scholar] [CrossRef]
- Fassnacht, S.R. Upper versus lower Colorado River sub-basin streamflow: Characteristics, runoff estimation, and model simulation. Hydrol. Process. 2006, 20, 2187–2205. [Google Scholar] [CrossRef]
- Stewart, I.T.; Cayan, D.R.; Dettinger, M.D. Changes in snowmelt runoff timing in western North America under a ‘Business as Usual’ climate change scenario. Clim. Change 2024, 62, 217–232. [Google Scholar] [CrossRef]
- Rauscher, S.A.; Pal, J.S.; Diffenbaugh, N.S.; Benedetti, M.M. Future changes in snowmelt-driven runoff timing over the western US. Geophys. Res. Lett. 2008, 35, L16703. [Google Scholar] [CrossRef]
- Dudley, R.W.; Hodgkins, G.A.; McHale, M.R.; Kolian, M.J.; Renard, B. Trends in snowmelt-related streamflow timing in the conterminous United States. J. Hydrol. 2017, 547, 208–221. [Google Scholar] [CrossRef]
- Whitfield, P.H. Is ‘Centre of Volume’ a robust indicator of changes in snowmelt timing? Hydrol. Process. 2013, 27, 2691–2698. [Google Scholar] [CrossRef]
- Al Sawaf, M.B.; Kawanisi, K. Assessment of mountain river streamflow patterns and flood events using information and complexity measures. J. Hydrol. 2020, 590, 125508. [Google Scholar] [CrossRef]
- Gordon, B.L.; Brooks, P.D.; Krogh, S.A.; Boisrame, G.F.S.; Carroll, R.W.H.; McNamara, J.P.; Harpold, A.A. Why does snowmelt-driven streamflow response to warming vary? A data-driven review and predictive framework. Environ. Res. Lett. 2022, 17, 053004. [Google Scholar] [CrossRef]
- Theil, H. A rank-invariant method of linear and polynomial regression analysis. Proc. R. Neth. Acad. Sci. 1950, 53, 386–392. [Google Scholar]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. Am. Stat. Assoc. J. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests Against Trends. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.; Gibbons, J.D. Rank Correlation Methods, 5th ed.; Edward Arnold: London, UK, 1990. [Google Scholar]
- Meromy, L.; Molotch, N.P.; Link, T.E.; Fassnacht, S.R.; Rice, R. Subgrid variability of snow water equivalent at operational snow stations in the western USA. Hydrol. Process. 2013, 27, 2382–2400. [Google Scholar] [CrossRef]
- U.S. Geological Survey. EarthExplorer. U.S. Department of Interior. Available online: https://earthexplorer.usgs.gov/ (accessed on 13 November 2024).
- Wehner, C.E.; Stednick, J.D. Effects of mountain pine beetle-killed forests on source water contributions to streamflow in headwater streams of the Colorado Rocky Mountains. Front. Earth Sci. 2017, 11, 496–504. [Google Scholar] [CrossRef]
- Kampf, S.K.; McGrath, D.; Sears, M.G.; Fassnacht, S.R.; Kiewiet, L.; Hammond, J.C. Increasing wildfire impacts on snowpack in the western US. Proc. Natl. Acad. Sci. USA 2022, 119, e2200333119. [Google Scholar] [CrossRef] [PubMed]
- PRISM Climate Group. PRISM Climate Data. Northwest Alliance for Computational Science & Engineering; Oregon State University, 2024. Available online: https://prism.oregonstate.edu/ (accessed on 13 November 2024).
- Julander, R.P.; Curtis, J.; Beard, A. The SNOTEL temperature dataset. Mt. Views Newsl. 2007, 1, 4–7. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=cdb460f0a71e023a4e9be7ac16e2abbe8679416a#page=8 (accessed on 14 August 2025).
- Oyler, J.W.; Dobrowski, S.Z.; Ballantyne, A.P.; Klene, A.E.; Running, S.W. Artificial amplification of warming trends across the mountains of the western United States. Geophys. Res. Lett. 2015, 42, 153–161. [Google Scholar] [CrossRef]
- Ma, C.; Fassnacht, S.R.; Kampf, S.K. How temperature sensor change affects warming trends and modeling: An evaluation across the state of Colorado. Water Resour. Res. 2019, 55, 9748–9764. [Google Scholar] [CrossRef]
- United States Geological Survey. National Water Information System: Web Interface. United States Department of the Interior USGS Water Data for USA. Available online: http://waterdata.usgs.gov/nwis/ (accessed on 12 November 2024).
- NRCS. Natural Resources Conservation Service. U.S. Department of Agriculture. Available online: https://www.nrcs.usda.gov/ (accessed on 27 November 2024).
- Von Thaden, B.C. Spatial Accumulation Patterns of Snow Water Equivalent in the Southern Rocky Mountains. Master’s Thesis, Colorado State University, Fort Collins, CO, USA, 2016. Available online: http://hdl.handle.net/10217/173515 (accessed on 14 August 2025).
- Whitfield, P.H.; Shook, K.R. Changes to rainfall, snowfall, and runoff events during the autumn–winter transition in the Rocky Mountains of North America. Can. Water Resour. J./Rev. Can. Ressour. Hydr. 2020, 45, 28–42. [Google Scholar] [CrossRef]
- Kilmister, I.F.; Campbell, P.; Dee, M. Till the End—Chapter 9. In Bad Magic; UDR GmbH: Husum, Germany, 2015. [Google Scholar]
- Fassnacht, S.R.; Patterson, G.G.; Venable, N.B.H.; Cherry, M.L.; Pfohl, A.K.D.; Sanow, J.E.; Tedesche, M.E. How Do We Define Climate Change? Considering the Temporal Resolution of Niveo-Meteorological Data. Hydrology 2020, 7, 38. [Google Scholar] [CrossRef]
- Winstral, A.; Elder, K.; Davis, R.E. Spatial Snow Modeling of Wind-Redistributed Snow Using Terrain-Based Parameters. J. Hydrometeorol. 2002, 3, 524–538. [Google Scholar] [CrossRef]
- Meiman, J.R. Snow accumulation related to elevation, aspect, and forest canopy. In Proceedings of the Snow Hydrology Workshop Seminar, Fredericton, NB, Canada, 28–29 February 1968; pp. 35–47. [Google Scholar]
- Reis, W.; McGrath, D.; Elder, K.; Kampf, S.; Rey, D. Quantifying aspect-dependent snowpack response to high-elevation wildfire in the Southern Rocky Mountains. Water Resour. Res. 2024, 60, e2023WR036539. [Google Scholar] [CrossRef]
- López-Moreno, J.I.; Revuelto, J.; Gilaberte, M.; Morán-Tejeda, E.; Pons, M.; Jover, E.; Esteban, P.; García, C.; Pomeroy, J.W. The Effect of Slope Aspect on the Response of Snowpack to Climate Warming in the Pyrenees. Theor. Appl. Clim. 2014, 117, 207–219. [Google Scholar] [CrossRef]
- Daly, S.F.; Davis, R.; Ochs, E.; Pangburn, T. An approach to spatially distributed snow modelling of the Sacramento and San Joaquin basins, California. Hydrol. Process. 2000, 14, 3257–3271. [Google Scholar] [CrossRef]
- Dawson, N.; Broxton, P.; Zeng, X. Evaluation of Remotely Sensed Snow Water Equivalent and Snow Cover Extent over the Contiguous United States. J. Hydrometeor. 2018, 19, 1777–1791. [Google Scholar] [CrossRef]
- Hammond, J.C.; Sexstone, G.A.; Putman, A.L.; Barnhart, T.B.; Rey, D.M.; Driscoll, J.M.; Liston, G.E.; Rasmussen, K.L.; McGrath, D.; Fassnacht, S.R.; et al. High Resolution SnowModel Simulations Reveal Future Elevation-Dependent Snow Loss and Earlier, Flashier Surface Water Input for the Upper Colorado River Basin. Earth’s Future 2023, 11, e2022EF003092. [Google Scholar] [CrossRef]
- Barnhart, T.B.; Putman, A.L.; Heldmyer, A.J.; Rey, D.M.; Hammond, J.C.; Driscoll, J.M.; Sexstone, G.A. Evaluating distributed snow model resolution and meteorology parameterizations against streamflow observations: Finer is not always better. Water Resour. Res. 2024, 60, e2023WR035982. [Google Scholar] [CrossRef]
- Helsel, D.R.; Frans, L.M. Regional Kendall test for trend. Environ. Sci. Technol. 2006, 40, 4066–4070. [Google Scholar] [CrossRef] [PubMed]
- Fassnacht, S.R.; Cherry, M.L.; Venable, N.B.H.; Saavedra, F. Snow and albedo climate change impacts across the United States Northern Great Plains. Cryosphere 2016, 10, 329–339. [Google Scholar] [CrossRef]
- Gómez-Landesa, E.; Rango, A. Operational snowmelt runoff forecasting in the Spanish Pyrenees using the snowmelt runoff model. Hydrol. Process. 2002, 16, 1583–1591. [Google Scholar] [CrossRef]
- Painter, T.H.; Skiles, S.M.; Deems, J.S.; Brandt, W.T.; Dozier, J. Variation in Rising Limb of Colorado River Snowmelt Runoff Hydrograph Controlled by Dust Radiative Forcing in Snow. Geophys. Res. Lett. 2018, 45, 797–808. [Google Scholar] [CrossRef]
- Doskocil, L.G.; Fassnacht, S.R.; Barnard, D.M.; Pfohl, A.K.D.; Derry, J.E.; Sanford, W.E. Twin-Peaks Streamflow Timing: Can We Use Forest and Alpine Snow Melt-Out Response to Estimate? Water 2025, 17, 2017. [Google Scholar] [CrossRef]
- Flynn, H.; Fassnacht, S.R.; MacDonald, M.S.; Pfohl, A.K.D. Baseflow from Snow and Rain in Mountain Watersheds. Water 2024, 16, 1665. [Google Scholar] [CrossRef]
- Eckhardt, K. How to construct recursive digital filters for baseflow separation. Hydrol. Process. 2005, 19, 507–515. [Google Scholar] [CrossRef]
- Taylor, S.; Feng, X.; Williams, M.; McNamara, J. How isotopic fractionation of snowmelt affects hydrograph separation. Hydrol. Process. 2002, 16, 3683–3690. [Google Scholar] [CrossRef]
- Miller, M.P.; Susong, D.D.; Shope, C.L.; Heilweil, V.M.; Stolp, B.J. Continuous estimation of baseflow in snowmelt-dominated streams and rivers in the Upper Colorado River Basin: A chemical hydrograph separation approach. Water Resour. Res. 2014, 50, 6986–6999. [Google Scholar] [CrossRef]
- Bates, C.G.; Henry, A.J. Second Phase of Streamflow Experiment at Wagon Wheel Gap, Colo. Mon. Weather. Rev. 1928, 56, 79–80. [Google Scholar] [CrossRef]
- Wilm, H.G.; Dunford, E.G. Effect of Timber Cutting on Water Available for Stream Streamflow from a Lodgepole Pine Forest; Department of Agriculture: Washington, DC, USA, 1948; Report No. 968. [Google Scholar]
- Pinzon, J.; Tucker, C. A Non-Stationary 1981–2012 AVHRR NDVI3g Time Series. Remote Sens. 2014, 6, 6929–6960. [Google Scholar] [CrossRef]
- Gamon, J.A.; Field, C.B.; Goulden, M.L.; Griffin, K.L.; Hartley, A.E.; Joel, G.; Penuelas, J.; Valentini, R. Relationships Between NDVI, Canopy Structure, and Photosynthesis in Three Californian Vegetation Types. Ecol. Appl. 1995, 5, 28–41. [Google Scholar] [CrossRef]
- Ren, Z.; Zheng, H.; He, X.; Zhang, D.; Yu, X.; Shen, G. Spatial estimation of urban forest structures with Landsat TM data and field measurements. Urban For. Urban Green. 2015, 14, 336–344. [Google Scholar] [CrossRef]
- McGrath, D.; Zeller, L.; Bonnell, R.; Reis, W.; Kampf, S.; Williams, K.; Okal, M.; Olsen-Mikitowicz, A.; Bump, E.; Sears, M.; et al. Declines in peak snow water equivalent and elevated snowmelt rates following the 2020 Cameron Peak wildfire in Northern Colorado. Geophys. Res. Lett. 2023, 50, e2022GL101294. [Google Scholar] [CrossRef]
- OpenET. OPEN ET—Filling the Biggest Data Gap in Water Management. 2025. Available online: https://etdata.org/ (accessed on 27 June 2025).
Variable | R2 | Sign. F | Intercept | NDVI | Winter P | Peak SWE | Melt Temp | Solar Rad. | Elev. | Slope | Area | Lat. | Long. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(a) Regression with all variables/parameters | |||||||||||||
tQstart | 0.16 | 0.86 | 48.6 | 0.183 | 0.177 | −0.007 | −2.86 | −0.001 | 0.002 | −0.138 | 0.000 | 0.014 | 0.503 |
tQend | 0.36 | 0.16 | −32.2 | −3.06 | 0.805 + | −0.007 | 3.40 | −0.015 * | 0.000 | −0.235 + | −0.001 | 0.674 | −0.323 |
tQstart–end | 0.15 | 0.89 | 7.45 | −2.58 | 0.199 | 0.012 | 4.20 | −0.010 | −0.003 | −0.066 | 0.000 | 0.437 | −0.002 |
Q100 | 0.37 | 0.14 | −1870 | −11.3 | 2.51 | 0.532 | −6.94 | −0.060 | 0.016 | −5.38 * | 0.036 | 24.5 | −10.0 |
Qstart | 0.32 | 0.26 | −103 | 5.99 | 0.92 | −0.015 | −3.66 | 0.007 | 0.006 | −0.267 | 0.012 + | −0.513 | −0.908 |
Qend | 0.52 | 0.01 * | −1390 | −28.7 | 7.53 | 0.462 | 10.9 | −0.079 | −0.014 | −3.33 * | −0.010 | 22.5 * | −7.12 |
Qstart–end | 0.46 | 0.03 * | −1170 | −29.9 | 4.19 | 0.462 | 11.0 | −0.068 | −0.020 | −3.32 + | −0.057 | 23.9 + | −4.56 |
(b) Regression with winter precipitation, slope and latitude | |||||||||||||
tQstart | 0.071 | 0.45 | −5.9 | 0.23 | −0.096 | 0.15 | |||||||
tQend | 0.21 | 0.043 * | −0.03 | 0.49 | −0.25 * | 0.086 | |||||||
tQstart–end | 0.21 | 0.80 | 4.23 | 0.006 | −0.13 | −0.046 | |||||||
Q100 | 0.23 | 0.024 * | −632 | 2.64 | −4.17 * | 18.2 | |||||||
Qstart | 0.08 | 0.39 | 53.2 | 1.12 | −0.03 | −1.25 | |||||||
Qend | 0.40 | 0.0004 * | −686 + | 6.24 | −3.25 * | 19.0 * | |||||||
Qstart–end | 0.36 | 0.001 * | −962 * | 3.16 | −3.74 * | 26.1 * | |||||||
(c) Regression with solar radiation, slope and latitude | |||||||||||||
tQstart | 0.06 | 0.55 | −0.001 | −0.11 | 0.44 | ||||||||
tQend | 0.25 | 0.02 * | −0.011 + | −0.27 * | 1.1 | ||||||||
tQstart–end | 0.07 | 0.45 | −0.008 | −0.13 | 0.28 | ||||||||
Q100 | 0.27 | 0.01 * | −0.12 | −4.3 * | 25.9 * | ||||||||
Qstart | 0.006 | 0.97 | −0.001 | −0.09 | 0.22 | ||||||||
Qend | 0.39 | 0.001 * | −0.083 | −3.5 * | 29.6 | ||||||||
Qstart–end | 0.36 | 0.001 * | −0.044 | −3.9 * | 31.5 * | ||||||||
(d) Regression with slope and latitude | |||||||||||||
tQstart | 0.057 | 0.35 | −16.9 | −0.107 | 0.42 | ||||||||
tQend | 0.17 | 0.035 * | −23.7 | −0.271 * | 0.68 | ||||||||
tQstart–end | 0.028 | 0.60 | 3.94 | −0.13 | −0.039 | ||||||||
Q100 | 0.23 | 0.009 * | −758 + | −4.29 * | 21.3 * | ||||||||
Qstart | 0.006 | 0.90 | −4.69 | −0.86 | 0.20 | ||||||||
Qend | 0.37 | 0.0003 * | −984 * | −3.54 * | 26.4 * | ||||||||
Qstart–end | 0.35 | 0.0004 * | −1113 * | −3.89 * | 29.8 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fassnacht, S.R.; Pfohl, A.K.D. Snowmelt Streamflow Trends over Colorado (U.S.A.) Mountain Watersheds. Climate 2025, 13, 177. https://doi.org/10.3390/cli13090177
Fassnacht SR, Pfohl AKD. Snowmelt Streamflow Trends over Colorado (U.S.A.) Mountain Watersheds. Climate. 2025; 13(9):177. https://doi.org/10.3390/cli13090177
Chicago/Turabian StyleFassnacht, Steven R., and Anna K. D. Pfohl. 2025. "Snowmelt Streamflow Trends over Colorado (U.S.A.) Mountain Watersheds" Climate 13, no. 9: 177. https://doi.org/10.3390/cli13090177
APA StyleFassnacht, S. R., & Pfohl, A. K. D. (2025). Snowmelt Streamflow Trends over Colorado (U.S.A.) Mountain Watersheds. Climate, 13(9), 177. https://doi.org/10.3390/cli13090177