Comparative Study of Different Stochastic Weather Generators for Long-Term Climate Data Simulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Weather Generator (WG) Descriptions
2.2. CLIGEN (CLImate GENerator)
2.3. LARS-WG (Long-Ashton Research Station Weather Generator)
2.4. WeaGETS (Weather Generator)
2.5. Weather Generators (WGs) Configuration
2.6. Study Site Description
2.7. Preliminary Analysis
2.8. Data Analysis
3. Results
3.1. Summary Statistics and Data Distribution
3.2. Extreme Variables
3.3. Analysis of Distributions
3.4. Distribution of Distributions
3.5. Extreme Events/Variables
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
Daily Precipitation (mm) | ||||||||
---|---|---|---|---|---|---|---|---|
Adrian | Bowling Green | Sandusky | Norwalk | Bucyrus | Lima | Defiance | Fort Wayne | |
Mean Value over All Days | 2.5 | 2.4 | 2.4 | 2.7 | 2.7 | 2.7 | 2.5 | 2.6 |
SD | 6.6 | 6.6 | 6.9 | 7.1 | 7.1 | 7.1 | 7.0 | 6.9 |
n | 17,817 | 18,079 | 17,451 | 18,042 | 17,991 | 17,968 | 18,132 | 18,262 |
Days with Zero Value (%) | 66.8 | 72.1 | 63.5 | 63.6 | 63.2 | 64.7 | 64.6 | 63.4 |
Skewness | 4.9 | 5.3 | 6.1 | 7.1 | 6.4 | 4.8 | 7.0 | 4.8 |
Kurtosis | 38.7 | 45.9 | 66.9 | 116.3 | 95.0 | 39.6 | 126.2 | 36.2 |
Daily Maximum Temperature (°C) | ||||||||
Mean | 15.0 | 15.5 | 14.4 | 15.0 | 15.1 | 15.9 | 15.4 | 15.5 |
SD | 11.6 | 11.8 | 11.2 | 11.5 | 11.6 | 11.5 | 11.9 | 11.8 |
n | 17,817 | 18,079 | 17,451 | 18,042 | 17,991 | 17,968 | 18,132 | 18,262 |
Skewness | −0.2 | −0.3 | −0.2 | −0.3 | −0.3 | −0.4 | −0.3 | −0.3 |
Kurtosis | 1.9 | 2.0 | 2.0 | 2.0 | 2.0 | 2.1 | 2.0 | 2.0 |
Daily Minimum Temperature (°C) | ||||||||
Mean | 3.3 | 4.5 | 5.9 | 4.5 | 4.0 | 5.5 | 4.1 | 4.8 |
SD | 10.0 | 10.1 | 10.2 | 10.1 | 10.1 | 10.3 | 10.4 | 10.3 |
n | 17,817 | 18,079 | 17,451 | 18,042 | 17,991 | 17,968 | 18,132 | 18,262 |
Skewness | −0.3 | −0.3 | −0.3 | −0.3 | −0.3 | −0.3 | −0.3 | −0.4 |
Kurtosis | 2.5 | 2.4 | 2.3 | 2.4 | 2.5 | 2.4 | 2.5 | 2.5 |
Statistic | Obs. † | LARS-WG | CLIGEN | WeaGETS-01 * | WeaGETS-02 | WeaGETS-03 | WeaGETS-04 | WeaGETS-05 | WeaGETS-06 |
---|---|---|---|---|---|---|---|---|---|
Precipitation, mm | |||||||||
Mean | 2.60 | 2.58 | 2.58 | 2.55 | 2.56 | 2.61 | 2.56 | 2.56 | 2.59 |
S.D. | 6.89 | 7.00 | 6.64 | 6.75 | 6.80 | 6.83 | 6.71 | 6.71 | 6.78 |
Std. Err. | 0.05 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
Mode | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Days w/Zero (%) | 63.4 | 65.0 | 63.5 | 64.0 | 64.0 | 63.5 | 64.0 | 64.0 | 63.6 |
Skewness | 4.77 | 4.85 | 4.56 | 4.89 | 5.06 | 4.92 | 4.49 | 4.46 | 4.53 |
Kurtosis | 36.22 | 36.38 | 33.50 | 40.63 | 46.46 | 43.96 | 31.60 | 30.95 | 32.96 |
Max. | 111.8 | 111.0 | 147.0 | 200.8 | 266.9 | 282.6 | 132.7 | 140.3 | 195.6 |
Maximum Temperature, °C | |||||||||
Mean | 15.5 | 15.4 | 15.4 | 15.5 | 15.5 | 15.5 | 15.5 | 15.5 | 15.5 |
S.D. | 11.8 | 11.2 | 11.8 | 12.3 | 12.3 | 12.3 | 12.3 | 12.3 | 12.3 |
Std. Err. | 0.09 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
Mode | 28.3 | 28.1 | 27.9 | −1.3 | −6.6 | −5.3 | −3.6 | −5.2 | 3.7 |
Skewness | −0.32 | −0.26 | −0.32 | −0.27 | −0.26 | −0.28 | −0.27 | −0.26 | −0.28 |
Kurtosis | 2.03 | 1.87 | 2.08 | 2.02 | 2.02 | 2.02 | 2.02 | 2.03 | 2.02 |
Max. | 41.1 | 39.2 | 45.4 | 55.4 | 51.6 | 50.9 | 55.7 | 52.5 | 52.9 |
Min. | −23.9 | −22.8 | −27.1 | −27.3 | −30.6 | −28.0 | −28.1 | −27.9 | −25.5 |
Minimum Temperature, °C | |||||||||
Mean | 4.8 | 4.8 | 4.9 | 4.8 | 4.8 | 4.8 | 4.7 | 4.7 | 4.8 |
S.D. | 10.3 | 9.7 | 10.3 | 10.5 | 10.5 | 10.6 | 10.5 | 10.5 | 10.5 |
Std. Err. | 0.08 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
Mode | 0.00 | 17.2 | 13.8 | −8.0 | −14.1 | −14.3 | −13.2 | −15.2 | −1.8 |
Skewness | −0.36 | −0.25 | −0.33 | −0.37 | −0.36 | −0.40 | −0.37 | −0.37 | −0.39 |
Kurtosis | 2.51 | 2.28 | 2.40 | 2.50 | 2.50 | 2.56 | 2.50 | 2.52 | 2.55 |
Max. | 25.6 | 25.6 | 31.9 | 37.2 | 37.0 | 36.7 | 36.7 | 36.6 | 36.7 |
Min. | −30.0 | −30.0 | −42.1 | −41.0 | −44.2 | −42.9 | −45.9 | −44.8 | −42.3 |
Count | Observed | LARS-WG | CLIGEN | WeaGETS-01 † | WeaGETS-02 | WeaGETS-03 | WeaGETS-04 | WeaGETS-05 | WeaGETS-06 |
---|---|---|---|---|---|---|---|---|---|
Dry Days | |||||||||
January | 19 | 19 | 19 | 20 | 20 | 19 | 19 | 19 | 19 |
February | 18 | 17 | 18 | 18 | 18 | 18 | 18 | 18 | 18 |
March | 19 | 18 | 19 | 21 | 21 | 19 | 19 | 19 | 20 |
April | 17 | 17 | 17 | 19 | 19 | 17 | 18 | 18 | 18 |
May | 19 | 19 | 19 | 20 | 20 | 18 | 19 | 19 | 19 |
June | 19 | 21 | 19 | 21 | 20 | 19 | 20 | 19 | 19 |
July | 21 | 21 | 21 | 23 | 23 | 21 | 21 | 21 | 21 |
August | 22 | 23 | 21 | 23 | 23 | 22 | 22 | 22 | 22 |
September | 21 | 22 | 21 | 22 | 22 | 21 | 21 | 22 | 21 |
October | 21 | 21 | 21 | 22 | 22 | 21 | 22 | 22 | 21 |
November | 19 | 19 | 19 | 20 | 20 | 19 | 20 | 20 | 19 |
December | 18 | 19 | 18 | 21 | 21 | 18 | 19 | 19 | 19 |
Wet Days | |||||||||
January | 12 | 12 | 12 | 11 | 11 | 12 | 12 | 12 | 12 |
February | 10 | 11 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
March | 12 | 13 | 12 | 10 | 10 | 12 | 12 | 12 | 11 |
April | 13 | 13 | 13 | 11 | 11 | 13 | 12 | 12 | 12 |
May | 12 | 12 | 12 | 11 | 11 | 13 | 12 | 12 | 12 |
June | 11 | 9 | 11 | 9 | 10 | 11 | 10 | 11 | 11 |
July | 10 | 10 | 10 | 8 | 8 | 10 | 10 | 10 | 10 |
August | 9 | 8 | 10 | 8 | 8 | 9 | 9 | 9 | 9 |
September | 9 | 8 | 9 | 8 | 8 | 9 | 9 | 8 | 9 |
October | 10 | 10 | 10 | 9 | 9 | 10 | 9 | 9 | 10 |
November | 11 | 11 | 11 | 10 | 10 | 11 | 10 | 10 | 11 |
December | 13 | 12 | 13 | 10 | 10 | 13 | 12 | 12 | 12 |
ADRIAN | NORWALK | FORT WAYNE | |||||||
---|---|---|---|---|---|---|---|---|---|
Precipitation (mm) | |||||||||
Extreme Variables/Events | Observed | LARS-WG | CLIGEN | Observed | LARS-WG | CLIGEN | Observed | LARS-WG | CLIGEN |
For 50 years | |||||||||
Days more than 95th Percentile * | 916 | 940 | 918 | 943 | 926 | 820 | 896 | 903 | 891 |
Days more than 99.5th Percentile * | 92 | 105 | 76 | 92 | 103 | 85 | 91 | 104 | 80 |
Maximum Temperature | |||||||||
For 50 years | |||||||||
Days more than 95th Percentile * | 1085 | 736 | 985 | 1029 | 690 | 952 | 752 | 533 | 907 |
Days more than 99.5th Percentile * | 137 | 74 | 204 | 128 | 61 | 212 | 64 | 42 | 169 |
Minimum Temperature | |||||||||
For 50 years | |||||||||
Days more than 95th Percentile * | 957 | 641 | 805 | 1018 | 708 | 885 | 19 | 543 | 785 |
Days more than 99.5th Percentile * | 73 | 53 | 151 | 64 | 70 | 168 | 3 | 53 | 182 |
Dry Sequence | |||||||||
Count for a Period of 50 Years | 39 | 45 | 38 | 14 | 19 | 27 | 18 | 34 | 24 |
Wet Sequence | |||||||||
Count for a Period of 50 Years | 191 | 178 | 225 | 230 | 231 | 284 | 213 | 209 | 279 |
Snow Days | |||||||||
Average Number of Days in a Year | 30 | 31 | 35 | 32 | 30 | 36 | 33 | 33 | 37 |
Growing Degree Days | |||||||||
1 May | 59.73 | 82.00 | 89.39 | 57.87 | 85.79 | 70.64 | 89.0 | 53.6 | 85.7 |
15 May | 107.77 | 135.05 | 154.70 | 111.08 | 152.58 | 129.60 | 154.8 | 114.4 | 152.6 |
1 October | 1380.33 | 1498.52 | 1632.39 | 1412.10 | 1612.71 | 1502.53 | 1632.5 | 1561.9 | 1612.7 |
15 October | 1412.14 | 1538.57 | 1674.93 | 1455.34 | 1668.40 | 1556.20 | 1675.0 | 1608.4 | 1668.4 |
Period of Optimal Growth | |||||||||
Average Number of Days in a Year | 52 | 67 | 52 | 55 | 67 | 56 | 63 | 71 | 61 |
References
- PaiMazumder, D.; Mölders, N. Theoretical assessment of uncertainty in regional averages due to network density and design. J. Appl. Meteorol. Climatol. 2009, 48, 1643–1666. [Google Scholar] [CrossRef]
- Woznicki, S.A.; Nejadhashemi, A.P. Sensitivity analysis of Best Management Practices under climate change scenarios. J. Am. Water Resour. Assoc. (JAWRA) 2011, 48, 90–112. [Google Scholar] [CrossRef]
- Watts, N.; Adger, W.N.; Agnolucci, P.; Blackstock, J.; Byass, P.; Cai, W.; Chaytor, S.; Colbourn, T.; Collins, M.; Cooper, A.; et al. Health and climate change: Policy responses to protect public health. Lancet 2015, 386, 1861–1914. [Google Scholar] [CrossRef]
- Langdon, J.G.R.; Lawler, J.J. Assessing the impacts of projected climate change on biodiversity in the protected areas of western North America. Ecosphere 2015, 6, 1–14. [Google Scholar] [CrossRef]
- Antle, J.M. Climate change, vulnerability and food insecurity. Choices 2015, 30, 1–7. [Google Scholar]
- Moore, F.C.; Diaz, D.B. Temperature impacts on economic growth warrant stringent mitigation policy. Nat. Clim. Chang. 2015, 5, 127–131. [Google Scholar] [CrossRef]
- Watts, G.; Battarbee, R.W.; Bloomfield, J.P.; Crossman, J.; Daccache, A.; Durance, I.; Elliott, J.A.; Garner, G.; Hannaford, J.; Hannah, D.M. Climate change and water in the UK—Past changes and future prospects. Prog. Phys. Geogr. 2015, 39, 6–28. [Google Scholar] [CrossRef]
- Gosling, S.N.; Arnell, N.W. A global assessment of the impact of climate change on water scarcity. Clim. Chang. 2016, 134, 371–385. [Google Scholar] [CrossRef]
- Palazzoli, I.; Maskey, S.; Uhlenbrook, S.; Nana, E.; Bocchiola, D. Impact of prospective climate change on water resources and crop yields in the Indrawati basin, Nepal. Agric. Syst. 2015, 133, 143–157. [Google Scholar] [CrossRef]
- Trzaska, S.; Schnarr, E. A Review of Downscaling Methods for Climate Change Projections; United States Agency for International Development by Tetra Tech ARD: Pasadena, CA, USA, 2014. [Google Scholar]
- Baffaut, C.; Nearing, M.A.; Nicks, A.D. Impact of Cligen parameters on WEPP-predicted average annual soil loss. Trans. ASAE 1996, 39, 447–457. [Google Scholar] [CrossRef]
- Gabriel, K.R.; Neumann, J. A Markov chain model for daily rainfall occurrence at Tel Aviv. Q. J. R. Meteorol. Soc. 1962, 88, 90–95. [Google Scholar] [CrossRef]
- Todorovic, P.; Woolhiser, D.A. A stochastic model of n-day precipitation. J. Appl. Meteorol. 1975, 14, 17–24. [Google Scholar] [CrossRef]
- Semenov, M.A.; Barrow, E.M. Use of a stochastic weather generator in the development of climate change scenarios. Clim. Chang. 1997, 35, 397–414. [Google Scholar] [CrossRef]
- Minville, M.; Brissette, F.; Leconte, R. Uncertainty of the impact of climate change on the hydrology of a nordic watershed. J. Hydrol. 2008, 358, 70–83. [Google Scholar] [CrossRef]
- Apipattanavis, S.; Bert, F.; Podestá, G.; Rajagopalan, B. Linking weather generators and crop models for assessment of climate forecast outcomes. Agric. For. Meteorol. 2010, 150, 166–174. [Google Scholar] [CrossRef]
- Ailliot, P.; Allard, D.; Monbet, V.; Naveau, P. Stochastic weather generators: An overview of weather type models. J. Soc. Franç. Stat. 2015, 156, 101–113. [Google Scholar]
- Mavromatis, T.; Jones, P.D. Comparison of climate change scenario construction methodologies for impact assessment studies. Agric. For. Meteorol. 1998, 91, 51–67. [Google Scholar] [CrossRef]
- Zhang, X.C.; Nearing, M.A.; Garbrecht, J.D.; Steiner, J.L. Downscaling monthly forecasts to simulate impacts of climate change on soil erosion and wheat production. Soil Sci. Soc. Am. J. 2004, 68, 1376–1385. [Google Scholar] [CrossRef]
- Elshamy, M.E.; Wheater, H.S.; Gedney, N.; Huntingford, C. Evaluation of the rainfall component of a weather generator for climate impact studies. J. Hydrol. 2006, 326, 1–24. [Google Scholar] [CrossRef]
- Richardson, C.W. Stochastic simulation of daily precipitation, temperature, and solar radiation. Water Resour. Res. 1981, 17, 182–190. [Google Scholar] [CrossRef]
- Richardson, C.W.; Wright, D.A. WGEN: A Model for Generating Daily Weather Variables; US Department of Agriculture, Agricultural Research Service: Washington, DC, USA, 1984.
- Woolhiser, D.A.; Hanson, C.L.; Richardson, C.W. Microcomputer Program for Daily Weather Simulation; USDA Agricultural Research Service Publication ARS-75: Boise, ID, USA, 1988.
- Stöckle, C.O.; Campbell, G.S.; Nelson, R. Climgen Manual; Biological Systems Engineering Department, Washington State University: Pullman, WA, USA, 1999. [Google Scholar]
- Nicks, A.D.; Lane, L.J.; Gander, G.A. Chapter 2. Weather generator. In USDA-Water Erosion Prediction Project: Hillslope Profile and Watershed Model Documentation; NSERL Report #10; USDA-ARS National Soil Erosion Research Laboratory: West Lafayette, IN, USA, 1995. Available online: https://www.ars.usda.gov/ARSUserFiles/50201000/WEPP/chap2.pdf (accessed on 23 March 2017).
- Chen, J.; Brissette, F.P.; Leconte, R. WeaGETS—A Matlab-based daily scale weather generator for generating precipitation and temperature. Proc. Environ. Sci. 2012, 13, 2222–2235. [Google Scholar] [CrossRef]
- Semenov, M.A.; Barrow, E.M. LARS-WG A Stochastic Weather Generator for Use in Climate Impact Studies; User Manual: Hertfordshire, UK, 2002. [Google Scholar]
- Chen, J.; Brissette, F.P.; Leconte, R. Assessment and improvement of stochastic weather generators in simulating maximum and minimum temperatures. Trans. ASABE 2011, 54, 1627–1637. [Google Scholar] [CrossRef]
- Vaghefi, P.; Yu, B. Use of CLIGEN to simulate decreasing precipitation trends in the southwest of western Australia. Trans. ASABE 2016, 59, 49–61. [Google Scholar]
- Virgens Filho, J.S.; Oliveira, R.B.; Leite, M.L.; Tsukahara, R.Y. Desempenho dos modelos CLIGEN, LARS-WG e PGECLIMA_R na simulação de séries diárias de temperatura máxima do ar para localidades do estado do paraná. Engenharia Agrícola 2013, 33, 538–547. [Google Scholar] [CrossRef]
- Resop, J.P.; Fleisher, D.H.; Timlin, D.J.; Mutiibwa, D.; Reddy, V.R. Climate, water management, and land use: Estimating potential potato and corn production in the US northeastern seaboard region. Trans. ASABE 2016, 59, 1539–1553. [Google Scholar]
- Moriondo, M.; Argenti, G.; Ferrise, R.; Dibari, C.; Trombi, G.; Bindi, M. Heat stress and crop yields in the Mediterranean basin: Impact on expected insurance payouts. Reg. Environ. Chang. 2016, 16, 1877–1890. [Google Scholar] [CrossRef]
- Willuweit, L.; O’Sullivan, J.J.; Shahumyan, H. Simulating the effects of climate change, economic and urban planning scenarios on urban runoff patterns of a metropolitan region. Urban Water J. 2016, 13, 803–818. [Google Scholar] [CrossRef]
- Msowoya, K.; Madani, K.; Davtalab, R.; Mirchi, A.; Lund, J.R. Climate change impacts on maize production in the warm heart of Africa. Water Resour. Manag. 2016, 30, 5299–5312. [Google Scholar] [CrossRef]
- Batchabani, E.; Sormain, E.; Fuamba, M. Potential impacts of projected climate change on flooding in the Riviere des Prairies basin, Quebec, Canada: One-dimensional and two-dimensional simulation-based approach. J. Hydrol. Eng. 2016, 21, 05016032. [Google Scholar] [CrossRef]
- Chen, J.; Xu, C.; Guo, S.; Chen, H. Progress and challenge in statistically downscaling climate model outputs. J. Water Resour. Res. 2016, 5, 299–313. [Google Scholar] [CrossRef]
- Vallam, P.; Qin, X.S. Climate change impact assessment on flow regime by incorporating spatial correlation and scenario uncertainty. Theor. Appl. Climatol. 2016, 1–16. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Academic: New York, NY, USA, 1977. [Google Scholar]
- Bradley, J.V. Nonrobustness in Z, t, and F tests at large sample sizes. Bull. Psychon. Soc. 1980, 16, 333–336. [Google Scholar] [CrossRef]
- Cohen, J. Statistical power analysis. Curr. Direct. Psychol. Sci. 1992, 1, 98–101. [Google Scholar] [CrossRef]
- Denis, D.J. Alternatives to null hypothesis significance testing. Theory Sci. 2003, 4, 21. [Google Scholar]
- Royall, R.M. The effect of sample size on the meaning of significance tests. Am. Stat. 1986, 40, 313–315. [Google Scholar] [CrossRef]
- Yen, H.; White, M.J.; Arnold, J.G.; Keitzer, S.C.; Johnson, M.-V.V.; Atwood, J.D.; Daggupati, P.; Herbert, M.E.; Sowa, S.P.; Ludsin, S.A. Western Lake Erie Basin: Soft-data-constrained, NHDPlus resolution watershed modeling and exploration of applicable conservation scenarios. Sci. Total Environ. 2016, 569, 1265–1281. [Google Scholar] [CrossRef] [PubMed]
- Keitzer, S.C.; Ludsin, S.A.; Sowa, S.P.; Annis, G.; Arnold, J.G.; Daggupati, P.; Froehlich, A.M.; Herbert, M.E.; Johnson, M.-V.V.; Sasson, A.M. Thinking outside of the lake: Can controls on nutrient inputs into Lake Erie benefit stream conservation in its watershed? J. Gt. Lakes Res. 2016, 42, 1322–1331. [Google Scholar] [CrossRef]
- Daggupati, P.; Yen, H.; White, M.J.; Srinivasan, R.; Arnold, J.G.; Keitzer, C.S.; Sowa, S.P. Impact of model development, calibration and validation decisions on hydrological simulations in West Lake Erie basin. Hydrol. Process. 2015, 29, 5307–5320. [Google Scholar] [CrossRef]
- Bosch, N.S.; Allan, J.D.; Selegean, J.P.; Scavia, D. Scenario-testing of agricultural best management practices in Lake Erie watersheds. J. Gt. Lakes Res. 2013, 39, 429–436. [Google Scholar] [CrossRef]
- Scavia, D.; Kalcic, M.; Muenich, R.L.; Aloysius, N.; Boles, C.; Confessor, R.; DePinto, J.; Gildow, M.; Martin, J.; Read, J. Informing Lake Erie Agriculture Nutrient Management via Scenario Evaluation; University of Michigan: Ann Arbor, MI, USA, 2016; Available online: http://graham.umich.edu/media/pubs/InformingLakeErieAgricultureNutrientManagementviaScenarioEvaluation.pdf (accessed on 23 March 2017).
- Kalcic, M.M.; Kirchhoff, C.; Bosch, N.; Muenich, R.L.; Murray, M.; Gardner, J.G.; Scavia, D. Engaging stakeholders to define feasible and desirable agricultural conservation in Western Lake Erie watersheds. Environ. Sci. Technol. 2016, 50, 8135–8145. [Google Scholar] [CrossRef] [PubMed]
- Robertson, D.M.; Saad, D.A.; Christiansen, D.E.; Lorenz, D.J. Simulated impacts of climate change on phosphorus loading to Lake Michigan. J. Gt. Lakes Res. 2016, 42, 536–548. [Google Scholar] [CrossRef]
- Flanagan, D.C.; Nearing, M.A. USDA-Water Erosion Prediction Project: Hillslope Profile and Watershed Model Documentation; NSERL Report #10; USDA-ARS National Soil Erosion Research Laboratory: West Lafayette, IN, USA, 1995. Available online: https://www.ars.usda.gov/midwest-area/west-lafayette-in/national-soil-erosion-research/docs/wepp/wepp-model-documentation (accessed on 23 March 2017).
- Laflen, J.M.; Elliot, W.J.; Flanagan, D.C.; Meyer, C.R.; Nearing, M.A. WEPP-Predicting water erosion using a process-based model. J. Soil Water Conserv. 1997, 52, 96–102. [Google Scholar]
- Meyer, C. General Description of the CLIGEN Model and its History; USDA-ARS National Soil Erosion Laboratory: West Lafayette, IN, USA, 2011. Available online: https://www.ars.usda.gov/ARSUserFiles/50201000/WEPP/cligen/CLIGENDescription.pdf (accessed on 23 March 2017).
- Harmel, R.D.; Richardson, C.W.; Hanson, C.L.; Johnson, G.L. Simulating maximum and minimum daily temperature with the normal distribution. In Proceedings of the 2001 ASAE Annual International Meeting, Sacramento, CA, USA, 30 July–1 August 2001; ASAE Paper No. 012240. American Society of Agricultural Engineers: St. Joseph, MI, USA. [Google Scholar]
- Racsko, P.; Szeidl, L.; Semenov, M. A serial approach to local stochastic weather models. Ecol. Model. 1991, 57, 27–41. [Google Scholar] [CrossRef]
- Semenov, M. LARS-WG 5: A Stochastic Weather Generator for Climate Change Impact Assessments. Available online: http://www.rothamsted.ac.uk/sites/default/files/groups/mas-models/download/LARSWG-QuickStart.pdf (accessed on 7 March 2017).
- Chen, J.; Brissette, F.P.; Leconte, R. A daily stochastic weather generator for preserving low-frequency of climate variability. J. Hydrol. 2010, 388, 480–490. [Google Scholar] [CrossRef]
- Chen, J.; Brisesette, F. Weather Generator of the École de Technologie Supérieure (WeaGETS) Version 1.1 User Manual. 2010. Available online: http://mpo524-2013-rcespedes.wikispaces.com/file/view/WeaGETS_user_manual.pdf (accessed on 23 March 2017).
- The Nature Conservancy. Western Lake Erie Basin: Great Lakes: The Nature Conservancy. Available online: http://www.nature.org/ourinitiatives/regions/northamerica/unitedstates/indiana/placesweprotect/wleb-1.xml (accessed on 11 November 2016).
- USDA:NRCS. Western Lake Erie Basin: Water Resources Protection Plan Ohio, Indiana and Michigan. 2005. Available online: https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs144p2_029098.pdf (accessed on 10 January 2017).
- MRCC. Midwest Climate Watch: Midwestern Regional Climate Center. Available online: http://mrcc.isws.illinois.edu/mw_climate/climateSummaries/climSumm.jsp (accessed on 16 December 2016).
- Lana, X.; Martínez, M.D.; Serra, C.; Burgueño, A. Spatial and temporal variability of the daily rainfall regime in Catalonia (northeastern Spain), 1950–2000. Int. J. Climatol. 2004, 24, 613–641. [Google Scholar] [CrossRef]
- Figueiredo Filho, D.B.; Paranhos, R.; Rocha, E.C.d.; Batista, M.; Silva, J.A.D., Jr.; Santos, M.L.W.D.; Marino, J.G. When is statistical significance not significant? Braz. Polit. Sci. Rev. 2013, 7, 31–55. [Google Scholar] [CrossRef]
- Becker, L.A. Effect Size. University of Colorado: Colorado Springs, CO, USA. Available online: http://www.uccs.edu/~lbecker/effect-size.html (accessed on 7 March 2017).
- Mathugama, S.C.; Peiris, T.S.G. Critical evaluation of dry spell research. Int. J. Basic Appl. Sci. 2011, 11, 153–160. [Google Scholar]
- Douguedroit, A. The variations of dry spells in Marseilles from 1865 to 1984. J. Climatol. 1987, 7, 541–551. [Google Scholar] [CrossRef]
- Sivakumar, M.V.K. Empirical analysis of dry spells for agricultural applications in west Africa. J. Clim. 1992, 5, 532–539. [Google Scholar] [CrossRef]
- Taley, S.M.; Dalvi, V.B. Dry-Spell Analysis for Studying the Sustainability of Rainfed Agriculture in India—The Case Study of the Vidarbha Region of Maharashtra State; Large Farm Development Project: Maharashtra, India, 1991. [Google Scholar]
- Mathlouthi, M.; Lebdi, F. Characterization of dry spell events in a basin in the north of Tunisia. In Proceedings of the First International Conference on Drought Management: Scientific and Technological Innovations, Zaragoza, Spain, 12–14 June 2008; pp. 43–48. [Google Scholar]
- Bai, A.; Zhai, P.; Liu, X. Climatology and trends of wet spells in China. Theor. Appl. Climatol. 2007, 88, 139–148. [Google Scholar] [CrossRef]
- Auer, A.H., Jr. The rain versus snow threshold temperatures. Weatherwise 1974, 27, 67. [Google Scholar] [CrossRef]
- Dingman, S.L. Physical Hydrology, 3rd ed.; Waveland Press, Inc.: Long Grove, IL, USA, 2015; pp. 203–252. [Google Scholar]
- Neild, R.E.; Newman, J.E. Growing Season Characteristics and Requirements in the Corn Belt; Cooperative Extension Service, Iowa State University: Ames, IA, USA, 1987; Available online: https://www.extension.purdue.edu/extmedia/nch/nch-40.html (accessed on 23 March 2017).
- Loftus, J. Case Study: Toledo Harbor and the Maumee River Basin, Great Lakes Dredging Team. GLDT. Available online: https://greatlakesdredging.net/publications/1999-toledo-harbor-maumee/ (accessed on 10 January 2017).
- Davis, S. Western Lake Erie Basin Partnership, Toledo Metropolitan Area Council of Government TMACOG. Available online: http://www.tmacog.org/Environment/Environmental_Council/2015/07_Davis_TMACOG_Presentation12215.pdf (accessed on 10 January 2017).
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Lawrence Earlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Hassan, Z.; Shamsudin, S.; Harun, S. Application of SDSM and LARS-WG for simulating and downscaling of rainfall and temperature. Theor. Appl. Climatol. 2014, 116, 243–257. [Google Scholar] [CrossRef]
- Zhang, X.C. Assessing seasonal climatic impact on water resources and crop production using CLIGEN and WEPP models. Trans. ASAE 2003, 46, 685–693. [Google Scholar] [CrossRef]
- Sunyer, M.A.; Madsen, H. A Comparison of Three Weather Generators for Extreme Rainfall Simulation in Climate Change Impact Studies. Proceedings fo the 8th International Workshop on Precipitation in Urban Areas, St. Moritz, Switzerland, 10–13 December 2009. [Google Scholar]
- Semenov, M.A.; Brooks, R.J. Spatial interpolation of the LARS-WG stochastic weather generator in Great Britain. Clim. Res. 1999, 11, 137–148. [Google Scholar] [CrossRef]
- Koutsoyiannis, D.; Manetas, A. Simple disaggregation by accurate adjusting procedures. Water Resour. Res. 1996, 32, 2105–2117. [Google Scholar] [CrossRef]
- Srikanthan, R.; McMahon, T.A. Stochastic generation of annual, monthly and daily climate data: A review. Hydrol. Earth Syst. Sci. Discuss. 2001, 5, 653–670. [Google Scholar] [CrossRef]
- Dutton, A.; Carlson, A.E.; Long, A.J.; Milne, G.A.; Clark, P.U.; De Conto, R.; Horton, B.P.; Rahmstorf, S.; Raymo, M.E. Sea-level rise due to polar ice-sheet mass loss during past warm periods. Science 2015, 349, aaa4019. [Google Scholar] [CrossRef] [PubMed]
- Hall, D.K.; Comiso, J.C.; DiGirolamo, N.E.; Shuman, C.A.; Box, J.E.; Koenig, L.S. Variability in the surface temperature and melt extent of the greenland ice sheet from MODIS. Geophys. Res. Lett. 2013, 40, 2114–2120. [Google Scholar] [CrossRef]
- Karl, T.R.; Arguez, A.; Huang, B.; Lawrimore, J.H.; McMahon, J.R.; Menne, M.J.; Peterson, T.C.; Vose, R.S.; Zhang, H.-M. Possible artifacts of data biases in the recent global surface warming hiatus. Science 2015, 348, 1469–1472. [Google Scholar] [CrossRef] [PubMed]
CLImate GENerator (CLIGEN) | Long Ashton Research Station Weather Generator (LARS-WG) | Weather Generators (WeaGETS) | |
---|---|---|---|
Parameter time frame | Monthly | Monthly | Biweekly |
Model | First order, two state Markov model | Lengths of alternate dry and wet sequences, semi-empirical distributions fitted to observed series | First, second, and third order Markov chain models |
Precipitation distribution | Skewed normal distribution | Semi-empirical distribution | Exponential, Gamma, Skewed normal, Mixed exponential |
Maximum and minimum temperatures | Normal distribution | Normal distribution with pre-set cross correlation, seasonal cycles and standard deviation modeled using finite Fourier series with three harmonics | Normal distribution; new residuals generated using first order linear auto regressive model with constant lag-1 auto correlation and cross correlation. Seasonal cycles are modeled by finite Fourier series with two harmonics. |
Weather variables simulated | Maximum temperature, minimum temperature, dew point temperature, probability of today’s precipitation, amount of precipitation, time to peak, radiation, wind direction and velocity | Maximum temperature, minimum temperature, precipitation and solar radiation | Maximum temperature, minimum temperature, and precipitation |
Extreme Variables/Events | Observed | LARS-WG | CLIGEN | WeaGETS01 * | WeaGETS02 | WeaGETS03 | WeaGETS04 | WeaGETS05 | WeaGETS06 |
---|---|---|---|---|---|---|---|---|---|
Dry Sequence | |||||||||
Count for 50 years | 18 | 34 | 24 | 49 | 48 | 26 | 35 | 34 | 29 |
Wet Sequence | |||||||||
Count for 50 years | 213 | 209 | 279 | 185 | 159 | 224 | 245 | 209 | 207 |
Growing Degree Days | |||||||||
1 May | 89.0 | 53.6 | 85.7 | 106.6 | 108.2 | 110.0 | 108.2 | 105.4 | 111.0 |
15 May | 154.8 | 114.4 | 152.6 | 179.7 | 179.0 | 186.2 | 181.2 | 177.6 | 184.4 |
1 October | 1632.5 | 1561.9 | 1612.7 | 1666.0 | 1661.5 | 1670.7 | 1656.5 | 1651.4 | 1669.1 |
15 October | 1675.0 | 1608.4 | 1668.4 | 1732.5 | 1726.0 | 1732.7 | 1725.1 | 1720.8 | 1735.4 |
Snow Days | |||||||||
Number of days per year | 33 | 33 | 37 | 31 | 30 | 34 | 33 | 33 | 32 |
Period of Optimal Growth | |||||||||
Number of days per year | 63 | 71 | 61 | 60 | 60 | 61 | 60 | 59 | 61 |
Precipitation, mm | |||||||||
---|---|---|---|---|---|---|---|---|---|
Adrian | Norwalk | Fort Wayne | |||||||
Observed | LARS-WG ** | CLIGEN ** | Observed | LARS-WG ** | CLIGEN ** | Observed | LARS-WG ** | CLIGEN ** | |
Mean | 2.5 | 2.4–2.7 | 2.4–2.5 | 2.6 | 2.5–2.8 | 2.5–2.6 | 2.6 | 2.5–2.7 | 2.5–2.6 |
Cohen’s-d † | – | 0.017–0.036 | 0.015–0.023 | – | 0.043–0.065 | 0.057–0.061 | – | 0.20–0.23 | 0.21–0.22 |
Standard Deviation | 6.6 | 6.5–7.2 | 6.3–6.6 | 7.1 | 6.6–8.2 | 6.3–7.0 | 6.9 | 6.7–7.4 | 6.4–6.8 |
Standard Error | 0.050 | 0.048–0.052 | 0.046–0.048 | 0.05 | 0.048–0.060 | 0.046–0.052 | 0.05 | 0.0495–0.054 | 0.048–0.050 |
No rainfall days %) | 66.8 | 66.2–67.7 | 66.7–67.5 | 63.6 | 63.4–65.2 | 63.3–64.2 | 63.4 | 63.4–65.5 | 63.0–63.9 |
Skewness | 4.87 | 4.52–5.24 | 4.32–5.24 | 5.06 | 5.01–10.03 | 4.70–9.70 | 4.77 | 4.40–5.30 | 4.19–4.94 |
Kurtosis | 38.73 | 31.78–44.14 | 28.08–54.45 | 116.31 | 41.95–208.04 | 35.42–235.05 | 36.22 | 29.05–43.25 | 26.51–42.89 |
Q ‡ 95 | 14.7 | 14.2–16.1 | 14.3–15.2 | 15.2 | 14.4–16.0 | 13.8–14.5 | 15.5 | 14.7–16.2 | 14.7–15.6 |
Q97.5 | 22.1 | 21.9–23.8 | 20.7–22.0 | 22.6 | 21.6–24.1 | 20.1–21.5 | 23.4 | 22.3–25.0 | 21.8–23.0 |
Q99.5 | 41.1 | 40.5–45.2 | 37.7–40.7 | 40.1 | 39.3–44.5 | 36.6–41.1 | 42.2 | 41.08–46.8 | 38.8–43.5 |
Q100 (Max) | 120.0 | 93.0–120.8 | 82.1–171.3 | 229.1 | 124.0–228.4 | 103.3–277.6 | 111.8 | 86.9–111.5 | 84.0–147.0 |
Maximum Temperature *, °C | |||||||||
Mean | 15.0 | 14.9–15.1 | 14.9–15.0 | 15.0 | 15.0–15.1 | 15.0–15.1 | 15.5 | 15.4–15.6 | 15.4–15.5 |
Cohen’s-d | – | 0.101–0.112 | 0.101–0.104 | – | 0.069–0.079 | 0.072–0.075 | – | 0.0002–0.12 | 0.002–0.006 |
Standard Deviation | 11.6 | 11.1–11.3 | 11.5–11.6 | 11.5 | 11.0–11.2 | 11.4–11.5 | 11.8 | 11.2–11.4 | 11.7–11.8 |
Standard Error | 0.087 | 0.082–0.084 | 0.085–0.085 | 0.085 | 0.081–0.083 | 0.084–0.085 | 0.087 | 0.083–0.084 | 0.086–0.087 |
Skewness | (0.23) | (0.20)–(0.17) | (0.25)–(0.22) | (0.27) | (0.25)–(0.21) | (0.30)–(0.27) | (0.32) | (0.29)–(0.25) | (0.33)–(0.31) |
Kurtosis | 1.93 | 1.81–1.86 | 1.98–2.01 | 2.02 | 1.89–1.94 | 2.11–2.15 | 2.03 | 1.85–1.92 | 2.06–2.10 |
Q0 (Min) | (20.0) | (19.6)–(15.5) | (24.2)–(16.9) | (22.2) | (21.7)–(16.7) | (27.3)–(19.1) | (30.0) | (30.1)–(27.7) | (42.1)–(30.2) |
Q25 | 5 | 4.9–5.3 | 5.1–5.4 | 5.6 | 5.3–5.7 | 5.8–6.0 | (2.2) | (2.6)–(2.3) | (2.9)–(2.7) |
Q50 | 16.11 | 15.8–16.1 | 15.8–16.1 | 16.1 | 16.0–16.3 | 16.0–16.3 | 5 | 4.9–5.1 | 5.3–5.6 |
Q75 | 25 | 25.0–25.3 | 24.9–25.1 | 25 | 24.7–25.0 | 24.7–25.0 | 13.3 | 13.3–13.7 | 13.3–13.5 |
Q97.5 | 32.22 | 31.7–32.1 | 32.6–33.0 | 32.8 | 31.6–32.0 | 32.6–32.9 | 21.1 | 20.1–20.4 | 21.0–21.3 |
Q99.5 | 34.44 | 33.8–34.4 | 35.4–35.9 | 34.4 | 33.6–34.1 | 35.5–36.1 | 22.8 | 21.9–22.4 | 23.5–24.0 |
Q100 (Max) | 40 | 36.9–37.6 | 40.0–45.6 | 39.4 | 36.7–37.5 | 40.4–45.4 | 25.6 | 24.5–25.6 | 27.6–31.9 |
Minimum Temperature *, °C | |||||||||
Mean | 3.3 | 3.1–3.3 | 3.2–3.3 | 4.5 | 4.4–4.6 | 4.5–4.6 | 4.8 | 4.8–5.0 | 4.7–4.8 |
Cohen’s-d | – | 0.128–0.148 | 0.137–0.142 | – | 0.220–0.250 | 0.240–0.250 | – | 0.320–0.340 | 0.310–0.320 |
Standard Deviation | 10.0 | 9.5–9.7 | 9.9–10.0 | 10.1 | 9.7–9.8 | 10.1 | 10.3 | 9.8–10.0 | 10.3–10.4 |
Standard Error | 0.080 | 0.070–0.072 | 0.073–0.074 | 0.075 | 0.072–0.073 | 0.074–0.075 | 0.076 | 0.072–0.073 | 0.076–0.077 |
Skewness | (0.28) | (0.25)–(0.20) | (0.27)–(0.25) | (0.29) | (0.23)–(0.19) | (0.30)–(0.27) | (0.36) | (0.32)–(0.26) | (0.34)–(0.31) |
Kurtosis | 2.45 | 2.26–2.34 | 2.34–2.39 | 2.41 | 2.19–2.29 | 2.33–2.39 | 2.51 | 2.26–2.38 | 2.37–2.43 |
Q0 | (30.0) | (29.9)–(26.9) | (41.5)–(29.6) | (29.4) | (29.4)–(27.0) | (38.6)–(28.5) | (30.0) | (30.1)–(27.7) | (42.1)–(30.2) |
Q25 | (3.9) | (9.8)–(9.3) | (4.2)–(4.1) | (2.8) | (3.1)–(2.8) | (3.1)–(2.9) | (2.2) | (2.6)–(2.3) | (2.9)–(2.7) |
Q50 | 3.3 | 3.0–3.3 | 3.6–3.9 | 4.4 | 4.3–4.6 | 5.0–5.2 | 5 | 4.9–5.1 | 5.3–5.6 |
Q75 | 11.7 | 11.3–11.6 | 11.4–11.6 | 12.8 | 12.8–13.1 | 12.8–13.0 | 13.3 | 13.3–13.7 | 13.3–13.5 |
Q99.5 | 21.7 | 20.8–21.3 | 22.2–22.8 | 22.8 | 20.0–20.3 | 23.5–24.0 | 22.8 | 21.9–22.4 | 23.5–24.0 |
Q100 | 24.4 | 23.8–24.2 | 26.5–30.5 | 26.1 | 24.4–25.3 | 27.8–32.2 | 25.6 | 24.5–25.6 | 27.6–31.9 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mehan, S.; Guo, T.; Gitau, M.W.; Flanagan, D.C. Comparative Study of Different Stochastic Weather Generators for Long-Term Climate Data Simulation. Climate 2017, 5, 26. https://doi.org/10.3390/cli5020026
Mehan S, Guo T, Gitau MW, Flanagan DC. Comparative Study of Different Stochastic Weather Generators for Long-Term Climate Data Simulation. Climate. 2017; 5(2):26. https://doi.org/10.3390/cli5020026
Chicago/Turabian StyleMehan, Sushant, Tian Guo, Margaret W. Gitau, and Dennis C. Flanagan. 2017. "Comparative Study of Different Stochastic Weather Generators for Long-Term Climate Data Simulation" Climate 5, no. 2: 26. https://doi.org/10.3390/cli5020026
APA StyleMehan, S., Guo, T., Gitau, M. W., & Flanagan, D. C. (2017). Comparative Study of Different Stochastic Weather Generators for Long-Term Climate Data Simulation. Climate, 5(2), 26. https://doi.org/10.3390/cli5020026