Improving Hydro-Climatic Projections with Bias-Correction in Sahelian Niger Basin, West Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Hydrological Model
2.3. Bias Adjustment of GCM/RCMs and Their Evaluation
2.4. Hydrological Model Calibration and Validation
3. Results
3.1. CMIP5 Model Improvements with Bias Correction
3.2. Hydroclimatic Projections
3.3. Rainfall
3.4. Temperature
3.5. PET
3.6. Discharge
3.7. Water Balance
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- IPCC Summary for Policymakers. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 1–32. [Google Scholar]
- Roudier, P.; Ducharne, A.; Feyen, L. Climate change impacts on river discharge in West Africa: A review. Hydrol. Earth Syst. Sci. Discuss. 2014, 11, 2483–2514. [Google Scholar] [CrossRef]
- Lebel, T.; Ali, A. Recent trends in the Central and Western Sahel rainfall regime (1990–2007). J. Hydrol. 2009, 375, 52–64. [Google Scholar] [CrossRef]
- Amogu, O.; Descroix, L.; Yéro, K.S.; Le Breton, E.; Mamadou, I.; Ali, A.; Vischel, T.; Bader, J.-C.; Moussa, I.B.; Gautier, E.; et al. Increasing River Flows in the Sahel? Water 2010, 2, 170–199. [Google Scholar] [CrossRef]
- Novotny, E.V.; Stefan, H.G. Stream flow in Minnesota: Indicator of climate change. J. Hydrol. 2007, 334, 319–333. [Google Scholar] [CrossRef]
- Lebel, T.; Diedhiou, A.; Henri, L. Seasonal cycle and interannual variability of the Sahelian rainfall at hydrological scales. J. Geophys. Res. 2003, 108, 1–11. [Google Scholar] [CrossRef]
- Laprise, R.; Hernández-Díaz, L.; Tete, K.; Sushama, L.; Šeparović, L.; Martynov, A.; Winger, K.; Valin, M. Climate projections over CORDEX Africa domain using the fifth-generation Canadian Regional Climate Model (CRCM5). Clim. Dyn. 2013, 41, 3219–3246. [Google Scholar] [CrossRef]
- Chineke, T.; Idinoba, M. Seasonal evapotranspiration signatures under a changing landscape and ecosystem management in Nigeria: Implications for agriculture and food security. Am. J. Sci. Ind. Res. 2011, 2, 191–204. [Google Scholar] [CrossRef]
- Druyan, L.M. Studies of 21st-century precipitation trends over West Africa. Int. J. Climatol. 2011, 31, 1415–1424. [Google Scholar] [CrossRef]
- Vetter, T.; Huang, S.; Aich, V.; Yang, T.; Wang, X.; Krysanova, V.; Hattermann, F. Multi-model climate impact assessment and intercomparison for three large-scale river. Earth Syst. Dyn. 2015, 6, 17–43. [Google Scholar] [CrossRef]
- Diallo, I.; Sylla, M.B.; Giorgi, F.; Gaye, A.T.; Camara, M. Multimodel GCM-RCM Ensemble-Based Projections of Temperature and Precipitation over West Africa for the Early 21st Century. Int. J. Geophys. 2012, 2012, 1–19. [Google Scholar] [CrossRef]
- Mertz, O.; D’haen, S.; Maiga, A.; Moussa, I.B.; Barbier, B.; Diouf, A.; Diallo, D.; Da, E.D.; Dabi, D. Climate variability and environmental stress in the Sudan-Sahel zone of West Africa. Ambio 2012, 41, 380–392. [Google Scholar] [CrossRef] [PubMed]
- Mariotti, L.; Coppola, E.; Sylla, M.B.; Giorgi, F.; Piani, C. Regional climate model simulation of projected 21st century climate change over an all-Africa domain: Comparison analysis of nested and driving model results. J. Geophys. Res. 2011, 116, D15111. [Google Scholar] [CrossRef]
- Oguntunde, P.G.; Abiodun, B.J. The impact of climate change on the Niger River Basin hydroclimatology, West Africa. Clim. Dyn. 2013, 40, 81–94. [Google Scholar] [CrossRef]
- Panitz, H.-J.; Dosio, A.; Büchner, M.; Lüthi, D.; Keuler, K. COSMO-CLM (CCLM) climate simulations over CORDEX-Africa domain: Analysis of the ERA-Interim driven simulations at 0.44° and 0.22° resolution. Clim. Dyn. 2013, 42, 3015–3038. [Google Scholar] [CrossRef]
- Sylla, M.B.; Giorgi, F.; Pal, J.S.; Gibba, P.; Kebe, I.; Nikiema, M. Projected Changes in the Annual Cycle of High Intensity Precipitation Events over West Africa for the Late 21st Century. J. Clim. 2015. [Google Scholar] [CrossRef]
- Sylla, M.B.; Gaye, A.T.; Jenkins, G.S.; Pal, J.S.; Giorgi, F. Consistency of projected drought over the Sahel with changes in the monsoon circulation and extremes in a regional climate model projections. J. Geophys. Res. 2010, 115, D16108. [Google Scholar] [CrossRef]
- Klutse, N.A.B.; Sylla, M.B.; Diallo, I.; Sarr, A.; Dosio, A.; Diedhiou, A.; Kamga, A.; Lamptey, B.; Ali, A.; Gbobaniyi, E.O.; et al. Daily characteristics of West African summer monsoon precipitation in CORDEX simulations. Theor. Appl. Climatol. 2015, 1–17. [Google Scholar] [CrossRef]
- Oyerinde, G.T.; Wisser, D.; Hountondji, F.C.C.; Odofin, A.J.; Lawin, A.E.; Afouda, A.; Diekkrüger, B. Quantifying Uncertainties in Modeling Climate Change Impacts on Hydropower Production. Climate 2016, 4, 1–15. [Google Scholar] [CrossRef]
- KfW Adaptation to Climate Change in the Upper and Middle Niger River Basin. Available online: http://ccsl.iccip.net/niger_river_basin.pdf (accessed on 12 February 2017).
- Ghile, Y.B.; Taner, M.Ü.; Brown, C.; Grijsen, J.G. Bottom-up climate risk assessment of infrastructure investment in the Niger River Basin. Clim. Chang. 2014, 122, 97–110. [Google Scholar] [CrossRef]
- Biasutti, M. Forced Sahel rainfall trends in the CMIP5 archive. J. Geophys. Res. Atmos. 2013, 118, 1613–1623. [Google Scholar] [CrossRef]
- Gbobaniyi, E.; Sarr, A.; Sylla, M.B.; Diallo, I.; Lennard, C.; Dosio, A.; Dhiédiou, A.; Kamga, A.; Klutse, N.A.B.; Hewitson, B.; et al. Climatology, annual cycle and interannual variability of precipitation and temperature in CORDEX simulations over West Africa. Int. J. Climatol. 2014, 34, 2241–2257. [Google Scholar] [CrossRef]
- Gudmundsson, L.; Bremnes, J.B.; Haugen, J.E.; Engen-Skaugen, T. Technical Note: Downscaling RCM precipitation to the station scale using statistical transformations—A comparison of methods. Hydrol. Earth Syst. Sci. 2012, 16, 3383–3390. [Google Scholar] [CrossRef]
- Ogilvie, A.; Mahéé, G.; Ward, J.; Serpantiéé, G.; Lemoalle, J.; Morand, P.; Barbier, B.; Kaczan, D.; Lukasiewicz, A.; Paturel, J.; et al. Water, agriculture and poverty in the Niger River basin. Water Int. 2010, 35, 594–622. [Google Scholar] [CrossRef]
- Oyerinde, G.T.; Hountondji, F.C.C.; Wisser, D.; Diekkrüger, B.; Lawin, A.E.; Odofin, A.J.; Afouda, A. Hydro-climatic changes in the Niger basin and consistency of local perceptions. Reg. Environ. Chang. 2015, 15, 1627–1637. [Google Scholar] [CrossRef]
- Andrews, F.T.; Croke, B.F.W.; Jakeman, A.J. An open software environment for hydrological model assessment and development. Environ. Model. Softw. 2011, 26, 1171–1185. [Google Scholar] [CrossRef]
- R Development Core Team R: A Language and Environment for Statistical Computing. Available online: http://www.r-project.org (accessed on 13 August 2015).
- Ye, W.; Bates, B.C.; Viney, N.R.; Sivapalan, M. Performance of conceptual rainfall-runoff models in low-yielding ephemeral catchments. Water Resour. Res. 1997, 33, 153–166. [Google Scholar] [CrossRef]
- Croke, B.; Jakeman, A. Use of the IHACRES rainfall-runoff model in arid and semi arid regions. In Hydrological Modelling in Arid and Semi-Arid Areas; Wheater, H., Sorooshian, S., Sharma, K.D., Eds.; Cambridge University Press: Cambridge, UK, 2008; pp. 41–48. [Google Scholar]
- Andrews, F. ARMAX Transfer Function Models. Available online: http://hydromad.catchment.org/man/armax.html (accessed on 30 March 2016).
- Jakeman, A.J.; Littlewood, I.G.; Whitehead, P.G. Computation of the instantaneous unit hydrograph and identifiable component flows with application to two small upland catchments. J. Hydrol. 1990, 117, 275–300. [Google Scholar] [CrossRef]
- Dutta, D.; Welsh, W.; Vaze, J.; Kim, S.; Nicholls, D. Improvement in short-term streamflow forecasting using an integrated modelling framework. In Proceedings of the 19th International Congress on Modelling and Simulation, Perth, Australia, 12–16 December 2011.
- Jakeman, A.; Hornberger, G. How much complexity is warranted in a rainfall-runoff model? Water Resour. Res. 1993, 29, 2637–2649. [Google Scholar] [CrossRef]
- Andrews, F. IHACRES Catchment Wetness Index (CWI) Model. Available online: http://hydromad.catchment.org/man/IHACRES.CWI.model.html (accessed on 31 May 2016).
- Huffman, G.J.; Adler, R.F.; Arkin, P.; Chang, A.; Ferraro, R.; Gruber, A.; Janowiak, J.; Mcnab, A.; Rudolf, B.; Schneider, U. The Global Precipitation Climatology Project (GPCP) Combined Precipitation Dataset. Bull. Am. Meteorol. Soc. 1997, 78, 5–20. [Google Scholar] [CrossRef]
- Rienecker, M.M.; Suarez, M.J.; Gelaro, R.; Todling, R.; Bacmeister, J.; Liu, E.; Bosilovich, M.G.; Schubert, S.D.; Takacs, L.; Kim, G.K.; et al. MERRA: NASA’s modern-era retrospective analysis for research and applications. J. Clim. 2011, 24, 3624–3648. [Google Scholar] [CrossRef]
- Ali, A.; Lebel, T. The Sahelian standardized rainfall index revisited. Int. J. Climatol. 2009, 29, 1705–1714. [Google Scholar] [CrossRef]
- Jobard, I.; Chopin, F.; Berges, J.C.; Roca, R. An intercomparison of 10-day satellite precipitation products during West African monsoon. Int. J. Remote Sens. 2011, 32, 2353–2376. [Google Scholar] [CrossRef]
- Gosset, M.; Viarre, J. Evaluation of several rainfall products used for hydrological applications over West Africa using two high-resolution gauge networks. Q. J. R. Meteorol. Soc. 2013, 139, 923–940. [Google Scholar] [CrossRef]
- Lehner, B.; Verdin, K.; Jarvis, A. New global hydrography derived from spaceborne elevation data. EOS Trans. Am. Geophys. Union 2008, 89, 93–94. [Google Scholar] [CrossRef]
- Jasiewicz, J.; Metz, M. A new GRASS GIS toolkit for Hortonian analysis of drainage networks. Comput. Geosci. 2011, 37, 1162–1173. [Google Scholar] [CrossRef]
- Lucio, P.; Molion, L.; Valadão, C.; Conde, F.; Ramos, A.; de Melo, M.L.D. Dynamical outlines of the rainfall variability and the ITCZ role over the West Sahel. Atmos. Clim. Sci. 2012, 2, 337–350. [Google Scholar] [CrossRef]
- Oudin, L.; Hervieu, F.; Michel, C.; Perrin, C.; Andréassian, V.; Anctil, F.; Loumagne, C. Which potential evapotranspiration input for a lumped rainfall–runoff model? J. Hydrol. 2005, 303, 290–306. [Google Scholar] [CrossRef]
- Giorgi, F.; Jones, C.; Asrar, G.R. Addressing climate information needs at the regional level: The CORDEX framework. WMO Bull. 2009, 58, 175–183. [Google Scholar]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An Overview of CMIP5 and the Experiment Design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef]
- Su, F.; Duan, X.; Chen, D.; Hao, Z.; Cuo, L. Evaluation of the Global Climate Models in the CMIP5 over the Tibetan Plateau. J. Clim. 2013, 26, 3187–3208. [Google Scholar] [CrossRef]
- Killick, R. changepoint: An R Package for Changepoint Analysis. J. Stat. Softw. 2014, 58, 1–19. [Google Scholar] [CrossRef]
- Kling, H.; Fuchs, M.; Paulin, M. Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. J. Hydrol. 2012, 424–425, 264–277. [Google Scholar] [CrossRef]
- Ravazzani, G.; Dalla Valle, F.; Gaudard, L.; Mendlik, T.; Gobiet, A.; Mancini, M. Assessing Climate Impacts on Hydropower Production: The Case of the Toce River Basin. Climate 2016, 4, 16. [Google Scholar] [CrossRef] [Green Version]
- Sarr, M.A.; Seidou, O.; Tramblay, Y.; Adlouni, S. Journal of Hydrology: Regional Studies Comparison of downscaling methods for mean and extreme precipitation in Senegal. J. Hydrol. Reg. Stud. 2015, 4, 369–385. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Legates, D.R.; McCabe, G.J. Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 1999, 35, 233–241. [Google Scholar] [CrossRef]
- Shin, M.; Guillaume, J.; Croke, B.; Jakeman, A. Addressing ten questions about conceptual rainfall–runoff models with global sensitivity analyses in R. J. Hydrol. 2013, 503, 135–152. [Google Scholar] [CrossRef]
- Perkins, S.E.; Pitman, A.J.; Holbrook, N.J.; McAneney, J. Evaluation of the AR4 climate models’ simulated daily maximum temperature, minimum temperature, and precipitation over Australia using probability density functions. J. Clim. 2007, 20, 4356–4376. [Google Scholar] [CrossRef]
- Sun, Y.; Solomon, S.; Dai, A.; Portmann, R.W. How often does it rain? J. Clim. 2006, 19, 916–934. [Google Scholar] [CrossRef]
- Lenderink, G.; Buishand, A.; van Deursen, W. Estimates of future discharges of the river Rhine using two scenario methodologies: Direct versus delta approach. Hydrol. Earth Syst. Sci. 2007, 11, 1145–1159. [Google Scholar] [CrossRef]
- Apata, T.; Samuel, K.; Adeola, A. Analysis of Climate Change Perception and Adaptation among Arable Food Crop Farmers in South Western Nigeria. Available online: https://pdfs.semanticscholar.org/abeb/4f07b37bf7177dae41387b69541b4800320e.pdf (accessed on 12 February 2017).
- Tschakert, P.; Sagoe, R.; Samuel, G.O.; Codjoe, N. Floods in the Sahel: An analysis of anomalies, memory, and anticipatory learning. Clim. Chang. 2010, 103, 471–502. [Google Scholar] [CrossRef]
Modeling Center (or Group) | Country | Institute ID | Model Name |
---|---|---|---|
Canadian Centre for Climate Modeling and Analysis | Canada | CCCMA | CanESM2 |
Centre National de Recherches Météorologiques/Centre Européen de Recherche et Formation Avancée en Calcul Scientifique | France | CNRM-CERFACS | CNRM-CM5 |
NOAA Geophysical Fluid Dynamics Laboratory | USA | NOAA GFDL | GFDL-ESM2M |
Met Office Hadley Centre (additional HadGEM2-ES realizations contributed by Instituto Nacional de Pesquisas Espaciais) | UK | MOHC | HadGEM2-ES |
Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology | Japan | MIROC | MIROC5 |
Max-Planck-Institut für Meteorologie (Max Planck Institute for Meteorology) | Germany | MPI-M | MPI-ESM-LR |
Norwegian Climate Centre | Norway | NCC | NorESM1-M |
EC-EARTH consortium | Ireland | EC-EARTH | EC-EARTH |
Efficiency Coefficients | Rainfall | Temperature | ||||||
---|---|---|---|---|---|---|---|---|
Before | Bias Corrected | Before | Bias Corrected | |||||
Mean | Std | Mean | Std | Mean | Std | Mean | Std | |
Monthly | ||||||||
NSE | 0.69 | 0.13 | 0.84 | 0.03 | 0.67 | 0.16 | 0.96 | 0.01 |
d | 0.91 | 0.05 | 0.96 | 0.01 | 0.92 | 0.04 | 0.99 | <0.01 |
md | 0.78 | 0.05 | 0.85 | 0.01 | 0.71 | 0.08 | 0.91 | 0.01 |
r | 0.86 | 0.06 | 0.93 | 0.01 | 0.97 | 0.00 | 0.98 | <0.01 |
R2 | 0.74 | 0.10 | 0.86 | 0.02 | 0.95 | 0.01 | 0.96 | 0.01 |
KGE | 0.75 | 0.14 | 0.90 | 0.02 | 0.87 | 0.03 | 0.98 | <0.01 |
Seasonal (meteorological season) | ||||||||
NSE | 0.76 | 0.14 | 0.92 | 0.02 | 0.64 | 0.19 | 0.98 | 0.01 |
d | 0.93 | 0.05 | 0.98 | 0.01 | 0.92 | 0.04 | 0.99 | <0.01 |
md | 0.78 | 0.07 | 0.88 | 0.01 | 0.67 | 0.08 | 0.92 | 0.01 |
r | 0.91 | 0.05 | 0.96 | 0.01 | 0.98 | 0.01 | 0.99 | <0.01 |
R2 | 0.83 | 0.09 | 0.92 | 0.02 | 0.97 | 0.00 | 0.98 | 0.01 |
KGE | 0.76 | 0.14 | 0.94 | 0.02 | 0.87 | 0.03 | 0.99 | 0.01 |
Climatological (daily mean from 1997–2010) | ||||||||
NSE | 0.74 | 0.15 | 0.90 | 0.02 | 0.71 | 0.15 | 1.00 | 0.01 |
d | 0.92 | 0.05 | 0.98 | 0.00 | 0.93 | 0.04 | 1.00 | <0.01 |
md | 0.80 | 0.06 | 0.89 | 0.01 | 0.71 | 0.08 | 0.97 | <0.01 |
r | 0.89 | 0.06 | 0.96 | 0.01 | 0.99 | 0.00 | 1.00 | <0.01 |
R2 | 0.79 | 0.11 | 0.91 | 0.01 | 0.98 | 0.01 | 1.00 | 0.01 |
KGE | 0.76 | 0.15 | 0.94 | 0.01 | 0.87 | 0.03 | 1.00 | <0.01 |
GCMs | Before | Bias Corrected | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
NSE | d | md | r | R2 | KGE | NSE | d | md | r | R2 | KGE | |
Rainfall | ||||||||||||
GFDL-ESM2M | 0.74 | 0.93 | 0.8 | 0.87 | 0.76 | 0.85 | 0.79 | 0.95 | 0.83 | 0.91 | 0.82 | 0.87 |
NorESM1-M | 0.46 | 0.84 | 0.71 | 0.73 | 0.53 | 0.69 | 0.82 | 0.96 | 0.85 | 0.92 | 0.84 | 0.9 |
MPI-ESM-LR | 0.8 | 0.95 | 0.82 | 0.9 | 0.81 | 0.87 | 0.87 | 0.97 | 0.86 | 0.94 | 0.88 | 0.92 |
HadGEM2-ES | 0.78 | 0.94 | 0.81 | 0.89 | 0.79 | 0.87 | 0.85 | 0.96 | 0.84 | 0.93 | 0.86 | 0.91 |
MIROC5 | 0.76 | 0.93 | 0.8 | 0.87 | 0.76 | 0.83 | 0.85 | 0.96 | 0.85 | 0.93 | 0.86 | 0.91 |
EC-EARTH | 0.64 | 0.89 | 0.75 | 0.82 | 0.67 | 0.72 | 0.85 | 0.96 | 0.86 | 0.93 | 0.87 | 0.91 |
CNRM-CM5 | 0.81 | 0.95 | 0.82 | 0.93 | 0.86 | 0.76 | 0.84 | 0.96 | 0.85 | 0.93 | 0.86 | 0.9 |
CanESM2 | 0.52 | 0.84 | 0.69 | 0.88 | 0.77 | 0.44 | 0.88 | 0.97 | 0.87 | 0.94 | 0.89 | 0.91 |
Temperature | ||||||||||||
GFDL-ESM2M | 0.54 | 0.89 | 0.64 | 0.97 | 0.94 | 0.87 | 0.95 | 0.99 | 0.9 | 0.97 | 0.95 | 0.97 |
NorESM1-M | 0.73 | 0.93 | 0.72 | 0.97 | 0.94 | 0.88 | 0.96 | 0.99 | 0.92 | 0.98 | 0.96 | 0.98 |
MPI-ESM-LR | 0.75 | 0.94 | 0.73 | 0.98 | 0.96 | 0.9 | 0.97 | 0.99 | 0.92 | 0.98 | 0.97 | 0.98 |
HadGEM2-ES | 0.75 | 0.94 | 0.73 | 0.97 | 0.94 | 0.89 | 0.96 | 0.99 | 0.91 | 0.98 | 0.96 | 0.98 |
MIROC5 | 0.86 | 0.96 | 0.8 | 0.97 | 0.94 | 0.83 | 0.96 | 0.99 | 0.92 | 0.98 | 0.96 | 0.98 |
EC-EARTH | 0.45 | 0.87 | 0.6 | 0.97 | 0.95 | 0.82 | 0.96 | 0.99 | 0.91 | 0.98 | 0.96 | 0.98 |
CNRM-CM5 | 0.48 | 0.88 | 0.62 | 0.97 | 0.94 | 0.86 | 0.96 | 0.99 | 0.92 | 0.98 | 0.96 | 0.98 |
CanESM2 | 0.81 | 0.96 | 0.8 | 0.98 | 0.96 | 0.89 | 0.96 | 0.99 | 0.91 | 0.98 | 0.96 | 0.98 |
MODELS | Discharge (%) | |||
---|---|---|---|---|
NF | FF | |||
RCP 45 | RCP 85 | RCP 45 | RCP 85 | |
CanESM2 | 13.53 | 11.28 | 23.85 | 41.50 |
CNRM-CM5 | 2.31 | 4.66 | 12.91 | 37.20 |
EC-EARTH | −1.91 | −4.79 | 6.20 | 15.37 |
MIROC5 | 29.31 | 24.68 | 43.88 | 81.99 |
HadGEM2-ES | 11.63 | 19.74 | 15.13 | 28.68 |
MPI-ESM-LR | −0.93 | 10.46 | 0.09 | 11.65 |
NorESM1-M | 12.88 | 18.18 | 22.82 | 38.91 |
GFDL-ESM2M | 6.73 | 16.27 | 24.90 | 31.34 |
Ensemble mean | 8.78 | 11.95 | 18.45 | 34.91 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oyerinde, G.T.; Hountondji, F.C.C.; Lawin, A.E.; Odofin, A.J.; Afouda, A.; Diekkrüger, B. Improving Hydro-Climatic Projections with Bias-Correction in Sahelian Niger Basin, West Africa. Climate 2017, 5, 8. https://doi.org/10.3390/cli5010008
Oyerinde GT, Hountondji FCC, Lawin AE, Odofin AJ, Afouda A, Diekkrüger B. Improving Hydro-Climatic Projections with Bias-Correction in Sahelian Niger Basin, West Africa. Climate. 2017; 5(1):8. https://doi.org/10.3390/cli5010008
Chicago/Turabian StyleOyerinde, Ganiyu Titilope, Fabien C. C. Hountondji, Agnide E. Lawin, Ayo J. Odofin, Abel Afouda, and Bernd Diekkrüger. 2017. "Improving Hydro-Climatic Projections with Bias-Correction in Sahelian Niger Basin, West Africa" Climate 5, no. 1: 8. https://doi.org/10.3390/cli5010008
APA StyleOyerinde, G. T., Hountondji, F. C. C., Lawin, A. E., Odofin, A. J., Afouda, A., & Diekkrüger, B. (2017). Improving Hydro-Climatic Projections with Bias-Correction in Sahelian Niger Basin, West Africa. Climate, 5(1), 8. https://doi.org/10.3390/cli5010008