Decadal Patterns of Westerly Winds, Temperatures, Ocean Gyre Circulations and Fish Abundance: A Review
Abstract
:Preface
1. The Decadal Oscillation
2. Objective: To Reveal The Connections Between The Decadal Oscillation of Atmospheric Wind Patterns and Ocean GRYRE Circulation
3. Causes for the Global Oscillation
4. Oscillations in Gyre Circulation and Upwelling
Wind Speed-2 Degrees Latitude by 2 Degrees Longitude * | ||||||
---|---|---|---|---|---|---|
Upwelling | Slope | Mean | SD | Tendency | Temperature1 | Chlorophyll1 |
Location2 | ms−1y−1 | ms−1 | ms−1 | °C | gm−3 | |
Oyashio | −0.072 | 8.61 | 4.08 | slowing | n.d. | n.d. |
California | 0.026 | 8.06 | 3.97 | increasing | cooling | increasing |
Humboldt | 0.037 | 6.71 | 2.06 | increasing | cooling | increasing |
Canary | −0.012 | 6.49 | 2.45 | slowing | warming | decreasing |
Benguela | −0.002 | 5.94 | 3.00 | slowing | warming | decreasing |
Subarea | UL_LON | UL_LAT | UR_LON | UR_LAT | LL_LON | LL_LAT | LR_LON | LR_LAT |
---|---|---|---|---|---|---|---|---|
California Current | 128.80 | 47.94 | −119.22 | 47.94 | −128.80 | 32.39 | −119.22 | 32.39 |
Humboldt Curent | −82.66 | −4.35 | −70.00 | −4.35 | −82.66 | −33.09 | −70.00 | −33.09 |
Iberian Canary Current | −20.52 | 44.96 | −1.54 | 44.96 | -20.52 | 11.73 | −1.54 | 11.73 |
Benguela Current | 8.04 | −14.11 | 17.09 | -14.11 | 8.04 | −29.75 | 17.09 | −29.75 |
5. Alternations in Fish Populations
6. The Future: Anthropogenic Climate Change
7. Summary
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hurrell, J.W.; Dickson, R.R. Climate variability over the North Atlantic. In Marine Ecosystems and Climate Variation: The North Atlantic: A Comparative Perspective; Stenseth, N.C., Ottersen, G., Hurrell, J.W., Belgrano, A., Eds.; Oxford University Press: New York, NY, 2004; pp. 15–32. [Google Scholar]
- Woollings, T.; Hoskins, B.; Blackburn, M.; Berrisford, P. A new rossby wave—Breaking interpretation of the North Atlantic Oscillation. J. Atmos. Sci. 2008, 65, 609–626. [Google Scholar] [CrossRef]
- Mann, K.; Lazier, J.R.N. Variability in ocean circulation: Its biological consequences. In Dynamics of Marine Ecosystems: Biological-Physical Interactions in the Oceans, 3rd ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2006; pp. 337–389. [Google Scholar]
- Klyashtorin, L.B. Climate Change and Long-Term Fluctuations of Commercial Catches—The Possibility of Forecasting; FAO Fisheries: Rome, Italy, 2001. [Google Scholar]
- Beamish, R.J.; Noakes, D.J.; McFarlane, G.A.; Klyashtorin, L.; Ivanov, V.V.; Kurashov, V. The regime concept and natural trends in the production of Pacific salmon. Can. J. Fish. Aquat. Sci. 1999, 56, 516–526. [Google Scholar] [CrossRef]
- Deser, C.; Phillips, A.S.; Hurrell, J.W. Pacific interdecadal climate variability: Linkages between the tropics and the North Pacific during boreal winter since 1900. J. Climate 2004, 17, 3109–3124. [Google Scholar] [CrossRef]
- Mantua, N.J.; Hare, S.R.; Zhang, Y.; Wallace, J.M.; Francis, R.C. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc. 1997, 78, 1069–1079. [Google Scholar] [CrossRef]
- Mann, M.E.; Zhang, Z.; Rutherford, S.; Bradley, R.S.; Hughes, M.K.; Shindell, D.; Ammann, C.; Faluvegi, G.; Ni, F. Global signatures and dynamical origins of the little ice age and the medieval climate anomaly. Science 2009, 326, 1256–1260. [Google Scholar] [CrossRef] [PubMed]
- Marshall, J.; Kushnir, Y.; Battisti, D.; Chang, P.; Czaja, A.; Dickson, R.; Hurrell, J.; McCartney, M.; Saravanan, R.; Visbeck, M. North Atlantic climate variability: Phenomena, impacts and mechanisms. Int. J. Climatol. 2001, 21, 1863–1898. [Google Scholar] [CrossRef] [Green Version]
- Climate and Global Dynamics Division of the National Center for Atmospheric Research. Available online: http://www.cgd.ucar.edu/cas/jhurrell/indices.html (accessed on 5 October 2015).
- Cushing, D.H. Climate and Fisheries; Academic Press: New York, NY, USA, 1982; p. 373. [Google Scholar]
- National Aeronautics and Space Administration. Datasets and Imagines. Available online: http://data.giss.nasa.gov/ (accessed on 5 August 2015).
- AMO (Atlantic Multidecadal Oscillation) Index. Available online: http://www.esri.noaa.gov/psd/data/timeseries/AMO/index.html (accessed on 5 October 2015).
- Yoder, J.A.; Doney, S.C.; Siegel, D.A.; Wilson, C. Study of marine ecosystems and biogeochemistry now and in the future: Examples of unique contributions from space. Oceanography 2010, 23, 104–117. [Google Scholar] [CrossRef]
- Thompson, D.W.J.; Lee, S.; Baldwin, M.P. Atmospheric processes governing the Northern Hemisphere Annular Mode/North Atlantic Oscillation. In The North Atlantic Oscillation—Climatic Significance and Environmental Impact; Hurrell, J.W., Kushnir, Y., Ottersen, G., Visbeck, M., Eds.; American Geophysical Union: Washington, DC, USA, 2003; pp. 81–112. [Google Scholar]
- Hall, A.; Visbeck, M. Synchronous variability in the southern hemisphere atmosphere, sea ice, and ocean resulting from the annular mode. J. Climate 2002, 15, 3043–3057. [Google Scholar] [CrossRef]
- Dickson, R.R.; Hurrell, J.; Bindoff, N.; Wong, A.; Arbic, B.; Owens, W.B.; Imawaki, S.; Yashayaev, I. The world during WOCE. In Ocean Circulation and Climate—Observing and Modeling the Global Ocean; Siedler, G., Church, J., Gould, J., Eds.; Academic Press: New York, NY, USA, 2001; pp. 557–583. [Google Scholar]
- Francis, J.A.; Vavrus, S.J. Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Wallace, J.M.; Held, I.M.; Thompson, D.W.J.; Trenberth, K.E.; Walsh, J.E. Global warming and winter weather. Science 2014, 343, 729–730. [Google Scholar] [CrossRef] [PubMed]
- Scaife, A.A.; Knight, J.R.; Vallis, G.K.; Folland, C.K. A stratospheric influence on the winter NAO and North Atlantic surface climate. Geophys. Res. lett. 2005. [Google Scholar] [CrossRef]
- Minobe, S.; Kuwano-Yoshida, A.; Komori, N.; Xie, S.; Small, R.J. Influence of the Gulf Stream on the troposphere. Nature Lett. 2008, 452, 206–209. [Google Scholar] [CrossRef] [PubMed]
- Schimanke, S.; Korper, J.; Spangehl, T.; Cubasch, U. Multidecadal variability of sudden stratospheric warmings in the AOGCM. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Omrani, N.; Keenlyside, N.; Bader, J.; Manzini, E. Stratosphere key for wintertime atmospheric response to warm Atlantic decadal conditions. Climate Dyn. 2014, 42, 649–663. [Google Scholar] [CrossRef]
- Thompson, D.W.J.; Lorenz, D.J. The signature of the annular modes in the tropical troposphere. J. Climate 2004, 17, 4330–4324. [Google Scholar] [CrossRef]
- Fogt, R.L.; Perlwitz, J.; Monaghan, A.J.; Bromwich, D.H.; Jones, J.M.; Marshall, G.J. Historical SAM variability. Part II: Twentieth-century variability and trends from reconstructions, observations, and IPCC AR4 models. J. Climate 2009, 22, 5346–5365. [Google Scholar] [CrossRef]
- Yuan, X.; Yonekura, E. Decadal variability in the southern hemisphere. J. Geophys. Res. 2011, 116. [Google Scholar] [CrossRef]
- Vangenheim, G. The long-term temperature and ice break-up forecasting. Proc. State Hydrol. Inst. Issue 1940, 10, 207–236. (In Russian) [Google Scholar]
- Kravtsov, S.; Wyatt, M.G.; Curry, J.A.; Tsonis, A.A. Two contrasting views of multidecadal climate variability in the twentieth century. Geophys. Res. Lett. 2014, 41, 6881–6888. [Google Scholar] [CrossRef]
- Girs, A.A. Multiyear Oscillations of Atmospheric Circulation and Long-term Meteorological Forecasts; Gidrometeroizdat: Moskva, Russia, 1971; p. 480. (In Russian) [Google Scholar]
- Overland, J.E.; Alheit, J.; Bakun, A.; Hurrell, J.W.; Mackas, D.L.; Miller, A.J. Climate controls on marine ecosystems and fish populations. J. Mar. Syst. 2010, 79, 305–315. [Google Scholar] [CrossRef]
- Hurrell, J. North Atlantic oscillation. In Climate and Oceans—A Derivative of the Encyclopedia of Ocean Sciences, 2nd ed.; Steele, J., Thorpe, S., Turekian, K., Eds.; Elsevier: New York, NY, USA, 2010; pp. 33–40. [Google Scholar]
- Knight, J.R.; Folland, C.K.; Scarife, A.A. Climate impacts of the Atlantic Multidecadal Oscillation. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Mann, M.E. The Hockey Stick and the Climate Wars: Dispatches from the Front Lines; Columbia University Press: New York, NY, USA, 2012. [Google Scholar]
- Nye, J.A.; Baker, M.R.; Bell, R.; Kenny, A.; Kilbourne, K.H.; Friedland, K.D.; Martino, E.; Strachura, M.M.; Van Houtan, K.S.; Wood, R. Ecosystem effects of the Atlantic Multidecadal Oscillation. J. Mar. Syst. 2013, 133, 103–116. [Google Scholar] [CrossRef]
- Chen, X.; Tung, K.-K. Varying planetary heat sink led to global-warming slowdown and acceleration. Science 2014, 345, 897–903. [Google Scholar] [CrossRef] [PubMed]
- Broeker, W. The Great Ocean Conveyor: Discovering the Trigger for Abrupt Climate Change; Princeton University Press: Princeton, NJ, USA, 2010. [Google Scholar]
- Manabe, S.; Stouffer, R.J. Two stable equilibria of a coupled ocean-atmosphere model. J. Climate 1988, 1, 841–866. [Google Scholar] [CrossRef]
- Lozier, M.S. Deconstructing the conveyor belt. Science 2012, 328, 1507–1511. [Google Scholar] [CrossRef] [PubMed]
- Srokosz, M.A.; Bryden, H.L. Observing the Atlantic meridional overturning circulation yields a decade of inevitable surprises. Science 2015, 348. [Google Scholar] [CrossRef] [PubMed]
- Seidov, D.; Haupt, B.J.; Barron, E.J.; Maslin, M. Ocean bi-polar seesaw and climate: Southern versus northern meltwater impacts. In The Oceans and Rapid Climate Change: Past Present and Future; Seidov, D., Haupt, B.J., Maslin, M., Eds.; AGU: Washington, DC, USA, 2001; pp. 169–197. [Google Scholar]
- Rahmstorf, S. Ocean circulation and climate during the past 120,000 years. Nature 2002, 419, 207–214. [Google Scholar] [CrossRef]
- Kilbourne, K.H.; Quinn, T.M.; Guilderson, T.P.; Webb, R.S.; Taylor, F.W. Decadal- to interannual-scale source water variations in the Caribbean Sea recorded by Puerto Rican coral radiocarbon. Climate Dyn. 2007, 29, 51–62. [Google Scholar] [CrossRef]
- Garzoli, S.; Matano, R. The South Atlantic and the Atlantic meridional overturning circulation. Deep Sea Res. Part II Top.Stud. Oceanogr. 2011, 1158, 1837–1847. [Google Scholar] [CrossRef]
- Broecker, W.S.; Sutherland, S.; Peng, T. A possible 20th century slowdown of southern ocean deep water formation. Science 1999, 286, 1132–1135. [Google Scholar] [CrossRef] [PubMed]
- Ganachaud, A.; Wunsch, C. Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Lett. Nature 2000, 408, 453–457. [Google Scholar] [CrossRef] [PubMed]
- Hayes, C.T.; Marinez-Garcia, A.; Hasenfratz, A.P.; Jaccard, S.L.; Hodell, D.A.; Sigman, D.M.; Haug, G.H.; Anderson, R.F. A stagnation event in the deep South Atlantic during the last interglacial period. Science 2014, 346, 1514–1516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wyatt, M.G.; Curry, J.A. Role for Eurasian Arctic shelf sea ice in a secularly varying hemispheric climate signal during the 20th century. Climate Dyn. 2014, 42, 2763–2782. [Google Scholar] [CrossRef]
- Chavez, F.P.; Ryan, J.; Lluch-Cota, S.E.; Niquen, M. From anchovies to sardines and back: Multidecadal change in the Pacific Ocean. Science 2003, 299, 217–221. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.-P.; Carton, J.A. Tropical Atlantic variability: Patterns, mechanisms, and Impacts. In Earth Climate: The Ocean-Atmosphere Interaction Geophysical Monograph; Wang, C., Xie, S.P., Carton, J.A., Eds.; AGU: Washington, DC, USA, 2004; pp. 121–142. [Google Scholar]
- Curry, R.G.; McCartney, M.S. Ocean gyre circulation changes associated with the North Atlantic Oscillation. J. Phys. Oceanogr. 2001, 31, 3374–3400. [Google Scholar] [CrossRef]
- Yashayaev, I.; Dickson, B. Transformation and fate of overflows in the Northern North Atlantic. In Arctic-Subarctic Ocean Fluxes; Dickson, R.R., Meincke, J., Rhines, P., Eds.; Springer: Dordrecht, The Netherlands, 2008; pp. 505–526. [Google Scholar]
- Oviatt, C. The changing ecology of temperate coastal waters during a warming trend. Estuaries 2004, 27, 895–904. [Google Scholar] [CrossRef]
- Visbeck, M.; Chassignet, E.; Curry, R.; Delworth, T.; Dickson, R.; Krahmann, G. The ocean’s response to North Atlantic Oscillation variability. In The North Atlantic Oscillation: Climatic Significance and Environmental Impact; Hurrell, J.W., Kushnir, Y., Ottersen, G., Visbeck, M., Eds.; American Geophysical Union: Washington, DC, USA, 2003; pp. 113–145. [Google Scholar]
- Hakkinen, S.; Hatun, H.; Rhines, P. Satellite evidence of change in the northern gyre. In Arctic-Subarctic Ocean Fluxes Defining the Role of the Northern Seas in Climate; Dickson, R., Meincke, J., Rhines, P., Eds.; Springer: Dordrecht, The Netherlands, 2008; pp. 551–567. [Google Scholar]
- Häkkinen, S.; Rhines, P.B.; Worthen, D.L. Atmospheric blocking and Atlantic multidecadal ocean variability. Science 2011, 334, 655–659. [Google Scholar] [CrossRef] [PubMed]
- Venegas, S.; Mysak, L.; Straub, D. Evidence for interannual and interdecadal climate variability in the South Atlantic. Geophys. Res. Lett. 1996, 23, 2673–2676. [Google Scholar] [CrossRef]
- Emeis, K.-C.; Struck, U.; Leipe, T.; Ferdelman, T.G. Variability in upwelling intensity and nutrient regime in the coastal upwelling system offshore Namibia: Results from sediment archives. Int. J. Earth Sci. 2009, 98, 309–326. [Google Scholar] [CrossRef]
- Kreiner, A.; Yemane, D.; Stenevik, E.; Moroff, N. The selection of spawning location of sardine (Sardinops sagax) in the northern Benguela after changes in stock structure and environmental conditions. Fish. Oceanogr. 2001, 20, 560–569. [Google Scholar] [CrossRef]
- Hutchings, L.; van der Lingen, C.D.; Shannon, L.J.; Crawford, R.J.M.; Verheye, H.M.S.; Bartholomae, C.H.; van der Plas, A.K.; Louw, D.; Kreiner, A.; Ostrowski, M.; et al. The Benguela Current: An ecosystem of four components. Prog. Oceanogr. 2009, 83, 15–32. [Google Scholar] [CrossRef]
- Verheye, H.M. Decadal-scale trends across several marine trophic levels in the southern Benguela upwelling system off South Africa. AMBIO A J. Hum. Environ. 2000, 29, 30–34. [Google Scholar] [CrossRef]
- Daskalov, G.; Boyer, D.; Roux, J. Relating sardine Sardinops sagax abundance to environmental indices in northern Benguela. Prog. Oceanogr. 2003, 59, 257–274. [Google Scholar] [CrossRef]
- Wainer, I.; Venegas, S. South Atlantic multidecadal variability in the climate system model. J. Climate. 2002, 15, 1408–1420. [Google Scholar] [CrossRef]
- Clarke, A.; Lebedev, A. Remotely driven decadal and longer changes in the coastal Pacific waters of the Americas. J. Phys. Oceanogr. 1999, 29, 828–835. [Google Scholar] [CrossRef]
- McPhaden, M.; Zebiak, S.; Glantz, M. ENSO as an integrating concept in earth science. Science 2006, 314, 1740–1745. [Google Scholar] [CrossRef] [PubMed]
- Euler, C.; Ninnemann, U. Climate and Antarctic intermediate water coupling during the late Holocene. Geology 2010, 38, 647–650. [Google Scholar] [CrossRef]
- O’Kane, T.J.; Risbey, J.S.; Franzke, C.; Horenko, I.; Monselesan, D.P. Changes in the metastability of the midlatitude Southern Hemisphere circulation and the utility of nonstationary cluster analysis and split-flow blocking indices as diagnostic tools. J Atmos. Sci. 2013, 70, 824–842. [Google Scholar] [CrossRef]
- O’Kane, T.J.; Matear, R.J.; Chamberlain, M.A.; Oke, P.R. ENSO regimes and the late 1970’s climate shift: The role of synoptic weather and South Pacific ocean spiciness. J. Comput. Phys. 2014, 271, 19–38. [Google Scholar] [CrossRef]
- Chhak, K.; Di Lorenzo, E. Decadal variations in the California current upwelling cells. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Di Lorenzo, E.; Schneider, N.; Cobb, K.; Franks, P.; Chhak, K.; Miller, A.; McWilliams, J.; Bograd, S.; Arango, H.; Curchitser, E.; et al. North Pacific gyre oscillation links ocean climate and ecosystem change. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Casey, K.S.; Brandon, T.B.; Cornillon, P.; Evans, R. The past, present and future of the AVHRR pathfinder SST program. In Oceanography from Space; Barale, V., Gower, J.F.R., Alberotanza, L., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 273–287. [Google Scholar]
- OceanColor Web. Available online: http://oceancolor.gsfc.nasa.gov/cms/ (accessed on 15 July 2015).
- Chavez, F.; Messier, M. A comparison of eastern boundary upwelling ecosystems. Prog. Oceanogr. 2009, 83, 80–96. [Google Scholar] [CrossRef]
- Curry, P.; Shannon, L. Regime shifts in upwelling ecosystems: Observed changes and possible mechanisms in northern and southern Benguela. Prog. Oceanogr. 2004, 60, 223–243. [Google Scholar] [CrossRef]
- Alheit, J.; Niqven, M. Regime shifts in the Humboldt Current ecosystem. Prog. Oceanogr. 2004, 60, 201–222. [Google Scholar] [CrossRef]
- Field, D.; Baumgartner, T.; Ferreira, V.; Gutierrez, D.; Lozano-Montes, H.; Salvatteci, R.; Soutar, A. Variability from scales in marine sediments and other historical records. In Climate Change and Small Pelagic Fish; Checkley, D.M., Jr., Alheit, J., Oozeki, Y., Roy, C., Eds.; Cambridge University Press: Cambridge, UK, 2009; pp. 45–63. [Google Scholar]
- Roemmich, D.; Gilson, J.; Davis, R.; Sutton, P.; Wijffels, S.; Riser, S. Decadal spin up of the South Pacific substropical gyre. J. Phys. Oceanogr. 2007, 37, 162–173. [Google Scholar] [CrossRef]
- Drinkwater, K.; Belgrano, A.; Borja, A.; Conversi, A.; Edwards, M.; Greene, C.; Ottersen, G.; Pershing, A.; Walker, H. The response of marine ecosystems to climate variability associated with the North Atlantic oscillation. In The North Atlantic Oscillation—Climatic Significance and Environmental Impact; Hurrell, J., Kushnir, Y., Ottersen, G., Visbeck, M., Eds.; American Geophysical Union: Washington, DC, USA, 2003; pp. 211–234. [Google Scholar]
- Takasuka, A.; Oozed, Y.; Aoki, I. Optimal growth temperature hypothesis: Why do anchovy flourish and sardine collapse or vice versa under the same ocean regime? Can. J. Fish. Aquat. Sci. 2007, 64, 768–776. [Google Scholar] [CrossRef]
- Takasuka, A.; Oozeki, Y.; Kubota, H.; Lluch-Cota, S. Contrasting spawning temperature optima: Why are anchovy and sardine regime shifts synchronous across the North Pacific? Prog. Oceanogr. 2008, 77, 225–232. [Google Scholar] [CrossRef]
- van der Lingen, C.; Hutchings, L.; Merkle, D.; van der Westhuizen, J.; Nelson, J. Comparative spawning habitats of anchovy (Engraulis capensis) and sardine (Sardinops sagax) in the southern Benguela upwelling ecosystem. In Spatial Processes and Management of Marine Populations; Kruse, G., Bez, N., Booth, T., Dorn, M., Hills, S., Lipcius, R., Pelletier, D., Roy, C., Smith, S., Witherell, D., Eds.; University of Alaska Sea Grant: Fairbanks, AK, USA, 2001; pp. 185–209. [Google Scholar]
- MacCall, A. Mechanisms of low-frequency fluctuations in sardine and anchovy populations. In Climate Change and Small Pelagic Fish; Checkley, D., Jr., Alheit, J., Oozeki, Y., Roy, C., Eds.; Cambridge University Press: Cambridge, UK, 2009; pp. 285–299. [Google Scholar]
- Anderson, P.; Piatt, J. Community reorganization in the Gulf of Alaska following ocean climate regime shift. Mar. Ecol. Prog. Ser. 1999, 189, 117–123. [Google Scholar] [CrossRef]
- Gregory-Eaves, I.; Selbie, D.; Sweetman, J.; Finney, B.; Smol, J. Tracking sockeye salmon population dynamics from lake sediment cores: A review and synthesis. Am. Fish. Soc. Symp. 2009, 69, 379–393. [Google Scholar]
- McGowan, J.; Cayan, D.; Dorman, L. Climate-ocean variability and ecosystem response in the Northeast Pacific. Science 1998, 281, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Roemmich, D.; McGowan, J. Climate warming and the decline of zooplankton in the California current. Science 1995, 267, 1324–1326. [Google Scholar] [CrossRef] [PubMed]
- King, J.; Agostini, V.; Harvey, C.; McFarlane, G.; Foreman, M.; Overland, J.; Di Lorenzo, E.; Bond, N.; Aydin, K. Climate forcing and the California Current ecosystem. ICES J. Mar. Sci. 2011, 68, 1199–1216. [Google Scholar] [CrossRef]
- Lavaniegos, B.E.; Ohman, M.D. Coherence of long-term variations of zooplankton in two sectors of the California Current System. Prog. Oceanogr. 2007, 75, 42–69. [Google Scholar] [CrossRef]
- Ralston, S.; Field, J.C.; Sakuma, K.M. Long-term variation in a central California pelagic forage assemblage. J. Mar. Syst. 2015, 146, 26–37. [Google Scholar] [CrossRef]
- Alheit, J.; Hagen, E. The effect of climatic variation on pelagic fish and fisheries. In History and Climate—Memories of the Future; Jones, P., Ogilvie, A., Davies, T., Briffa, K., Eds.; Kluwer Academic/Plenum Publishers: New York, NY, USA, 2001; pp. 247–265. [Google Scholar]
- Lluch-Belda, D.; Schwartzlose, R.; Serra, R.; Parrish, R.; Kawasaki, T.; Hedgecock, D.; Crawford, R. Sardine and anchovy regime fluctuations of abundance in four regions of the world oceans: A workshop report. Fish. Oceanogr. 1992, 1, 339–347. [Google Scholar] [CrossRef]
- Alheit, J.; Hagen, E. Long-term climate forcing of European herring and sardine populations. Fish. Oceanogr. 1997, 6, 130–139. [Google Scholar] [CrossRef]
- Hare, S.R.; Francis, R.C. Climate change and salmon production in the Northeast Pacific Ocean. In Climate Change and Northern Fish Populations; Beamish, R.J., Ed.; NRC Research Press: Ottawa, ON, Canada, 1995; pp. 357–372. [Google Scholar]
- de Young, B.; Harris, R.; Alheit, J.; Beaugrand, G.; Mantua, N.; Shannon, L. Detecting regime shifts in the ocean: Data considerations. Prog. Oceanogr. 2004, 60, 143–164. [Google Scholar] [CrossRef]
- Shindell, D.; Schmidt, G.; Miller, R.; Rind, D. Northern Hemisphere winter climate response to greenhouse gas, volcanic, ozone and solar forcing. J. Geophys. Res. 2002, 106, 7193–7210. [Google Scholar] [CrossRef]
- Knutson, T.; Manabe, S. Assessment of decadal variability and trends in the tropical Pacific Ocean. J. Climate. 1998, 11, 2273–2296. [Google Scholar] [CrossRef]
- Lee, S.; Feldstein, S. Detecting ozone- and greenhouse gas-driven wind trends with observational data. Science 2013, 339, 563–567. [Google Scholar] [CrossRef] [PubMed]
- Waugh, D.; Primeau, F.; DeVries, T.; Holzer, M. Recent changes in the ventilation of the Southern Ocean. Science 2013, 339, 568–570. [Google Scholar] [CrossRef] [PubMed]
- Solomon, S.; Rosenlof, K.; Portmann, R.; Daniel, J.; Davis, S.; Sanford, T.; Plattner, G.K. Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science 2010, 327, 1219–1223. [Google Scholar] [CrossRef] [PubMed]
- Toggweiler, J.; Russell, J. Ocean circulation in a warming climate. Nature 2008, 451, 286–288. [Google Scholar] [CrossRef] [PubMed]
- Russell, J.; Dixon, K.; Gnanadesikan, A.; Stouffer, R.; Toggweiler, J. The Southern Hemisphere Westerlies in a warming world: Propping open the door to the deep ocean. J. Climate 2006, 19, 6382–6390. [Google Scholar] [CrossRef]
- Greene, C.; Monger, B. An Arctic wild card in the weather. Oceanography 2012, 25, 7–9. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Summary for policy makers. In Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 7–22. [Google Scholar]
- Folland, C.; Karl, T.; Salinger, M. Observed climate variability and change. Weather 2002, 57, 269–278. [Google Scholar] [CrossRef]
- Lozier, M.; Leadbetter, R.; Williams, S.; Roussenov, V.; Reed, M.; Moore, N. The spatial pattern and mechanisms of heat content change in the North Atlantic. Science 2008, 319, 800–803. [Google Scholar] [CrossRef] [PubMed]
- Kerr, R. What happened to global warming? Scientists say just wait a bit. Science 2009, 326, 28–29. [Google Scholar] [CrossRef] [PubMed]
- Trenberth, K. Has there been a hiatus? Internal climate variability masks climate-warming trends. Science 2015, 349, 691–692. [Google Scholar] [CrossRef] [PubMed]
- Sydeman, W.; Garcia-Reyes, M.; Scoheman, D.; Rykaczewski, R.; Thompson, S.; Black, B.; Bograd, S. Climate change and wind intensification in coastal upwelling ecosystems. Science 2014, 345, 77–80. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oviatt, C.; Smith, L.; McManus, M.C.; Hyde, K. Decadal Patterns of Westerly Winds, Temperatures, Ocean Gyre Circulations and Fish Abundance: A Review. Climate 2015, 3, 833-857. https://doi.org/10.3390/cli3040833
Oviatt C, Smith L, McManus MC, Hyde K. Decadal Patterns of Westerly Winds, Temperatures, Ocean Gyre Circulations and Fish Abundance: A Review. Climate. 2015; 3(4):833-857. https://doi.org/10.3390/cli3040833
Chicago/Turabian StyleOviatt, Candace, Leslie Smith, M. Conor McManus, and Kimberly Hyde. 2015. "Decadal Patterns of Westerly Winds, Temperatures, Ocean Gyre Circulations and Fish Abundance: A Review" Climate 3, no. 4: 833-857. https://doi.org/10.3390/cli3040833
APA StyleOviatt, C., Smith, L., McManus, M. C., & Hyde, K. (2015). Decadal Patterns of Westerly Winds, Temperatures, Ocean Gyre Circulations and Fish Abundance: A Review. Climate, 3(4), 833-857. https://doi.org/10.3390/cli3040833