Characterization of Urban Heat and Exacerbation: Development of a Heat Island Index for California
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Definition of the UHI Index (UHII)
2.3. Models
2.4. Modeling Periods and Domains
2.5. Model Input
2.6. Model Modifications and Customizations
2.7. UHI/UHII Reference Points
2.8. Model Performance Evaluation
3. Results and Discussion
3.1. UHII Calculations
- Small areas: where urban areas are relatively small and, thus, UHIs are small and localized.
- Single cores: these are relatively larger urban areas where the UHI can develop fully and the downwind transport of heat can occur. There is one core, i.e., one main area where the UHI maximum can be defined and thus a single-core UHII can be identified.
- Multiple cores: in this case, several UHI cores develop, although each core is still well defined.
- Climate archipelagos: In this situation, urban land use covers a large geographical area often demarcated by coastlines or topography (in California). Thus, unlike single- or multi-core urban areas, where there is a clear beginning and end to urban land use, urban-climate archipelagos consist of sustained built-up cover, with minimal interruption. The only discontinuities in the urban expanse usually occur because of topography. Examples include San Francisco Bay Area and the Los Angeles basin.
3.2. Climate Archipelagos and Air Temperatures
3.3. UHI Exacerbation during Hot Weather
4. Conclusions and Future Research
Acknowledgments
Conflicts of Interest
References
- Goggins, W.B.; Chan, E.Y.Y.; Ng, E.; Ren, C.; Chen, L. Effect modification of the association between short-term meteorological factors and mortality by urban heat islands in Hong Kong. PLoS ONE 2012, 7, e38551. [Google Scholar] [CrossRef] [PubMed]
- Adachi, S.A.; Kimura, F.; Kusaka, H.; Inoue, T.; Ueda, H. Comparison of the impact of global climate changes and urbanization on summertime future climate in the Tokyo metropolitan area. J. Appl. Meteorol. Climatol. 2012, 51, 1441–1454. [Google Scholar] [CrossRef]
- Tan, J.; Zheng, Y.; Tang, X.; Guo, C.; Li, L.; Song, G.; Zhen, X.; Yuan, D.; Kalkstein, A.J.; Li, F. The urban heat island and its impact on heat waves and human health in Shanghai. Int. J. Biometeorol. 2010, 54, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Taha, H. Potential Impacts of Climate Change on Tropospheric Ozone in California: A Preliminary Assessment of the Los Angeles Basin and the Sacramento Valley; Lawrence Berkeley National Laboratory Report LBNL-46695; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2001; Available online: http://escholarship.org/uc/item/5s41x609 (accessed on 3 March 2016).
- Potchter, O.; Ben-Shalom, H.O. Urban warming and global warming: Combined effect on thermal discomfort in the desert city of Beer Sheva, Israel. J. Arid Environ. 2013, 98, 113–122. [Google Scholar] [CrossRef]
- Vanos, J.K.; Cakmak, S.; Kalkstein, L.S.; Yagouti, A. Association of weather and air pollution interactions on daily mortality in 12 Canadian cities. Air Qual. Atmos. Health 2014, 8, 307–320. [Google Scholar] [CrossRef] [PubMed]
- Kalkstein, L.; Sailor, D.; Shickman, K.; Sherdian, S.; Vanos, J. Assessing the Health Impacts of Urban Heat Island Reduction Strategies in the District of Columbia; Report DDOE ID#2013-10-OPS; Global Cool Cities Alliance: Washington, DC, USA, 2013. [Google Scholar]
- Taha, H. Cool cities: Counteracting potential climate change and its health impacts. Curr. Clim. Chang. Rep. 2015, 1, 163–175. [Google Scholar] [CrossRef]
- Taha, H. Meso-urban meteorological and photochemical modeling of heat island mitigation. Atmos. Environ. 2008, 42, 8795–8809. [Google Scholar] [CrossRef]
- Taha, H. Meteorological, emissions, and air-quality modeling of heat-island mitigation: Recent findings for California, USA. Int. J. Low Carbon Technol. 2013, 10, 3–14. [Google Scholar] [CrossRef]
- Taha, H. Meteorological, air-quality, and emission-equivalence impacts of urban heat island control in California. Sustain. Cities Soc. 2015, 19, 207–221. [Google Scholar] [CrossRef]
- Papanastasiou, D.K.; Melas, D.; Kambezidis, H.D. Air quality and thermal comfort levels under extreme hot weather. Atmos. Res. 2015, 251, 4–13. [Google Scholar] [CrossRef]
- Wang, X.; Chen, F.; Wu, Z.; Zhang, M.; Tewari, M.; Guenther, A.; Guenther, A.; Wiedinmyer, C. Impacts of weather conditions modified by urban expansion on surface ozone: Comparison between the Pearl River Delta and Yangtze River Delta regions. Adv. Atmos. Sci. 2009, 26, 962–972. [Google Scholar] [CrossRef]
- Lombardo, M.A. Ilhas de Calor nas Metropoles: O Example de Sao Paulo; Editora Hucitec: Sao Paulo, Brazil, 1985; p. 244. [Google Scholar]
- Rajagopalan, P.; Lim, K.C.; Jamei, E. Urban heat island and wind flow characteristics of a tropical city. Sol. Energy 2014, 107, 159–170. [Google Scholar] [CrossRef]
- Santamouris, M. Cooling the cities—A review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Sol. Energy 2014, 103, 682–703. [Google Scholar] [CrossRef]
- Skoulika, F.; Santamouris, M.; Kolokotsa, D.; Boemia, N. On the thermal characteristics and the mitigation potential of a medium size urban park in Athens, Greece. Landsc. Urban Plan. 2013, 123, 73–86. [Google Scholar] [CrossRef]
- Taha, H. Episodic performance and sensitivity of the urbanized MM5 (uMM5) to perturbations in surface properties in Houston TX. Bound.-Layer Meteorol. 2008, 127, 193–218. [Google Scholar] [CrossRef]
- Taha, H. Urban surface modification as a potential ozone air-quality improvement strategy in California: A mesoscale modeling study. Bound.-Layer Meteorol. 2008, 127, 219–239. [Google Scholar] [CrossRef]
- Taha, H. Multi-Episodic and Seasonal Meteorological, Air-Quality, and Emission-Equivalence Impacts of Heat-Island Control and Evaluation of the Potential Atmospheric Effects of Urban Solar Photovoltaic Arrays; PIER Environmental Research Program; California Energy Commission: Sacramento, CA, USA, 2013. Available online: http://www.energy.ca.gov/2013publications/CEC-500-2013-061/CEC-500-2013-061.pdf (accessed on 3 March 2016).
- OEHHA 2014. California Communities Environmental Health Screening Tool; version 2.0 (CalEnviroScreen 2.0) Guidance and Screening Tool; Office of Environmental Health Hazard Assessment Report; Office of Environmental Health Hazard Assessment: Sacramento, CA, USA, 2014; p. 136. Available online: https://oehha.ca.gov/media/CES20FinalReportUpdateOct2014.pdf (accessed on 3 March 2017).
- Taha, H.; Freed, T. Creating and Mapping an Urban Heat Island Index for California; Report prepared by Altostratus Inc., Contract 13-001; California Environmental Protection Agency (Cal/EPA): Sacramento, CA, USA, 2015; Available online: https://calepa.ca.gov/wp-content/uploads/sites/34/2016/10/UrbanHeat-Report-Report.pdf and https://www.calepa.ca.gov/climate/urban-heat-island-index-for-california/urban-heat-island-interactive-maps/; (accessed on 3 March 2017).
- National Oceanic and Atmospheric Administration (NOAA). State Annual and Seasonal Time Series. 2017. Available online: www.ncdc.noaa.gov/temp-and-precip/state-temps/ (accessed on 1 January 2016).
- Knowlton, K.; Rotkin-Ellma, M.; King, G.; Margolis, H.G.; Smith, D.; Solomon, G.; Trent, R.; English, P. The 2006 California heat wave: Impacts on hospitalizations and emergency departments visits. Environ. Health Perspect. 2009, 117, 61. [Google Scholar] [CrossRef] [PubMed]
- Ostro, B.D.; Roth, L.A.; Green, R.S.; Basu, R. Estimating the mortality effect of the July 2006 California heat wave. Environ. Res. 2009, 109, 614–619. [Google Scholar] [CrossRef]
- Powers, G.; Huang, X.Y.; Klemp, B.; Skamarock, C.; Dudhia, J.; Gill, O.; Duda, G.; Barker, D.; Wang, W. A Description of the Advanced Research WRF; NCAR Technical Note NCAR/TN-475+STR; National Center for Atmospheric Research: Boulder, CO, USA, 2008. [Google Scholar]
- Kusaka, H.; Kondo, H.; Kikegawa, Y.; Kimura, F. A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models. Bound.-Layer Meteorol. 2001, 101, 329–358. [Google Scholar] [CrossRef]
- Chen, F.; Kusaka, H.; Bornstein, R.; Ching, J.; Grimmond, C.S.B.; Grossman-Clarke, S.; Loridan, T.; Manning, K.; Martilli, A.; Miao, S.; et al. The integrated WRF/urban modeling system: Development, evaluation, and applications to urban environmental problems. Int. J. Climatol. 2010, 31, 273–288. [Google Scholar] [CrossRef]
- Salamanca, F.; Martilli, A.; Tewari, M.; Chen, F. A study of the urban boundary layer using different urban parameterizations and high-resolution urban canopy parameters with WRF. J. Appl. Meteorol. Climatol. 2011, 50, 1107–1128. [Google Scholar] [CrossRef]
- Bougeault, P.; Lacarrere, P. Parameterization of orography-induced turbulence in a mesobeta-scale model. Mon. Weather Rev. 1989, 117, 1872–1890. [Google Scholar] [CrossRef]
- Ching, J.; Brown, M.; Burian, S.; Chen, F.; Cionco, R.; Hanna, A.; Hultgren, T.; McPherson, T.; Sailor, D.; Taha, H.; et al. National urban database and access portal tool, NUDAPT. Bull. Am. Meteorol. Soc. 2009, 90, 1157. [Google Scholar] [CrossRef]
- Trent, R.B. Review of July 2006 Heat Wave Related Fatalities in California; California Department of Health Services: Sacramento, CA, USA, 2007. Available online: http://www.cdph.ca.gov/HealthInfo/injviosaf/Documents/HeatPlanAssessment-EPIC.pdf (accessed on 3 March 2016).
- Gershunov, A.; Cayan, D.R.; Iacobellis, S.F. The great 2006 heat wave over California and Nevada: Signal of an increasing trend. J. Clim. 2009, 22, 6181–6203. [Google Scholar] [CrossRef]
- Kistler, R.; Kalnay, E.; Collins, W.; Saha, S.; White, G.; Woollen, J.; Kalnay, E.; Chelliah, M.; Ebisuzaki, W.; Kanamitsu, M.; et al. The NCEP-NCAR 50-year reanalysis: Monthly means CDROM and documentation. Bull. Am. Meteorol. Soc. 2001, 82, 247–267. [Google Scholar] [CrossRef]
- Anderson, J.R.; Hardy, E.E.; Roach, J.T.; Witmer, R.E. A Land Use and Land Cover Classification System for Use with Remote Sensor Data; USGS Professional Paper 964; U.S. Government Printing Office: Washington, DC, USA, 2001.
- Multi-Resolution Land-Characteristics Consortium (MRLC). National Land Cover Databases. Available online: http://www.mrlc.gov/nlcd2006.php (accessed on 1 January 2016).
- Stewart, I.D.; Oke, T.R. Local climate zones for urban temperature studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Akbari, H.; Rose, S.; Taha, H. Characterizing the Fabric of the Urban Environment: A Case Study of Sacramento, California; Lawrence Berkeley National Laboratory Report LBNL-44688; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 1999. [Google Scholar]
- Rose, S.; Akbari, H.; Taha, H. Characterizing the Fabric of the Urban Environment: A Case Study of Greater Houston, Texas; Lawrence Berkeley National Laboratory Report LBNL-51448; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2003. [Google Scholar]
- Taha, H. Urban Surface Modification as a Potential Ozone Air-Quality Improvement Strategy in California—Phase 2: Fine-Resolution Meteorological and Photochemical Modeling of Urban Heat Islands; PIER Environmental Research; California Energy Commission: Sacramento, CA, USA, 2007. Available online: http://www.energy.ca.gov/2009publications/CEC-500-2009-071/CEC-500-2009-071.PDF (accessed on 4 April 2015).
- Boucouvala, D.; Bornstein, D. Analysis of transport patterns during an SCOS97 NARSTO episode. Atmos. Environ. 2003, 37, 73–94. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Baik, J.-J. Spatial and temporal structure of the urban heat island in Seoul. J. Appl. Meteorol. 2005, 44, 591–605. [Google Scholar] [CrossRef]
- Oke, T.R.; Hannell, F.G. Urban Climates. WMO Tech. Note 1970, 108, 113–126. [Google Scholar]
- Oke, T.R. City size and the urban heat island. Atmos. Environ. 1973, 7, 769–779. [Google Scholar] [CrossRef]
- Tesche, T.W.; McNally, D.E.; Emery, C.A.; Tai, E. Evaluation of the MM5 Model over the Midwestern U.S. for Three 8-Hour Oxidant Episodes, Prepared for the Kansas City Ozone Technical Workgroup; Alpine Geophysics LLC and Environ Corp.: San Rafael, CA, USA, 2001; p. 23. [Google Scholar]
- Shepherd, J.M.; Bounoua, L.; Mitra, C. Urban Climate Archipelagos: A New Framework for Urban Impacts on Climate; Earthzine: New York, NY, USA, 2013; Available online: http://earthzine.org/2013/11/29/urban-climate-archipelagos-a-new-framework-for-urban-impacts-on-climate/ (accessed on 3 March 2016).
- Daly, C.; Halbleib, M.; Smith, J.I.; Gibson, W.P.; Doggett, M.K.; Taylor, G.H.; Vurtis, J.; Pasteris, P.P. Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol. 2008, 28, 2031–2064. [Google Scholar] [CrossRef]
- Lebassi-Habtezion, B.; Gonzalez, J.; Bornstein, R.D. Modeled large-scale warming impacts on summer California coastal-cooling trends. J. Geophys. Res. 2011, 116, D20. [Google Scholar] [CrossRef]
- Liu, L.; Talbot, R.; Lan, X. Influence of climate change and meteorological factors on Houston’s air pollution: Ozone case study. Atmosphere 2015, 6, 623. [Google Scholar] [CrossRef]
- Taha, H.; Wilkinson, J.; Bornstein, R. Urban Forest for Clean Air Demonstration in the Sacramento Federal Non-Attainment Area: Atmospheric Modeling in Support of a Voluntary Control Strategy; Sacramento Metropolitan Air Quality Management District (SMAQMD): Sacramento, CA, USA, 2011. [Google Scholar]
- Li, D.; Bou-Zeid, E. Synergistic interactions between urban heat islands and heat waves: The impact in cities is larger than the sum of its parts. J. Appl. Meteorol. Climatol. 2013, 52, 2051–2064. [Google Scholar] [CrossRef]
- Li, D.; Sun, T.; Liu, M.; Yang, L.; Wang, L.; Gao, Z. Contrasting responses of urban and rural surface energy budgets to heat waves explain synergies between urban heat islands and heat waves. Environ. Res. Lett. 2015, 10, 054009. [Google Scholar] [CrossRef]
- Georgescu, M.; Morefield, P.E.; Bierwage, B.G.; Weaver, C.P. Urban adaptation can roll back warming of emerging metropolitan regions. Proc. Natl. Acad. Sci. USA 2014, 111, 2909–2914. [Google Scholar] [CrossRef] [PubMed]
- Lemonsu, A.; Kounkou-Arnaud, R.; Desplat, J.; Salagnac, J.-L.; Masson, V. Evolution of the Parisian urban climate under a global changing climate. Clim. Chang. 2013, 116, 679–692. [Google Scholar] [CrossRef]
1 | 2 | 3 | 4 |
---|---|---|---|
Region | Type | DH/Day Range (°C.hr/day) | Largest ∆T (°C) |
Davis | UI | 5–35 | 1.3 |
Fairfield | UI | 1–113 | 4.6 |
Napa | UI | 1–69 | 2.8 |
Sacramento | UI | 4–76 | 3.0 |
San Rafael | UI | 1–43 | 1.7 |
Santa Rosa | UI | 1–59 | 2.4 |
Fresno | UI | 1–46 | 1.9 |
Merced | UI | 6–45 | 1.7 |
Modesto | UI | 1–45 | 1.8 |
Morgan Hill | UI | 6–41 | 1.5 |
Livermore | UI | 0–39 | 1.6 |
San Francisco | UA | 0–122 | 5.0 |
San Jose | UA | 2–49 | 2.0 |
Vallejo | UI | 1–83 | 3.4 |
Walnut Creek | UI | 1–96 | 3.9 |
Antioch | UI | 1–46 | 1.9 |
Bakersfield | UI | 0–34 | 1.4 |
East Bay | UA | 0–121 | 5.0 |
Lancaster | UI | 3–26 | 0.9 |
Mission Viejo | UI | 0–109 | 4.6 |
Oceanside | UA | 0–125 | 5.2 |
San Diego | UA | 1–125 | 5.1 |
San Fernando | UA | 1–42 | 1.7 |
San Luis Obispo | UI | 9–58 | 2.0 |
Santa Clarita | UI | 2–25 | 1.0 |
Santa Cruz | UI | 2–42 | 1.6 |
Simi Valley | UI | 0–59 | 2.4 |
Los Angeles West | UA | 0–182 | 7.5 |
Compton | Downtown Los Angeles | San Pedro | Anaheim–Orange | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Tract | UHII | UHI | Tract | UHII | UHI | Tract | UHII | UHI | Tract | UHII | UHI |
1 | 18.50 | 0.77 | 6 | 40.46 | 1.68 | 9 | 11.44 | 0.47 | 12 | 46.06 | 1.91 |
2 | 13.14 | 0.54 | 7 | 39.80 | 1.65 | 10 | 25.08 | 1.04 | 13 | 37.86 | 1.57 |
3 | 12.48 | 0.52 | 8 | 32.63 | 1.35 | 11 | 19.13 | 0.79 | 14 | 45.74 | 1.90 |
4 | 15.00 | 0.62 | 15 | 40.95 | 1.70 | ||||||
5 | 17.38 | 0.72 |
County/Urban Area | wUHII | Average Daily Deaths * |
---|---|---|
Fresno County/Fresno | 4410 | 17.5 |
Kern County/Bakersfield | 2180 | 13.0 |
Los Angeles County/East basin | 105,000 | 162.5 |
Sacramento County/Sacramento | 14,300 | 24.6 |
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taha, H. Characterization of Urban Heat and Exacerbation: Development of a Heat Island Index for California. Climate 2017, 5, 59. https://doi.org/10.3390/cli5030059
Taha H. Characterization of Urban Heat and Exacerbation: Development of a Heat Island Index for California. Climate. 2017; 5(3):59. https://doi.org/10.3390/cli5030059
Chicago/Turabian StyleTaha, Haider. 2017. "Characterization of Urban Heat and Exacerbation: Development of a Heat Island Index for California" Climate 5, no. 3: 59. https://doi.org/10.3390/cli5030059