Emerging Environmental and Weather Challenges in Outdoor Sports
Abstract
:1. Introduction
1.1. Practicing Sport Activities in a Challenging Environment?
1.2. Climate Change Consequences on Outdoor Sports Practice
2. Environmental-Related Risk Factors
2.1. Heat
Recommendation/Heat Stress
2.2. Ultraviolet (Exposure)
Recommendations/Ultraviolet
2.3. Lightning and Severe Wind
Recommendations/Lightning and Severe Wind
2.4. Air Pollution
Recommendations/Air Pollution
2.5. Cold
Recommendations/Cold-Related Injuries
2.6. Altitude
Recommendations/Altitude
2.7. Snow and Avalanche
Recommendations/Snow and Avalanche
2.8. Exercise-Induced Asthma and Bronchial Hyper-Responsiveness
Recommendations/EIA and BHR
Environmental Challenge | Main Risks | Increasing Risk Factors | Safety Measures |
---|---|---|---|
Heat | Minor symptoms:
|
|
|
UVR |
|
|
|
Lightning |
|
|
|
Air pollution | Minor symptoms :
|
| In addition to heat countermeasures:
|
Cold |
|
|
|
Altitude |
|
|
|
Snow and avalanche |
|
|
|
Exercise-induced asthma and bronchial hyper-responsiveness * |
|
| In addition to heat or cold and air pollution countermeasures:
|
3. Integration of the Human-Environment Interaction
3.1. From Direct Weather Indices to Thermal Stress Modeling
3.2. The Concept of Universal Thermal Climate Index (UTCI)
4. Future Perspectives and Conclusions
Author Contributions
Conflicts of Interest
References
- Warburton, D.E.; Nicol, C.W.; Bredin, S.S. Health benefits of physical activity: The evidence. CMAJ 2006, 174, 801–809. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Health and Development through Physical Activity and Sport; World Health Organization: Geneva, Sweden, 2003. [Google Scholar]
- Antunes, H.K.; Stella, S.G.; Santos, R.F.; Bueno, O.F.; de Mello, M.T. Depression, anxiety and quality of life scores in seniors after an endurance exercise program. Rev. Bras. Psiquiatr. 2005, 27, 266–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nabkasorn, C.; Miyai, N.; Sootmongkol, A.; Junprasert, S.; Yamamoto, H.; Arita, M.; Miyashita, K. Effects of physical exercise on depression, neuroendocrine stress hormones and physiological fitness in adolescent females with depressive symptoms. Eur. J. Public Health 2006, 16, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Department of Health. At least five a week: Evidence on the Impact of Physical Activity and Its Relationship to Health; Department of Health, Physical Activity, Health Improvement and Prevention; Department of Health: London, UK, 2003.
- Keim, S.M.; Guisto, J.A.; Sullivan, J.B., Jr. Environmental thermal stress. Ann. Agric. Environ. Med. 2002, 9, 1–15. [Google Scholar] [PubMed]
- Jendritzky, G.; de Dear, R.; Havenith, G. UTCI—Why another thermal index? Int. J. Biometeorol. 2012, 56, 421–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Havenith, G. Temperature regulation, heat balance and climatic stress. In Extreme Weather Events and Public Health Responses; Kirch, W., Menne, B., Bertollini, R., Eds.; Springer: Heidelberg, Gemany, 2005; pp. 69–80. [Google Scholar]
- Havenith, G. Individualized model of human thermoregulation for the simulation of heat stress response. J. Appl. Physiol. 2001, 90, 1943–1954. [Google Scholar] [PubMed]
- Bergeron, M.F.; Bahr, R.; Bartsch, P.; Bourdon, L.; Calbet, J.A.; Carlsen, K.H.; Castagna, O.; Gonzalez-Alonso, J.; Lundby, C.; Maughan, R.J.; et al. International olympic committee consensus statement on thermoregulatory and altitude challenges for high-level athletes. Br. J. Sports Med. 2012, 46, 770–779. [Google Scholar] [CrossRef] [PubMed]
- Sawka, M.N.; Young, A.J. Physiological systems and their responses to conditions of heat and cold. In American College of Sports Medicine's Advanced Exercise Physiology; Tipton, C.M., Ed.; Lippincott Williams and Wilkins: Philadelphia, PA, USA, 2006; pp. 535–563. [Google Scholar]
- Armstrong, L.E.; Casa, D.J.; Millard-Stafford, M.; Moran, D.S.; Pyne, S.W.; Roberts, W.O. American college of sports medicine position stand. Exertional heat illness during training and competition. Med. Sci. Sports Exerc. 2007, 39, 556–572. [Google Scholar] [CrossRef] [PubMed]
- Mountjoy, M.; Alonso, J.M.; Bergeron, M.F.; Dvorak, J.; Miller, S.; Migliorini, S.; Singh, D.G. Hyperthermic-related challenges in aquatics, athletics, football, tennis and triathlon. Br. J. Sports Med. 2012, 46, 800–804. [Google Scholar] [CrossRef] [PubMed]
- Bartsch, P.; Swenson, E.R. Acute high-altitude illnesses. N. Engl. J. Med. 2013, 369, 1666–1667. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.D.; Gillespie, T.J. Estimating outdoor thermal comfort using a cylindrical radiation thermometer and an energy budget model. Int. J. Biometeorol. 1986, 30, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Ramsey, J.D.; Chai, C.P. Inherent variability in heat-stress decision rules. Ergonomics 1983, 26, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Kenny, N.A.; Warland, J.S.; Brown, R.D.; Gillespie, T.G. Part A: Assessing the performance of the comfa outdoor thermal comfort model on subjects performing physical activity. Int. J. Biometeorol. 2009, 53, 415–428. [Google Scholar] [CrossRef] [PubMed]
- Parsons, K.C. Human Thermal Environments: The Effects of Hot, Moderate and Cold Environments on Human Health, Comfort and Performance, 2nd ed.; Taylor and Francis: New York, NY, USA, 2003. [Google Scholar]
- Epstein, Y.; Moran, D.S. Thermal comfort and the heat stress indices. Ind. Health 2006, 44, 388–398. [Google Scholar] [CrossRef] [PubMed]
- Budd, G.M. Wet-bulb globe temperature (WBGT)—Its history and its limitations. J. Sci. Med. Sport 2008, 11, 20–32. [Google Scholar] [CrossRef] [PubMed]
- Brotherhood, J.R. Heat stress and strain in exercise and sport. J. Sci. Med. Sport 2008, 11, 6–19. [Google Scholar] [CrossRef] [PubMed]
- Castellani, J.W.; Young, A.J.; Ducharme, M.B.; Giesbrecht, G.G.; Glickman, E.; Sallis, R.E. American college of sports medicine position stand: Prevention of cold injuries during exercise. Med. Sci. Sports Exerc. 2006, 38, 2012–2029. [Google Scholar] [PubMed]
- Bos, I.; de Boever, P.; Int Panis, L.; Meeusen, R. Physical activity, air pollution and the brain. Sports Med. 2014, 44, 1505–1518. [Google Scholar] [CrossRef] [PubMed]
- Helenius, I.; Lumme, A.; Haahtela, T. Asthma, airway inflammation and treatment in elite athletes. Sports Med. 2005, 35, 565–574. [Google Scholar] [CrossRef] [PubMed]
- Jinna, S.; Adams, B.B. Ultraviolet radiation and the athlete: Risk, sun safety, and barriers to implementation of protective strategies. Sports Med. 2013, 43, 531–537. [Google Scholar] [CrossRef] [PubMed]
- Shibasaki, M.; Wilson, T.E.; Crandall, C.G. Neural control and mechanisms of eccrine sweating during heat stress and exercise. J. Appl. Physiol. (1985) 2006, 100, 1692–1701. [Google Scholar] [CrossRef] [PubMed]
- Havenith, G.; Holmr, I.; Parsons, K.C. Personal factors in thermal comfort assessment: Clothing properties and metabolic heat production. Energy Build. 2002, 34, 581–591. [Google Scholar] [CrossRef]
- Blazejczyk, K.; Epstein, Y.; Jendritzky, G.; Staiger, H.; Tinz, B. Comparison of UTCI to selected thermal indices. Int. J. Biometeorol. 2012, 56, 515–535. [Google Scholar] [CrossRef] [PubMed]
- Kampmann, B.; Brode, P.; Fiala, D. Physiological responses to temperature and humidity compared to the assessment by UTCI, WGBT and PHS. Int. J. Biometeorol. 2012, 56, 505–513. [Google Scholar] [CrossRef] [PubMed]
- D’Ippoliti, D.; Michelozzi, P.; Marino, C.; de’Donato, F.; Menne, B.; Katsouyanni, K.; Kirchmayer, U.; Analitis, A.; Medina-Ramon, M.; Paldy, A.; et al. The impact of heat waves on mortality in 9 European cities: Results from the EuroHeat project. Environ. Health 2010, 9. [Google Scholar] [CrossRef] [PubMed]
- Zacharias, S.; Koppe, C.; Mücke, H.G. Influence of heat waves on ischemic heart diseases in Germany. Climate 2014, 2, 133–152. [Google Scholar] [CrossRef]
- Gasparrini, A.; Armstrong, B. The impact of heat waves on mortality. Epidemiology 2011, 22, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Roberts, W.O. Exertional heat stroke during a cool weather marathon: A case study. Med. Sci. Sports Exerc. 2006, 38, 1197–1203. [Google Scholar] [CrossRef] [PubMed]
- Roberts, W.O. Exercise-associated collapse in endurance events: A classification system. Physician Sportsmed. 1989, 17, 49–59. [Google Scholar]
- Epstein, Y.; Sohar, E.; Shapiro, Y. Exertional heatstroke: A preventable condition. Isr. J. Med. Sci. 1995, 31, 454–462. [Google Scholar] [PubMed]
- Keren, G.; Epstein, Y.; Magazanik, A. Temporary heat intolerance in a heatstroke patient. Aviat. Space Environ. Med. 1981, 52, 116–117. [Google Scholar] [PubMed]
- Sohar, E.; Michaeli, D.; Waks, U.; Shibolet, S. Heatstroke caused by dehydration and physical effort. Arch. Intern. Med. 1968, 122, 159–161. [Google Scholar] [CrossRef] [PubMed]
- Bouchama, A.; Knochel, J.P. Heat stroke. N. Engl. J. Med. 2002, 346, 1978–1988. [Google Scholar] [CrossRef] [PubMed]
- Leithead, C.S.; Lind, A.R. Heat cramps. In Heat Stress and Heat Disorders; Davis Co.: Philadelphia, PA, USA, 1964; pp. 170–177. [Google Scholar]
- Roberts, W.O. A 12-yr profile of medical injury and illness for the twin cities marathon. Med. Sci. Sports Exerc. 2000, 32, 1549–1555. [Google Scholar] [CrossRef] [PubMed]
- Bergeron, M.F. Heat cramps during tennis: A case report. Int. J. Sport Nutr. 1996, 6, 62–68. [Google Scholar] [PubMed]
- Bergeron, M.F. Heat cramps: Fluid and electrolyte challenges during tennis in the heat. J. Sci. Med. Sport 2003, 6, 19–27. [Google Scholar] [CrossRef]
- Knochel, J.P. Environmental heat illness. An eclectic review. Arch. Intern. Med. 1974, 133, 841–864. [Google Scholar] [CrossRef] [PubMed]
- Hubbard, R.W.; Armstrong, L.E. The heat illness: Biochemical, ultrastructural, and fluid-electrolyte considerations. In Human Performance Physiology and Environment Medicine at Terrestrial Extremes; Pandolf, K.B., Sawka, M.N., Gonzalez, R.R., Eds.; Benchmark Press: Indianapolis, IN, USA, 1988; pp. 305–359. [Google Scholar]
- Knochel, J.P.; Reed, G. Disorders of heat regulation. In Clinical Disorders, Fluid and Electrolyte Metabolism; Kleeman, M.H., Maxwell, C.R., Narin, R.G., Eds.; McGraw-Hill: New York, NY, USA, 1987; pp. 1197–1232. [Google Scholar]
- Shibolet, S.; Lancaster, M.C.; Danon, Y. Heatstroke: A review. Aviat. Space Environ. Med. 1976, 47, 280–301. [Google Scholar] [PubMed]
- Elias, S.R.; Roberts, W.O.; Thorson, D.C. Team sports in hot weather: Guidelines for modifying youth soccer. Physician Sportsmed. 1991, 19, 67–68. [Google Scholar]
- Aarseth, H.P.; Eide, I.; Skeie, B.; Thaulow, E. Heatstroke in endurance exercise. Acta Med. Scand. 1986, 220, 279–283. [Google Scholar] [CrossRef] [PubMed]
- Graber, C.D.; Reinhold, R.B.; Breman, J.G. Fatal heatstroke. JAMA 1971, 216, 1195–1196. [Google Scholar] [CrossRef] [PubMed]
- Hanson, P.G.; Zimmerman, S.W. Exertional heatstroke in novice runners. JAMA 1979, 242, 154–158. [Google Scholar] [CrossRef] [PubMed]
- Sutton, J.R.; Bar-Or, O. Thermal illness in fun running. Am. Heart J. 1980, 100, 778–781. [Google Scholar] [CrossRef]
- Armstrong, L.E.; Maresh, C.M.; Crago, A.E.; Adams, R.; Roberts, W.O. Interpretation of aural temperatures during exercise, hypothermia, and cooling therapy. Med. Exerc. Nutr. Health 1994, 3, 9–16. [Google Scholar]
- Sutton, J.R.; Coleman, M.J.; Millar, A.P.; Lazarus, L.; Russo, P. The medical problems of mass participation in athletic competition. The “City-to-Surf” race. Med. J. Aust. 1972, 2, 127–133. [Google Scholar] [PubMed]
- Armstrong, L.E.; de Luca, J.P.; Hubbard, R.W. Time course of recovery and heat acclimation ability of prior exertional heatstroke patients. Med. Sci. Sports Exerc. 1990, 22, 36–48. [Google Scholar] [CrossRef] [PubMed]
- Epstein, Y. Heat intolerance: Predisposing factor or residual injury? Med. Sci. Sports Exerc. 1990, 22, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Carter, R.; Cheuvront, S.N.; Williams, J.O.; Kolka, M.A.; Stephenson, L.A.; Sawka, M.N.; Amoroso, P.J. Epidemiology of hospitalizations and deaths from heat illness in soldiers. Med. Sci. Sports Exerc. 2005, 37, 1338–1344. [Google Scholar] [CrossRef] [PubMed]
- Kerle, K.K.; Nishimura, K.D. Exertional collapse and sudden death associated with sickle cell trait. Am. Fam. Physician 1996, 54, 237–240. [Google Scholar] [PubMed]
- Holtzhausen, L.M.; Noakes, T.D. Collapsed ultradistance athlete: Proposed mechanisms and an approach to management. Clin. J. Sport Med. 1997, 7, 292–301. [Google Scholar] [CrossRef] [PubMed]
- Midgley, A.W.; McNaughton, L.R.; Wilkinson, M. Is there an optimal training intensity for enhancing the maximal oxygen uptake of distance runners?: Empirical research findings, current opinions, physiological rationale and practical recommendations. Sports Med. 2006, 36, 117–132. [Google Scholar] [CrossRef] [PubMed]
- Ross, M.; Abbiss, C.; Laursen, P.; Martin, D.; Burke, L. Precooling methods and their effects on athletic performance: A systematic review and practical applications. Sports Med. 2013, 43, 207–225. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, S.; Halliwill, J.R.; Sawka, M.N.; Minson, C.T. Heat acclimation improves exercise performance. J. Appl. Physiol. 2010, 109, 1140–1147. [Google Scholar] [CrossRef] [PubMed]
- Sawka, M.N.; Leon, L.R.; Montain, S.J.; Sonna, L.A. Integrated physiological mechanisms of exercise performance, adaptation, and maladaptation to heat stress. Compr. Physiol. 2011, 1, 1883–1928. [Google Scholar] [PubMed]
- Pandolf, K.B.; Burse, R.L.; Goldman, R.F. Role of physical fitness in heat acclimatization, decay and reinduction. Ergonomics 1977, 20, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Shvartz, E.; Shapiro, Y.; Magazanik, A.; Meroz, A.; Birnfeld, H.; Mechtinger, A.; Shibolet, S. Heat acclimation, physical fitness, and responses to exercise in temperate and hot environments. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1977, 43, 678–683. [Google Scholar] [PubMed]
- Armstrong, L.E.; Maresh, C.M. The induction and decay of heat acclimatisation in trained athletes. Sports Med. 1991, 12, 302–312. [Google Scholar] [CrossRef] [PubMed]
- Cotter, J.D.; Thornton, S.N.; Lee, J.K.; Laursen, P.B. Are we being drowned in hydration advice? Thirsty for more? Extrem. Physiol. Med. 2014, 3. [Google Scholar] [CrossRef] [PubMed]
- Adams, B.B. Sports Dermatology; Springer: Berlin, Germany, 2006. [Google Scholar]
- Bikle, D.D. The vitamin D receptor: A tumor suppressor in skin. Adv. Exp. Med. Biol. 2014, 810, 282–302. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.F.; Scolyer, R.A.; Kefford, R.F. Cutaneous melanoma. Lancet 2005, 365, 687–701. [Google Scholar] [CrossRef]
- Moehrle, M. Outdoor sports and skin cancer. Clin. Dermatol. 2008, 26, 12–15. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.J.; Mihm, M.C., Jr. Melanoma. N. Engl. J. Med. 2006, 355, 51–65. [Google Scholar] [CrossRef] [PubMed]
- Curado, M.P.; Edwards, B.; Shin, H.R.; Storm, H.; Heanue, M.; Boyle, P.; Ferlay, J. Cancer Incidence in Five Continents; International Agency for Research on Cancer (IARC) Scientific Publication: Lyon, France, 2007. [Google Scholar]
- Ferlay, J.; Soerjomataram, I.; Ervik, M.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer Incidence and Mortality Worldwide. Available online: http://globocan.iarc.fr (accessed on 2 July 2015).
- Williams, M.L.; Pennella, R. Melanoma, melanocytic nevi, and other melanoma risk factors in children. J. Pediatr. 1994, 124, 833–845. [Google Scholar] [CrossRef]
- Moehrle, M.; Koehle, W.; Dietz, K.; Lischka, G. Reduction of minimal erythema dose by sweating. Photodermatol. Photoimmunol. Photomed. 2000, 16, 260–262. [Google Scholar] [CrossRef] [PubMed]
- Blumthaler, M. Solar UV measurements. In UV-B radiation and ozone depletion. Effects on Humans, Animals, Plants, Microorganisms, and Materials; Tevini, M., Ed.; Lewis: Boca Raton, FL, USA, 1993; pp. 71–94. [Google Scholar]
- Moehrle, M.; Dennenmoser, B.; Garbe, C. Continuous long-term monitoring of UV radiation in professional mountain guides reveals extremely high exposure. Int. J. Cancer 2003, 103, 775–778. [Google Scholar] [CrossRef] [PubMed]
- Chadysiene, R.; Girgzdys, A. Ultraviolet radiation albedo of natural surfaces. J. Environ. Eng. Landsc. Manag. 2008, 16, 83–88. [Google Scholar] [CrossRef]
- Han, A.; Maibach, H.I. Management of acute sunburn. Am. J. Clin. Dermatol. 2004, 5, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Berndt, N.C.; O’Riordan, D.L.; Winkler, E.; McDermott, L.; Spathonis, K.; Owen, N. Social cognitive correlates of young adult sport competitors’ sunscreen use. Health Educ. Behav. 2011, 38, 6–14. [Google Scholar] [CrossRef] [PubMed]
- Moehrle, M. Ultraviolet exposure in the ironman triathlon. Med. Sci. Sports Exerc. 2001, 33, 1385–1386. [Google Scholar] [CrossRef] [PubMed]
- Lawler, S.; Spathonis, K.; Eakin, E.; Gallois, C.; Leslie, E.; Owen, N. Sun exposure and sun protection behaviours among young adult sport competitors. Aust. N. Z. J. Public Health 2007, 31, 230–234. [Google Scholar] [CrossRef] [PubMed]
- Parrott, R.; Duggan, A.; Cremo, J.; Eckles, A.; Jones, K.; Steiner, C. Communicating about youth’s sun exposure risk to soccer coaches and parents: A pilot study in Georgia. Health Educ. Behav. 1999, 26, 385–395. [Google Scholar] [CrossRef] [PubMed]
- Glanz, K.; Geller, A.C.; Shigaki, D.; Maddock, J.E.; Isnec, M.R. A randomized trial of skin cancer prevention in aquatics settings: The pool cool program. Health Psychol. 2002, 21, 579–587. [Google Scholar] [CrossRef] [PubMed]
- Walkosz, B.; Voeks, J.; Andersen, P.; Scott, M.; Buller, D.; Cutter, G.; Dignan, M. Randomized trial on sun safety education at ski and snowboard schools in Western North America. Pediatr. Dermatol. 2007, 24, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Geller, A.C.; Glanz, K.; Shigaki, D.; Isnec, M.R.; Sun, T.; Maddock, J. Impact of skin cancer prevention on outdoor aquatics staff: The pool cool program in Hawaii and Massachusetts. Prev. Med. 2001, 33, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Cooper, M.A.; Marshburn, S. Lightning strike and electric shock survivors, international. NeuroRehabilitation 2005, 20, 43–47. [Google Scholar] [PubMed]
- Pfaff, J. Lightning injuries. In Emergency Medicine; Marx, J., Hocknerger, R., Walls, R., Eds.; WB Saunders: Philiadelphia, PA, USA, 1998; p. 1560. [Google Scholar]
- Lopez, R.E.; Holle, R.L. Diurnal and spatial variability of lightning activity in northeastern Colorado and central Florida during the summer. Mon. Weather Rev. 1986, 114, 1288–1312. [Google Scholar] [CrossRef]
- Watson, A.I.; Lopez, R.E.; Holle, R.L. Diurnal cloud-to-ground lightning patterns in Arizona during the southwest monsoon. Mon. Weather Rev. 1994, 122, 1716–1725. [Google Scholar] [CrossRef]
- DeFranco, M.J.; Baker, C.L., 3rd; DaSilva, J.J.; Piasecki, D.P.; Bach, B.R., Jr. Environmental issues for team physicians. Am. J. Sports Med. 2008, 36, 2226–2237. [Google Scholar] [CrossRef] [PubMed]
- Fish, R. Lightning injuries. In Emergency Medicine: A Comprehensive Study Guide; Tintinalli, J., Kelen, G., Stapczynski, J., Ma, O., Cline, D., Eds.; McGraw-Hill: New York, NY, USA, 2004; pp. 1235–1238. [Google Scholar]
- Cooper, M.A. Lightning injuries: Prognostic signs for death. Ann. Emerg. Med. 1980, 9, 134–138. [Google Scholar] [CrossRef]
- Muehlberger, T.; Vogt, P.M.; Munster, A.M. The long-term consequences of lightning injuries. Burns 2001, 27, 829–833. [Google Scholar] [CrossRef]
- Hendler, N. Overlooked diagnoses in chronic pain: Analysis of survivors of electric shock and lightning strike. J. Occup. Environ. Med. 2005, 47, 796–805. [Google Scholar] [PubMed]
- Maghsoudi, H.; Adyani, Y.; Ahmadian, N. Electrical and lightning injuries. J. Burn Care Res. 2007, 28, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Walsh, K.M. Lightning and severe thunderstorms in event management. Curr. Sports Med. Rep. 2012, 11, 131–134. [Google Scholar] [CrossRef] [PubMed]
- Cooper, M.A.; Andrews, C.J.; Holle, R.L. Lightning injuries. In Wilderness Medicine, 5th ed.; Auerbach, P.S., Ed.; Mosby: St Louis, MO, USA, 2007; pp. 67–108. [Google Scholar]
- Brasseur, G. Implications of climate change for air quality. WMO Bull. 2009, 58, 10–15. [Google Scholar]
- Kaur, S.; Nieuwenhuijsen, M.J.; Colvilea, R.N. Pedestrian exposure to air pollution along a major road in central London, UK. Atmos. Environ. 2005, 39, 7307–7320. [Google Scholar] [CrossRef]
- World Health Organization. Environmental Health Criteria 213: Carbon Monoxide; World Health Organization (WHO): Geneva, Sweden, 1999. [Google Scholar]
- United States Environmental Protection Agency. Air Quality Criteria for Ozone and Related Photochemical Oxidants; United States Environmental Protection Agency (EPA): Chicago, IL, USA, 2005.
- Strak, M.; Boogaard, H.; Meliefste, K.; Oldenwening, M.; Zuurbier, M.; Brunekreef, B.; Hoek, G. Respiratory health effects of ultrafine and fine particle exposure in cyclists. Occup. Environ. Med. 2010, 67, 118–124. [Google Scholar] [CrossRef] [PubMed]
- McCreanor, J.; Cullinan, P.; Nieuwenhuijsen, M.J.; Stewart-Evans, J.; Malliarou, E.; Jarup, L.; Harrington, R.; Svartengren, M.; Han, I.K.; Ohman-Strickland, P.; et al. Respiratory effects of exposure to diesel traffic in persons with asthma. N. Engl. J. Med. 2007, 357, 2348–2358. [Google Scholar] [CrossRef] [PubMed]
- Chimenti, L.; Morici, G.; Paterno, A.; Bonanno, A.; Vultaggio, M.; Bellia, V.; Bonsignore, M.R. Environmental conditions, air pollutants, and airway cells in runners: A longitudinal field study. J. Sports Sci. 2009, 27, 925–935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, A.J. Air pollution and lung cancer: What more do we need to know? Thorax 2003, 58, 1010–1012. [Google Scholar] [CrossRef] [PubMed]
- Lisabeth, L.D.; Escobar, J.D.; Dvonch, J.T.; Sanchez, B.N.; Majersik, J.J.; Brown, D.L.; Smith, M.A.; Morgenstern, L.B. Ambient air pollution and risk for ischemic stroke and transient ischemic attack. Ann. Neurol. 2008, 64, 53–59. [Google Scholar] [CrossRef] [PubMed]
- McConnell, R.; Berhane, K.; Gilliland, F.; London, S.J.; Islam, T.; Gauderman, W.J.; Avol, E.; Margolis, H.G.; Peters, J.M. Asthma in exercising children exposed to ozone: A cohort study. Lancet 2002, 359, 386–391. [Google Scholar] [CrossRef]
- Pope, C.A., 3rd; Muhlestein, J.B.; May, H.T.; Renlund, D.G.; Anderson, J.L.; Horne, B.D. Ischemic heart disease events triggered by short-term exposure to fine particulate air pollution. Circulation 2006, 114, 2443–2448. [Google Scholar] [CrossRef] [PubMed]
- Suwa, T.; Hogg, J.C.; Quinlan, K.B.; Ohgami, A.; Vincent, R.; van Eeden, S.F. Particulate air pollution induces progression of atherosclerosis. J. Am. Coll. Cardiol. 2002, 39, 935–942. [Google Scholar] [CrossRef]
- Ostro, B. Outdoor air pollution: Assessing the environmental burden of disease at national and local levels. In Environmental Burden of Disease Series, No. 5; World Health Organization: Geneva, Sweden, 2004. [Google Scholar]
- Niinimaa, V.; Cole, P.; Mintz, S.; Shephard, R.J. The switching point from nasal to oronasal breathing. Respir. Physiol. 1980, 42, 61–71. [Google Scholar] [CrossRef]
- Daigle, C.C.; Chalupa, D.C.; Gibb, F.R.; Morrow, P.E.; Oberdorster, G.; Utell, M.J.; Frampton, M.W. Ultrafine particle deposition in humans during rest and exercise. Inhal. Toxicol. 2003, 15, 539–552. [Google Scholar] [CrossRef] [PubMed]
- Londahl, J.; Massling, A.; Pagels, J.; Swietlicki, E.; Vaclavik, E.; Loft, S. Size-resolved respiratory-tract deposition of fine and ultrafine hydrophobic and hygroscopic aerosol particles during rest and exercise. Inhal. Toxicol. 2007, 19, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Giles, L.V.; Koehle, M.S. The health effects of exercising in air pollution. Sports Med. 2014, 44, 223–249. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Campos, C.; Lara-Padilla, E.; Bobadilla-Lugo, R.A.; Kross, R.D.; Villanueva, C. Effects of exercise on oxidative stress in rats induced by ozone. Sci. World J. 2012, 2012. [Google Scholar] [CrossRef] [PubMed]
- Vieira, R.P.; Toledo, A.C.; Silva, L.B.; Almeida, F.M.; Damaceno-Rodrigues, N.R.; Caldini, E.G.; Santos, A.B.; Rivero, D.H.; Hizume, D.C.; Lopes, F.D.; et al. Anti-inflammatory effects of aerobic exercise in mice exposed to air pollution. Med. Sci. Sports Exerc. 2012, 44, 1227–1234. [Google Scholar] [PubMed]
- Yu, Y.B.; Liao, Y.W.; Su, K.H.; Chang, T.M.; Shyue, S.K.; Kou, Y.R.; Lee, T.S. Prior exercise training alleviates the lung inflammation induced by subsequent exposure to environmental cigarette smoke. Acta Physiol. (Oxf.) 2012, 205, 532–540. [Google Scholar] [CrossRef] [PubMed]
- De Hartog, J.; Boogaart, H.; Nijland, H.; Hoek, G. Do the health benefits of cycling outweigh the risks? Environ. Health Perspect. 2010, 118, 1109–1116. [Google Scholar] [CrossRef] [PubMed]
- Hamer, M.; Chida, Y. Active commuting and cardiovascular risk: A meta-analytic review. Prev. Med. 2008, 46, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.M.; Ou, C.Q.; Thach, T.Q.; Chau, Y.K.; Chan, K.P.; Ho, S.Y.; Chung, R.Y.; Lam, T.H.; Hedley, A.J. Does regular exercise protect against air pollution-associated mortality? Prev. Med. 2007, 44, 386–392. [Google Scholar] [CrossRef] [PubMed]
- Dong, G.H.; Zhang, P.; Sun, B.; Zhang, L.; Chen, X.; Ma, N.; Yu, F.; Guo, H.; Huang, H.; Lee, Y.L.; et al. Long-term exposure to ambient air pollution and respiratory disease mortality in Shenyang, China: A 12-year population-based retrospective cohort study. Respiration 2012, 84, 360–368. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, E.L. ABC of sports medicine. Temperature and performance. I: Cold. BMJ 1994, 309, 531–534. [Google Scholar] [CrossRef] [PubMed]
- Eurowinter Group. Cold exposure and winter mortality from ischaemic heart disease, cerebrovascular disease, respiratory disease, and all causes in warm and cold regions of Europe. Lancet 1997, 349, 1341–1346. [Google Scholar]
- Keatinge, W. Medical problems of cold weather. The oliver-sharpey lecture 1985. J. R. Coll. Physicians Lond. 1986, 20, 283–287. [Google Scholar] [PubMed]
- Gagge, A.P.; Gonzalez, R.R. Mechanisms of heat exchange: Biophysics and physiology. In Handbook of Physiology: Environmental Physiology; Fregly, M.J., Blatteis, C.M., Eds.; Amercian Physiology Society: Bethesda, MD, USA, 1996; pp. 45–84. [Google Scholar]
- Gonzalez, R.R.; Sawka, M.N. Biophysics of heat transfer and clothing considerations. In Human Performance Physiology and Environmental Medicine at Terrestrial Extremes; Pandolf, K.B., Sawka, M.N., Gonzalez, R.R., Eds.; Benchmark: Indianapolis, IN, USA, 1988; pp. 45–95. [Google Scholar]
- Cappaert, T.A.; Stone, J.A.; Castellani, J.W.; Krause, B.A.; Smith, D.; Stephens, B.A. National athletic trainers’ association position statement: Environmental cold injuries. J. Athl. Train. 2008, 43, 640–658. [Google Scholar] [CrossRef] [PubMed]
- Simmons, G.H.; Barrett-O’Keefe, Z.; Minson, C.T.; Halliwill, J.R. Cutaneous vascular and core temperature responses to sustained cold exposure in hypoxia. Exp. Physiol. 2011, 96, 1062–1071. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.R.; Oakley, E.H.N. Nonfreezing cold injury. In Textbooks of Military Medicine: Medical Aspects of Harsh Environments, Volume 1; Pandolf, K.B., Burr, R.E., Eds.; Office of the Surgeon General, U.S. Army: Falls Church, VA, USA, 2002; pp. 467–490. [Google Scholar]
- Hamlet, M.P. Nonfreezing cold injuries. In Textbook of Wilderness Medicine; Auerbach, P.S., Ed.; Mosby: St Louis, MO, USA, 2001; pp. 129–134. [Google Scholar]
- Sallis, R.; Chassay, C.M. Recognizing and treating common cold-induced injury in outdoor sports. Med. Sci. Sports Exerc. 1999, 31, 1367–1373. [Google Scholar] [CrossRef] [PubMed]
- Danzl, D.F. Accidental hypothermia. In Rosen’s Emergency Medicine; Marx, J.A., Ed.; Mosby: St Louis, MO, USA, 2002; pp. 1979–1996. [Google Scholar]
- Ulrich, A.S.; Rathlev, N.K. Hypothermia and localized cold injuries. Emerg. Med. Clin. North Am. 2004, 22, 281–298. [Google Scholar] [CrossRef] [PubMed]
- Murphy, J.V.; Banwell, P.E.; Roberts, A.H.; McGrouther, D.A. Frostbite: Pathogenesis and treatment. J. Trauma 2000, 48, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Hamlet, M.P. Prevention and treatment of cold injury. Int. J. Circumpolar Health 2000, 59, 108–113. [Google Scholar] [PubMed]
- Hassi, J. Frostbite, a common cold injury: Challenges in treatment and prevention. Int. J. Circumpolar Health 2000, 59, 90–91. [Google Scholar] [PubMed]
- Castellani, J.W.; Young, A.J. Health and performance challenges during sports training and competition in cold weather. Br. J. Sports Med. 2012, 46, 788–791. [Google Scholar] [CrossRef] [PubMed]
- DeGroot, D.W.; Castellani, J.W.; Williams, J.O.; Amoroso, P.J. Epidemiology of U.S. Army cold weather injuries, 1980–1999. Aviat. Space Environ. Med. 2003, 74, 564–570. [Google Scholar] [PubMed]
- Pozos, R.S.; Danzl, D.F. Human physiological responses to cold stress and hypothermia. In Textbooks of Military Medicine: Medical Aspects of Harsh Environments, Volume 1; Pandolf, K.B., Burr, R.E., Eds.; Office of the Surgeon General, U.S. Army: Falls Church, VA, USA, 2002; pp. 351–382. [Google Scholar]
- Glickman-Weiss, E.L.; Nelson, A.G.; Hearon, C.M.; Prisby, R.; Caine, N. Thermal and metabolic responses of women with high fat versus low fat body composition during exposure to 5 and 27 degrees C for 120 min. Aviat. Space Environ. Med. 1999, 70, 284–288. [Google Scholar] [PubMed]
- Hayward, M.G.; Keatinge, W.R. Roles of subcutaneous fat and thermoregulatory reflexes in determining ability to stabilize body temperature in water. J. Physiol. 1981, 320, 229–251. [Google Scholar] [CrossRef] [PubMed]
- McArdle, W.D.; Magel, J.R.; Gergley, T.J.; Spina, R.J.; Toner, M.M. Thermal adjustment to cold-water exposure in resting men and women. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1984, 56, 1565–1571. [Google Scholar] [PubMed]
- Sloan, R.E.; Keatinge, W.R. Cooling rates of young people swimming in cold water. J. Appl. Physiol. 1973, 35, 371–375. [Google Scholar] [PubMed]
- Tikuisis, P.; Jacobs, I.; Moroz, D.; Vallerand, A.L.; Martineau, L. Comparison of thermoregulatory responses between men and women immersed in cold water. J. Appl. Physiol. (1985) 2000, 89, 1403–1411. [Google Scholar]
- Candler, W.H.; Ivey, H. Cold weather injuries among U.S. Soldiers in Alaska: A five-year review. Mil. Med. 1997, 162, 788–791. [Google Scholar] [PubMed]
- Taylor, M.S. Cold weather injuries during peacetime military training. Mil. Med. 1992, 157, 602–604. [Google Scholar] [PubMed]
- Falk, B.; Bar-Or, O.; Smolander, J.; Frost, G. Response to rest and exercise in the cold: Effects of age and aerobic fitness. J. Appl. Physiol. (1985) 1994, 76, 72–78. [Google Scholar]
- Smolander, J. Effect of cold exposure on older humans. Int. J. Sports Med. 2002, 23, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Young, A.J.; Sawka, M.N.; Pandolf, K.B. Physiology of cold exposure. In Nutritional Needs in Cold and in High-Altitude Environments; Marriot, B.M., Carlson, S.J., Eds.; National Academy Press: Washington, DC, USA, 1996; pp. 127–147. [Google Scholar]
- Belding, H.S. Protection against dry cold. In Physiology of Heat Regulation and the Science of Clothing; Newburgh, L.H., Ed.; Saunders, W.B.: Philadelphia, PA, USA, 1949; pp. 351–366. [Google Scholar]
- Froese, G.; Burton, A.C. Heat losses from the human head. J. Appl. Physiol. 1957, 10, 235–241. [Google Scholar] [PubMed]
- Department of the Army. Prevention and Management of Cold-Weather Injuries; Department of the Army: Washington, DC, USA, 2005; p. 508. [Google Scholar]
- Holton, J.R. Introduction to Dynamic Meteorology, 4th ed.; International Geophysics Series; Elsevier Academic Press: San Diego, CA, USA, 2004. [Google Scholar]
- Chapman, R.F.; Levine, B.D. The effects of hypo and hyperbaria on sport performance. In Exercise and Sports Science; Garrett, W.E., Kirkendall, J.T., Eds.; Lippincott, Williams & Wilkins: Philadelphia, PA, USA, 2000; pp. 447–458. [Google Scholar]
- Peronnet, F.; Thibault, G.; Cousineau, D.L. A theoretical analysis of the effect of altitude on running performance. J. Appl. Physiol. (1985) 1991, 70, 399–404. [Google Scholar]
- Mehta, R.D. Aerodynamics of sports balls. Annu. Rev. Fluid Mech. 1985, 17, 151–189. [Google Scholar] [CrossRef]
- Schommer, K.; Menold, E.; Subudhi, A.W.; Bartsch, P. Health risk for athletes at moderate altitude and normobaric hypoxia. Br. J. Sports Med. 2012, 46, 828–832. [Google Scholar] [CrossRef] [PubMed]
- Bartsch, P.; Saltin, B. General introduction to altitude adaptation and mountain sickness. Scand. J. Med. Sci. Sports 2008, 18, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Franklin, Q.J.; Compeggie, M. Splenic syndrome in sickle cell trait: Four case presentations and a review of the literature. Mil. Med. 1999, 164, 230–233. [Google Scholar] [PubMed]
- Tiernan, C.J. Splenic crisis at high altitude in 2 white men with sickle cell trait. Ann. Emerg. Med. 1999, 33, 230–233. [Google Scholar] [CrossRef]
- Schneider, M.; Bernasch, D.; Weymann, J.; Holle, R.; Bartsch, P. Acute mountain sickness: Influence of susceptibility, preexposure, and ascent rate. Med. Sci. Sports Exerc. 2002, 34, 1886–1891. [Google Scholar] [CrossRef] [PubMed]
- Basnyat, B.; Murdoch, D.R. High-altitude illness. Lancet 2003, 361, 1967–1974. [Google Scholar] [CrossRef]
- Hackett, P.H.; Roach, R.C. High-altitude illness. N. Engl. J. Med. 2001, 345, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Millet, G.P.; Roels, B.; Schmitt, L.; Woorons, X.; Richalet, J.P. Combining hypoxic methods for peak performance. Sports Med. 2010, 40, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Millet, G.P.; Faiss, R.; Brocherie, F.; Girard, O. Hypoxic training and team sports: A challenge to traditional methods? Br. J. Sports Med. 2013, 47, i6–i7. [Google Scholar] [CrossRef] [PubMed]
- Fulco, C.S.; Beidleman, B.A.; Muza, S.R. Effectiveness of preacclimatization strategies for high-altitude exposure. Exerc. Sport Sci. Rev. 2013, 41, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Butterfield, G.E. Nutrient requirements at high altitude. Clin. Sports Med. 1999, 18, 607–621. [Google Scholar] [CrossRef]
- Fukui, K.; Fujii, Y.; Ageta, Y.; Asahi, K. Changes in the lower limit of mountain permafrost between 1973 and 2004 in the Khumbu Himal, the Nepal Himalayas. Glob. Planet. Chang. 2007, 55, 251–256. [Google Scholar] [CrossRef]
- Morello, L. Winter Olympics: Downhill forecast. Nature 2014, 506, 21–22. [Google Scholar] [CrossRef] [PubMed]
- Bogle, L.B.; Boyd, J.J.; McLaughlin, K.A. Triaging multiple victims in an avalanche setting: The avalanche survival optimizing rescue triage algorithmic approach. Wilderness Environ. Med. 2010, 21, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Procter, E.; Strapazzon, G.; Dal Cappello, T.; Castlunger, L.; Staffler, H.P.; Brugger, H. Adherence of backcountry winter recreationists to avalanche prevention and safety practices in northern Italy. Scand. J. Med. Sci. Sports 2014, 24, 823–829. [Google Scholar] [CrossRef] [PubMed]
- Brugger, H.; Durrer, B.; Elsensohn, F.; Paal, P.; Strapazzon, G.; Winterberger, E.; Zafren, K.; Boyd, J. Resuscitation of avalanche victims: Evidence-based guidelines of the international commission for mountain emergency medicine (icar medcom): Intended for physicians and other advanced life support personnel. Resuscitation 2013, 84, 539–546. [Google Scholar] [CrossRef] [PubMed]
- Kragh, J.F., Jr.; Walters, T.J.; Baer, D.G.; Fox, C.J.; Wade, C.E.; Salinas, J.; Holcomb, J.B. Survival with emergency tourniquet use to stop bleeding in major limb trauma. Ann. Surg. 2009, 249, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Giesbrecht, G.G. Prehospital treatment of hypothermia. Wilderness Environ. Med. 2001, 12, 24–31. [Google Scholar] [CrossRef]
- Brugger, H.; Etter, H.J.; Zweifel, B.; Mair, P.; Hohlrieder, M.; Ellerton, J.; Elsensohn, F.; Boyd, J.; Sumann, G.; Falk, M. The impact of avalanche rescue devices on survival. Resuscitation 2007, 75, 476–483. [Google Scholar] [CrossRef] [PubMed]
- Haegeli, P.; Falk, M.; Procter, E.; Zweifel, B.; Jarry, F.; Logan, S.; Kronholm, K.; Biskupic, M.; Brugger, H. The effectiveness of avalanche airbags. Resuscitation 2014, 85, 1197–1203. [Google Scholar] [CrossRef] [PubMed]
- Tikkanen, H.; Helenius, I. Asthma in runners. BMJ 1994, 309, 1087. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization; World Meteorological Organization. Atlas of Health and Climate; World Meteorological Organization (WMO): Geneva, 2012. [Google Scholar]
- Carlsen, K.H. Sports in extreme conditions: The impact of exercise in cold temperatures on asthma and bronchial hyper-responsiveness in athletes. Br. J. Sports Med. 2012, 46, 796–799. [Google Scholar] [CrossRef] [PubMed]
- Larsson, K.; Tornling, G.; Gavhed, D.; Muller-Suur, C.; Palmberg, L. Inhalation of cold air increases the number of inflammatory cells in the lungs in healthy subjects. Eur. Respir. J. 1998, 12, 825–830. [Google Scholar] [CrossRef] [PubMed]
- Larsson, K.; Ohlsen, P.; Larsson, L.; Malmberg, P.; Rydstrom, P.O.; Ulriksen, H. High prevalence of asthma in cross country skiers. BMJ 1993, 307, 1326–1329. [Google Scholar] [CrossRef] [PubMed]
- Fitch, K.D. An overview of asthma and airway hyper-responsiveness in Olympic athletes. Br. J. Sports Med. 2012, 46, 413–416. [Google Scholar] [CrossRef] [PubMed]
- Wilber, R.L.; Rundell, K.W.; Szmedra, L.; Jenkinson, D.M.; Im, J.; Drake, S.D. Incidence of exercise-induced bronchospasm in Olympic winter sport athletes. Med. Sci. Sports Exerc. 2000, 32, 732–737. [Google Scholar] [CrossRef] [PubMed]
- Helenius, I.J.; Rytila, P.; Metso, T.; Haahtela, T.; Venge, P.; Tikkanen, H.O. Respiratory symptoms, bronchial responsiveness, and cellular characteristics of induced sputum in elite swimmers. Allergy 1998, 53, 346–352. [Google Scholar] [CrossRef] [PubMed]
- Helenius, I.; Rytila, P.; Sarna, S.; Lumme, A.; Helenius, M.; Remes, V.; Haahtela, T. Effect of continuing or finishing high-level sports on airway inflammation, bronchial hyperresponsiveness, and asthma: A 5-year prospective follow-up study of 42 highly trained swimmers. J. Allergy Clin. Immunol. 2002, 109, 962–968. [Google Scholar] [CrossRef] [PubMed]
- Mannix, E.T.; Farber, M.O.; Palange, P.; Galassetti, P.; Manfredi, F. Exercise-induced asthma in figure skaters. Chest 1996, 109, 312–315. [Google Scholar] [CrossRef] [PubMed]
- Provost-Craig, M.A.; Arbour, K.S.; Sestili, D.C.; Chabalko, J.J.; Ekinci, E. The incidence of exercise-induced bronchospasm in competitive figure skaters. J. Asthma 1996, 33, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Lumme, A.; Haahtela, T.; Ounap, J.; Rytila, P.; Obase, Y.; Helenius, M.; Remes, V.; Helenius, I. Airway inflammation, bronchial hyperresponsiveness and asthma in elite ice hockey players. Eur. Respir. J. 2003, 22, 113–117. [Google Scholar] [CrossRef] [PubMed]
- Helenius, I.J.; Tikkanen, H.O.; Haahtela, T. Association between type of training and risk of asthma in elite athletes. Thorax 1997, 52, 157–160. [Google Scholar] [CrossRef] [PubMed]
- Koh, Y.I.; Choi, I.S. Seasonal difference in the occurrence of exercise-induced bronchospasm in asthmatics: Dependence on humidity. Respiration 2002, 69, 38–45. [Google Scholar] [CrossRef] [PubMed]
- McFadden, E.R., Jr.; Ingram, R.H., Jr. Exercise-induced asthma: Observations on the initiating stimulus. N. Engl. J. Med. 1979, 301, 763–769. [Google Scholar] [PubMed]
- Anderson, S.D.; Daviskas, E. The airway microvasculature and exercise induced asthma. Thorax 1992, 47, 748–752. [Google Scholar] [CrossRef] [PubMed]
- Strauss, R.H.; McFadden, E.R., Jr.; Ingram, R.H., Jr.; Jaeger, J.J. Enhancement of exercise-induced asthma by cold air. N. Engl. J. Med. 1977, 297, 743–747. [Google Scholar] [CrossRef] [PubMed]
- Katelaris, C.H.; Carrozzi, F.M.; Burke, T.V.; Byth, K. A springtime Olympics demands special consideration for allergic athletes. J. Allergy Clin. Immunol. 2000, 106, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Taudorf, E.; Moseholm, L. Pollen count, symptom and medicine score in birch pollinosis. A mathematical approach. Int. Arch. Allergy Appl. Immunol. 1988, 86, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Fanger, P.O. Thermal Comfort. Analysis and Application in Environment Engineering; Danish Technical Press: Copenhagen, Denmark, 1970. [Google Scholar]
- Landsberg, H.E. The Assessment of Human Bioclimate, a Limited Review of Physical Parameters; World Meteorological Organization, Technical Note No. 123, WMO-No. 331; World Meteorological Organization: Geneva, Sweden, 1972. [Google Scholar]
- Driscoll, D.M. Thermal comfort indexes. Current uses and abuses. Nat. Weather Digest 1992, 17, 33–38. [Google Scholar]
- Hot Environments; Estimation of the Heat Stress on Working Man, Based on the Wbgt-Index (Wet Bulb Globe Temperature); ISO 7243; International Organisation for Standardisation: Geneva, Sweden, 1989.
- Yaglou, C.P.; Minard, D. Control of heat casualties at military training centers. AMA Arch. Ind. Health 1957, 16, 302–316. [Google Scholar] [PubMed]
- American College of Sports Medicine. Prevention of Thermal Injuries during Distance Running—Position Stand. Med. Sci. Sports Exerc. 1984, 16, ix–xiv. [Google Scholar]
- International Organisation for Standardisation. Ergonomics of the Thermal Environment—Determination and Interpretation of Cold Stress When Using Required Clothing Insulation (IREQ) and Local Cooling Effects; ISO 11079; International Organisation for Standardisation: Geneva, Sweden, 2007. [Google Scholar]
- Bahr, R.; Reeser, J.C. New guidelines are needed to manage heat stress in elite sports—The federation internationale de volleyball (FIVB) heat stress monitoring programme. Br. J. Sports Med. 2012, 46, 805–809. [Google Scholar] [CrossRef] [PubMed]
- Thorsson, S.; Honjo, T.; Lindberg, F.; Eliasson, I.; Lim, E.M. Thermal comfort and outdoor activity in Japanese urban public places. Environ. Behav. 2007, 39, 660–684. [Google Scholar] [CrossRef]
- Büttner, K. Physikalische Bioklimatologie. Probleme Und Methoden; Akademische Verlagsgesellschaft: Leipzig, Germany, 1938. [Google Scholar]
- Brocherie, F.; Girard, O.; Pezzoli, A.; Millet, G.P. Outdoor exercise performance in ambient heat: Time to overcome challenging factors? Int. J. Hyperth. 2014, 30, 547–549. [Google Scholar] [CrossRef] [PubMed]
- Weihs, P.; Staiger, H.; Tinz, B.; Batchvarova, E.; Rieder, H.; Vuilleumier, L.; Maturilli, M.; Jendritzky, G. The uncertainty of UTCI due to uncertainties in the determination of radiation fluxes derived from measured and observed meteorological data. Int. J. Biometeorol. 2012, 56, 537–555. [Google Scholar] [CrossRef] [PubMed]
- Fanger, P.O. Thermal Comfort; McGraw-Hill: New York, NY, USA, 1972. [Google Scholar]
- Ergonomics of the Thermal Environment—Analytical Determination and Interpretation of Heat Stress Using Calculation of the Predicted Heat Strain; ISO 7933; International Organisation for Standardisation: Geneva, Sweden, 2004.
- Jendritsky, G. Bioklimatische bewertungsgrundlage der räume am beispiel von mesoskaligen bioklimakarten. In Methode. zur Raumbezogenen Bewertung der Thermischen Komponente im Bioklima des Menschen (Fortgeschriebenes Klima-Michel-Modell); Jendritsky, G., Schirmer, H., Menz, G., Schmidt-Kessen, W., Eds.; Beiträge: Hannover, Germany, 1990; pp. 7–69. [Google Scholar]
- Jendritsky, G.; de Dear, R. Adaptation and thermal environmen. In Biometeorology for Adaptation to Climate Variability and Change. Biometeorology 1; Ebi, K.L., Burton, I., McGregor, G.R., Eds.; Springer: Berlin, Germany, 2009; pp. 9–32. [Google Scholar]
- Jendritsky, G.; Maarouf, A.; Fiala, D.; Staiger, H. An update on the development of a universal thermal climate index. In Proceedings of the 15th Conference on Biometeorology/Aerobiology and 16th International Congress of Biometeorology, Kansas City, MO, USA, 27 October–1 November 2002.
- Richards, M.; Havenith, G. Progress towards the final utci model. In Proceedings of the 12th International Conference on Environmental Ergonomics, Biomed, Ljubljana, Slovenia, 19–24 August 2007.
- Havenith, G.; Fiala, D.; Blazejczyk, K.; Richards, M.; Brode, P.; Holmer, I.; Rintamaki, H.; Benshabat, Y.; Jendritzky, G. The UTCI-clothing model. Int. J. Biometeorol. 2012, 56, 461–470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiala, D.; Lomas, K.J.; Stohrer, M. Dynamic simulation of human heat transfer and thermal comfort. In Proceedings of the 12th International Conference on Environment Ergonomics, Piran, Slovenia, 19–24 August 2007.
- Psikuta, A.; Richards, M.; Fiala, D. Single-sector thermophysiological human simulator. Physiol. Meas. 2008, 29, 181–192. [Google Scholar] [CrossRef] [PubMed]
- Jendritzky, G.; Havenith, G.; Weihs, P.; Batchvarova, E.; de Dear, R. The universal thermal climate index UTCI—Goal and state of cost action 730 and ISB commission 6. In Proceedings of the 18th International Congress Biometeorology ICB, Tokyo, Japan, 22–26 September 2008.
- Mateeva, Z.; Enache, L.; Mateeva, N. Bioclimatic effects on man and their assessment for the purposes of recreation and tourism. J. Int. Sci. Publ. Ecol. Saf. 2009. ISSN 1313–2563. [Google Scholar]
- Shitzer, A.; Tikuisis, P. Advances, shortcomings, and recommendations for wind chill estimation. Int. J. Biometeorol. 2012, 56, 495–503. [Google Scholar] [CrossRef] [PubMed]
- Brode, P.; Fiala, D.; Blazejczyk, K.; Holmer, I.; Jendritzky, G.; Kampmann, B.; Tinz, B.; Havenith, G. Deriving the operational procedure for the universal thermal climate index (UTCI). Int. J. Biometeorol. 2012, 56, 481–494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Psikuta, A.; Fiala, D.; Laschewski, G.; Jendritzky, G.; Richards, M.; Blazejczyk, K.; Mekjavic, I.; Rintamaki, H.; de Dear, R.; Havenith, G. Validation of the fiala multi-node thermophysiological model for UTCI application. Int. J. Biometeorol. 2012, 56, 443–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shitzer, A.; de Dear, R. Inconsistencies in the “new” wind chill chart at low wind speeds. J. Appl. Meteorol. Climatol. 2006, 45, 787–790. [Google Scholar] [CrossRef]
- Tikuisis, P.; Osczevski, R.J. Dynamic model of facial cooling. J. Appl. Meteorol. 2002, 41, 1241–1246. [Google Scholar] [CrossRef]
- Tikuisis, P.; Osczevski, R.J. Facial cooling during cold air exposure. BAMS 2003, 84, 927–934. [Google Scholar] [CrossRef]
- World Meteorological Organization, United Nations Environment Programme. Integrated Assessment of Black Carbon and Tropospheric Ozone: Summary for Decision Makers; UNON/Publishing Services Section: Nairobi, Kenya, 2011. [Google Scholar]
- World Health Organization. Global Solar UV Index: A Practical Guide; A Joint Recommendation of World Health Organization, World Meteorological Organization, United Nations Environment Programme and the International Commission on Non-Ionizing Radiation Protection World Health Organization (WHO): Geneva, Sweden, 2002. [Google Scholar]
- Maw, G.J.; Boutcher, S.H.; Taylor, N.A. Ratings of perceived exertion and affect in hot and cool environments. Eur. J. Appl. Physiol. Occup. Physiol. 1993, 67, 174–179. [Google Scholar] [CrossRef] [PubMed]
- Huizenga, C.; Hui, Z.; Arens, E. A model of human physiology and comfort for assessing complex thermal environments. Build. Environ. 2001, 36, 691–699. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brocherie, F.; Girard, O.; Millet, G.P. Emerging Environmental and Weather Challenges in Outdoor Sports. Climate 2015, 3, 492-521. https://doi.org/10.3390/cli3030492
Brocherie F, Girard O, Millet GP. Emerging Environmental and Weather Challenges in Outdoor Sports. Climate. 2015; 3(3):492-521. https://doi.org/10.3390/cli3030492
Chicago/Turabian StyleBrocherie, Franck, Olivier Girard, and Grégoire P. Millet. 2015. "Emerging Environmental and Weather Challenges in Outdoor Sports" Climate 3, no. 3: 492-521. https://doi.org/10.3390/cli3030492
APA StyleBrocherie, F., Girard, O., & Millet, G. P. (2015). Emerging Environmental and Weather Challenges in Outdoor Sports. Climate, 3(3), 492-521. https://doi.org/10.3390/cli3030492