Different Behaviours of the Ross and Weddell Seas Surface Heat Fluxes in the Period 1972–2015
Abstract
:1. Introduction
2. Materials and Methods
2.1. Surface Heat Fluxes
2.2. SOI and SAMi
2.3. Wavelet Analysis
3. Results and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Rintoul, S.R.; Hughes, C.; Olbers, D. The Antarctic Circumpolar System. In Ocean Circulation and Climate; Siedler, G., Church, J., Gould, J., Eds.; Academic Press: London, UK, 2001; Volume 77, pp. 562–564. [Google Scholar]
- Cotroneo, Y.; Budillon, G.; Fusco, G.; Spezie, G. Cold core eddies and fronts of the Antarctic Circumpolar Current south of New Zealand from in situ and satellite data. J. Geophys. Res. Oceans 2013, 118, 2653–2666. [Google Scholar] [CrossRef]
- Buongiorno Nardelli, B.; Guinehut, S.; Verbrugge, N.; Cotroneo, Y.; Zambianchi, E.; Iudicone, D. Southern Ocean mixed-layer seasonal and interannual variations from combined satellite and in situ data. J. Geophys. Res. 2017, 122, 10042–10060. [Google Scholar] [CrossRef]
- Thompson, A.F.; Heywood, K.J. Frontal structure and transport in the northwestern Weddell Sea. Deep-Sea Res. I 2008, 55, 1229–1251. [Google Scholar] [CrossRef]
- Misic, C.; Covazzi Harriague, A.; Mangoni, O.; Aulicino, G.; Castagno, P.; Cotroneo, Y. Effects of physical constraints on the lability of POM during summer in the Ross Sea. J. Mar. Syst. 2017, 166, 132–143. [Google Scholar] [CrossRef]
- Mangoni, O.; Saggiomo, V.; Bolinesi, F.; Margiotta, F.; Budillon, G.; Cotroneo, Y.; Misic, C.; Rivaro, P.; Saggiomo, M. Phytoplankton blooms during austral summer in the Ross Sea, Antarctica: Driving factors and trophic implications. PLoS ONE 2017, 12, e0176033. [Google Scholar] [CrossRef] [PubMed]
- Rivaro, P.; Ianni, C.; Langone, L.; Ori, C.; Aulicino, G.; Cotroneo, Y.; Saggiomo, M.; Mangoni, O. Physical and biological forcing of mesoscale variability in the carbonate system of the Ross Sea (Antarctica) during summer 2014. J. Mar. Syst. 2017, 166, 144–158. [Google Scholar] [CrossRef]
- Walsh, J.E. The role of sea ice in climatic variability: Theories and evidence. Atmos.-Ocean 1983, 21, 229–242. [Google Scholar] [CrossRef]
- Clark, P.U.; Pisias, N.G.; Stocker, T.F.; Weaver, A.J. The role of the thermohaline circulation in abrupt climate change. Nature 2002, 415, 863–869. [Google Scholar] [CrossRef] [PubMed]
- Rahmstorf, S. Ocean circulation and climate during the past 120,000 years. Nature 2002, 419, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Maykut, G.A. Energy exchange over young sea ice in the central Arctic. J. Geophys. Res. 1978, 83, 3646–3658. [Google Scholar] [CrossRef]
- Aulicino, G.; Fusco, G.; Kern, S.; Budillon, G. 1992–2011 sea ice thickness estimation in the Ross and Weddell Seas from SSM/I brightness temperatures. In Proceedings of the Earth Observation and Cryosphere Science ESA SP-712, Frascati, Italy, 13–16 November 2012. [Google Scholar]
- Aulicino, G.; Fusco, G.; Kern, S.; Budillon, G. Estimation of sea-ice thickness in Ross and Weddell Seas from SSM/I brightness temperatures. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4122–4140. [Google Scholar] [CrossRef]
- Wadhams, P.; Aulicino, G.; Parmiggiani, F.; Persson, P.O.G.; Holt, B. Pancake ice thickness mapping in the Beaufort Sea from wave dispersion observed in SAR imagery. J. Geophys. Res. 2018. [Google Scholar] [CrossRef]
- Fusco, G.; Budillon, G.; Spezie, G. Surface heat fluxes and thermohaline variability in the Ross Sea and in Terra Nova Bay polynya. Cont. Shelf Res. 2009, 29, 1887–1895. [Google Scholar] [CrossRef]
- Rusciano, E.; Budillon, G.; Fusco, G.; Spezie, G. Evidence of atmosphere-sea ice-ocean coupling in the Terra Nova Bay polynya (Ross Sea-Antarctica). Cont. Shelf Res. 2013, 61–62, 112–124. [Google Scholar] [CrossRef]
- Sansiviero, M.; Morales Maqueda, M.Á.; Fusco, G.; Aulicino, G.; Flocco, D.; Budillon, G. Modelling sea ice formation in the Terra Nova Bay polynya. J. Mar. Syst. 2017, 166, 4–25. [Google Scholar] [CrossRef]
- Aulicino, G.; Sansiviero, M.; Paul, S.; Cesarano, C.; Fusco, G.; Wadhams, P.; Budillon, G. A new approach for monitoring the Terra Nova Bay polynya through MODIS ice surface temperature imagery and its validation during 2010 and 2011 winter seasons. Remote Sens. 2018, 10, 366. [Google Scholar] [CrossRef]
- Seabrooke, J.M.; Hufford, G.L.; Elder, R.B. Formation of Antarctic Bottom Water in the Weddell Sea. J. Geophys. Res. 1971, 76, 2164–2178. [Google Scholar] [CrossRef]
- Gordon, A.L. Deep Antarctic convection west of Maud Rise. J. Phys. Oceanogr. 1978, 8, 600–612. [Google Scholar] [CrossRef]
- Orsi, A.H.; Johnson, G.C.; Bullister, J.L. Circulation, mixing, and production of Antarctic Bottom Water. Prog. Oceanogr. 1999, 43, 55–109. [Google Scholar] [CrossRef]
- Budillon, G.; Fusco, G.; Spezie, G. A study of surface heat fluxes in the Ross Sea (Antarctica). Antarct. Sci. 2000, 12, 243–254. [Google Scholar] [CrossRef]
- Maykut, A. Large-scale heat exchange and ice production in the central Arctic. J. Geophys. Res. 1982, 81, 7971–7984. [Google Scholar] [CrossRef]
- Gouretski, V. The large-scale thermohaline structure of the Ross Gyre. In Oceanography of the Ross Sea Antarctica; Spezie, G., Manzella, G.M.R., Eds.; Springer-Verlag: Milan, Italy, 1999; pp. 77–100. [Google Scholar]
- Cerrone, D.; Fusco, G.; Simmonds, I.; Aulicino, G.; Budillon, G. Dominant covarying climate signals in the Southern Ocean and Antarctic sea ice influence during the last three decades. J. Clim. 2017, 30, 3055–3072. [Google Scholar] [CrossRef]
- Cerrone, D.; Fusco, G.; Cotroneo, Y.; Simmonds, I.; Budillon, G. The Antarctic Circumpolar Wave: Its presence and inter–decadal changes during the last 142 years. J. Clim. 2017, 30, 6371–6389. [Google Scholar] [CrossRef]
- Cerrone, D.; Fusco, G. Low-frequency climate modes and Antarctic sea ice variations, 1982–2013. J. Clim. 2018, 31, 147–175. [Google Scholar] [CrossRef]
- Simmonds, I.; King, J.C. Global and hemispheric climate variations affecting the Southern Ocean. Antarct. Sci. 2004, 16, 401–413. [Google Scholar] [CrossRef]
- Simmonds, I.; Rafter, A.; Cowan, T.; Watkins, A.B.; Keay, K. Large-scale vertical momentum, kinetic energy and moisture fluxes in the Antarctic sea-ice region. Bound. Layer Meteorol. 2005, 117, 149–177. [Google Scholar] [CrossRef]
- Thompson, D.W.J.; Solomon, S. Interpretation of recent Southern Hemisphere climate change. Science 2002, 296, 895–899. [Google Scholar] [CrossRef] [PubMed]
- Hall, A.; Visbeck, M. Synchronous variability in the Southern Hemisphere atmosphere, sea ice, and ocean resulting from the annular mode. J. Clim. 2002, 15, 3043–3057. [Google Scholar] [CrossRef]
- Liu, J.; Curry, J.; Martinson, D. Interpretation of recent Antarctic sea ice variability. Geophys. Res. Lett. 2004, 31, 2. [Google Scholar] [CrossRef]
- Yuan, X.; Li, C. Climate modes in southern high latitudes and their impacts on Antarctic sea ice. J. Geophys. Res. 2008, 113, C06S91. [Google Scholar] [CrossRef]
- Lefebvre, W.; Goosse, H.; Timmermann, R.; Fichefet, T. Influence of the southern annular mode on the sea ice–ocean system. J. Geophys. Res. 2004, 109, C09005. [Google Scholar] [CrossRef]
- Turner, J. The El Niño–Southern Oscillation and Antarctica. Int. J. Climatol. 2004, 24, 1–31. [Google Scholar] [CrossRef]
- Hoerling, M.P.; Hurrell, J.W.; Xu, T. Tropical origins for recent North Atlantic climate change. Science 2001, 292, 90–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoerling, M.P.; Hurrell, J.W.; Xu, T.; Bates, G.T.; Phillips, A.S. Twentieth century North Atlantic climate change. Part II: Understanding the effect of Indian Ocean warming. Clim. Dyn. 2004, 23, 391–405. [Google Scholar] [CrossRef]
- Cullather, R.I.; Bromwich, D.H.; Van Woert, M.L. Interannual variations in Antarctic precipitation related to ElNiño–Southern Oscillation. J. Geophys. Res. 1996, 10, 19109–19118. [Google Scholar]
- Yuan, X.; Cane, M.A.; Martinson, D.G. Climate variation-cycling around the South Pole. Nature 1996, 380, 673–674. [Google Scholar] [CrossRef]
- Harangozo, S.A. A search for ENSO teleconnections in the west Antarctic Peninsula climate in austral winter. Int. J. Climatol. 2000, 20, 663–679. [Google Scholar] [CrossRef]
- Yuan, X.; Martinson, D.G. The Antarctic dipole and its predictability. Geophys. Res. Lett. 2001, 28, 3609–3612. [Google Scholar] [CrossRef]
- White, W.B.; Peterson, R.G. An Antarctic circumpolar wave in surface pressure, wind, temperature and sea-ice extent. Nature 1996, 380, 699–702. [Google Scholar] [CrossRef]
- Gille, S.; Josey, S.; Swart, S. New approaches for air-sea fluxes in the Southern Ocean. EOS 2016, 97. [Google Scholar] [CrossRef]
- Bourassa, M.A.; Gille, S.; Bitz, C.; Carlson, D.; Cerovecki, I.; Clayson, C.A.; Cronin, M.F.; Drennan, W.M.; Fairall, C.W.; Hoffman, R.N.; et al. High-latitude ocean and sea ice surface fluxes: Challenges for climate research. Bull. Am. Meteorol. Soc. 2013, 94, 403–423. [Google Scholar] [CrossRef]
- Cullather, R.I.; Bromwich, D.H. Validation of operational numerical analyses in Antarctic latitudes. J. Geophys. Res. 1997, 102, 13761–13784. [Google Scholar] [CrossRef]
- Fusco, G.; Flocco, D.; Budillon, G.; Spezie, G.; Zambianchi, E. Dynamics and variability of Terra Nova Bay polynya. PSZN Mar. Ecol. 2002, 23, 201–209. [Google Scholar] [CrossRef]
- Uppala, S.M.; KÅllberg, P.W.; Simmons, A.J.; Andrae, U.; Bechtold, V.D.C.; Fiorino, M.; Gibson, J.K.; Haseler, J.; Hernandez, A.; Kelly, G.A.; et al. The ERA-40 re-analysis. Q. J. R. Meteorol. Soc. 2005, 131, 2961–3012. [Google Scholar] [CrossRef]
- Berliand, M.; Berliand, T. Determining the net longwave radiation of the Earth with consideration of the effect of cloudiness. Izvestia Akademii Naiik SSSR Seriya Geofizrka 1952, 1, 64–78. [Google Scholar]
- Simonsen, K.; Haugan, P.M. Heat budgets of the Arctic Mediterranean and sea surface heat flux parameterizations for the Nordic Seas. J. Geophys. Res. 1996, 101, 6553–6576. [Google Scholar] [CrossRef]
- Troup, A.J. The Southern Oscillation. Q. J. R. Meteorol. Soc. 1965, 91, 490–506. [Google Scholar] [CrossRef]
- Marshall, G.J. Trends in the Southern Annular Mode from observations and reanalyses. J. Clim. 2003, 16, 4134–4143. [Google Scholar] [CrossRef]
- Marshall, G.J. National Center for Atmospheric Research Staff (Eds.): The Climate Data Guide: Marshall Southern Annular Mode (SAM) Index (Station-Based). Available online: https://climatedataguide.ucar.edu/climate-data/marshall-southern-annular-mode-sam-index-station-based (accessed on 10 June 2016).
- Swart, N.C.; Fyfe, J.C.; Gillett, N. Comparing trends in the southern annular mode and surface westerly jet. J. Clim. 2015, 28, 8840–8859. [Google Scholar] [CrossRef]
- Pozo-Vàsquez, D.; Esteban-Parra, M.J.; Rodrigo, F.S.; Castro-Diez, Y. Astudy of NAO variability and its possible non-linear influences on European surface temperature. Clim. Dyn. 2001, 17, 701–715. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef]
- Daubechies, I. The wavelet transform time-frequency localization and signal analysis. IEEE Trans. Inform. Theory 1990, 36, 961–1004. [Google Scholar] [CrossRef]
- Jevrejeva, S.; Moore, J.C.; Woodworth, P.L.; Grinsted, A. Influence of large scale atmospheric circulation on the European sea level: Results based on the wavelet transform method. Tellus A 2005, 57, 129–149. [Google Scholar] [CrossRef]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of the cross-wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process Geophys. 2004, 11, 562–564. [Google Scholar] [CrossRef]
- Yeo, S.R.; Kim, K.Y. Decadal changes in the Southern Hemisphere sea surface temperature in association with El Niño–Southern Oscillation and Southern Annular Mode. Clim. Dyn. 2015, 45, 3227–3242. [Google Scholar] [CrossRef]
- Yuan, X.; Yonekura, E. Decadal variability in the Southern Hemisphere. J. Geophys. Res. 2011, 116, D19. [Google Scholar] [CrossRef]
- White, W.B.; Gloersen, P.; Simmonds, I. Troposphere response in the Antarctic Circumpolar Wave along the sea ice edge around Antarctica. J. Clim. 2004, 17, 2765–2779. [Google Scholar] [CrossRef]
Surface Heat Fluxes Estimated Using Constant and Variable Sea Ice Data | ||||||
---|---|---|---|---|---|---|
ROSS SEA | WEDDELL SEA | |||||
Year | QT Const Ice | QT Var Ice | Difference | QT Const Ice | QT Var Ice | Difference |
1992 | −71 | −70 | −1 | −84 | −78 | −6 |
1993 | −79 | −77 | −2 | −84 | −81 | −3 |
1994 | −82 | −76 | −6 | −88 | −80 | −8 |
1995 | −75 | −74 | −1 | −77 | −72 | −5 |
1996 | −82 | −78 | −4 | −74 | −70 | −4 |
1997 | −71 | −60 | −11 | −86 | −77 | −9 |
1998 | −78 | −74 | −4 | −73 | −71 | −2 |
1999 | −75 | −72 | −3 | −65 | −55 | −10 |
2000 | −75 | −72 | −3 | −82 | −79 | −3 |
2001 | −74 | −71 | −3 | −75 | −66 | −9 |
2002 | −71 | −72 | 1 | −89 | −88 | −1 |
2003 | −92 | −91 | −1 | −91 | −85 | −6 |
2004 | −89 | −87 | −2 | −89 | −85 | −4 |
2005 | −85 | −82 | −3 | −78 | −78 | 0 |
2006 | −81 | −77 | −4 | −81 | −80 | −1 |
2007 | −93 | −86 | −7 | −91 | −82 | −9 |
2008 | −98 | −85 | −13 | −93 | −93 | 0 |
2009 | −91 | −87 | −4 | −97 | −95 | −2 |
2010 | −96 | −93 | −3 | −85 | −83 | −2 |
2011 | −83 | −80 | −3 | −96 | −92 | −4 |
2012 | −90 | −88 | −2 | −98 | −95 | −3 |
Mean | −82 | −79 | −4 | −85 | −80 | −4 |
Stdv | 9 | 8 | 3 | 9 | 10 | 3 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fusco, G.; Cotroneo, Y.; Aulicino, G. Different Behaviours of the Ross and Weddell Seas Surface Heat Fluxes in the Period 1972–2015. Climate 2018, 6, 17. https://doi.org/10.3390/cli6010017
Fusco G, Cotroneo Y, Aulicino G. Different Behaviours of the Ross and Weddell Seas Surface Heat Fluxes in the Period 1972–2015. Climate. 2018; 6(1):17. https://doi.org/10.3390/cli6010017
Chicago/Turabian StyleFusco, Giannetta, Yuri Cotroneo, and Giuseppe Aulicino. 2018. "Different Behaviours of the Ross and Weddell Seas Surface Heat Fluxes in the Period 1972–2015" Climate 6, no. 1: 17. https://doi.org/10.3390/cli6010017
APA StyleFusco, G., Cotroneo, Y., & Aulicino, G. (2018). Different Behaviours of the Ross and Weddell Seas Surface Heat Fluxes in the Period 1972–2015. Climate, 6(1), 17. https://doi.org/10.3390/cli6010017